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Severe acute respiratory syndrome (SARS) is a viral respira-
tory illness caused by SARS-associated coronavirus
(SARSCoV) (Rota et al., 2003; Fouchier et al., 2003). It is a
life-threatening and highly contagious febrile respiratory ill-
ness that was initially described in early 2003 in patients
from Guangdong Province in southern China. This was
quickly followed by numerous cases in Vietnam, Hong
Kong, Singapore, Canada and the USA, with some cases in
other countries (Hsueh et al., 2003).

Treatment for the disease is supportive, as there are no
approved or universally recommended therapies for SARS.
Initially, systemic corticosteroids were used to suppress the
production of the myriad inflammatory mediators that
appear in response to the viral infection (Ho et al., 2003;
Meng et al., 2003). Combination therapy with ribavirin and
corticosteroids has also been attempted (Peiris et al., 2003;
Koren et al., 2003). However, the efficacy of these treat-
ments has not been demonstrated in controlled studies
(Wenzel et al., 2003).

Several in vitro studies have been undertaken in an
attempt to find antiviral agents that suppress SARSCoV
replication. Included in the list of agents found inhibitory

to the virus have been glycyrrhizin (Cinatl et al., 2003a),
interferons (Cinatl et al., 2003b) and siRNA (Zhang et al.,
2003; He et al., 2003). It has also been suggested that 
certain products in the armamentarium of Chinese tradi-
tional medicine could be of value ( Jia & Gao, 2003). In
addition, one group of researchers has recommended the
use of pentoxifylline because of its selective anti-inflamma-
tory activity and antiviral properties (Bermejo et al., 2003).

Because of recent advances in biotechnology, a number
of SARSCoV’s genes have already been identified and their
functions postulated (Snijder et al., 2003). Some of these
gene products may represent potential targets for antiviral
therapy. This list includes SARSCoV polymerase (Xu et al.,
2003) or replicase (Campanacci et al., 2003), an mRNA
cap-1 methyltransferase (von Grotthuss et al., 2003), cys-
teine-type proteinases (Yang et al., 2003; Chou et al., 2003;
Theil et al., 2003) and, perhaps, several homologues of 
cellular RNA processing enzymes (Snijder et al., 2003). In
addition, some have suggested that aminopeptidase N
(CD13) might be a putative receptor for the virus and that
the interaction between virus glycoprotein and aminopep-
tidase N could be a target for a small molecule, such as
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ubenimix (Kontoyiannis et al., 2003). Most recently, Li et
al. (2003) have shown that angiotensin-convertase enzyme
2 is a functional receptor for SARSCoV. Xiao et al. (2003)
have demonstrated that the angiotensin-convertase enzyme
2 interacts with defined amino acid sequences of glycopro-
tein S of SARSCoV. Thus, this interaction between virus
glycoprotein and cell receptor represents an additional and
partially defined target for antiviral chemotherapy, as well
as for vaccine development.

Based on previous studies with other viruses and some of
the potential targets described above, we evaluated a num-
ber of compounds for inhibitory activity against SARSCoV
in vitro.

Materials and methods

Chemicals
Calpain inhibitors
Calpain inhibitors were obtained from CalBiochem-
NovaBiochem Corporation (San Diego, Calif., USA) and
included N-(4-fluorophenylsulfonyl)-L-valyl-L-leucinal
(4-fluorophenylsulfonyl-Val-Leu-CHO; calpain inhibitor
VI), carbobenzoxy-valinyl-phenylalaninal (Z-Val-Phe-
CHO; calpain inhibitor III), N-acetyl-Leu-Leu-Nle-
CHO (ALLN; calpain inhibitor I), Z-Leu-Leu-Tyr-CH2F
(Z-LLY-FMK; calpain inhibitor IV), benzyloxycar-
bonylleucyl-norleucinal (calpeptin, Z-Leu-Nle-CHO) and
the non-selective calpain inhibitor, 3-(4-iodophenyl)-2-
mercapto-(Z)-2-propenoic acid. The calpain inhibitor 2,
2S,3S-trans-epoxysuccinyl-L-leucylamido-3-methylbu-
tane ethyl ester (E-64d), was purchased from Sigma-
Aldrich (St Louis, Mo., USA).

Nucleosides, nucleotides and nucleoside analogues
N4-benzoyl-5′-O-(dimethoxytrityl)-5-methyl-2′-O-
methylcytidine, N4-benzoyl-5-O-(dimethoxytrityl)-3′-
deoxycytidine, N4-benzoyl-3′-deoxycytidine, N4-acetyl-5-
methyl-2′-O-methylcytidine, N4-benzoyl-2′-O-methylcy-
tidine, 2′-deoxycytidine hydrochloride, 2-thiocytidine, 5-
bromo-2′-deoxycytidine, 7-deaza –2′-deoxyguanosine and
7-deaza –2′-deoxyadenosine were purchased from Berry &
Associates, Inc. (Ann Arbor, Mich., USA). 2′-
Deoxycytidine, 3′-deoxycytidine, 2′,3′-dideoxycytidine,
cytosine, 2′-deoxyadenosine and 5′-deoxyadenosine were
obtained from Sigma-Aldrich; 5′-dideoxyguanosine,
chlorocytidine, cyclic cytosine monophosphate (cCMP) and
dideoxycytosine triphosphate (ddCTP) were from Axxora
LLC (San Diego, Calif., USA); and 2′,3′-deoxyadenosine
was from CalBiochem-NovaBiochem Corp.
β-D-N4-hydroxycytidine was kindly provided by

Pharmasset, Inc. (Tucker, Ga., USA) and 3-deazane-
planocin A was donated by Victor E Márquez (National

Cancer Institute, Frederick, Md., USA). Cidofovir was
obtained from Gilead Sciences (Foster City, Calif., USA).
Ribavirin and pyrazofurin were provided by ICN
Pharmaceuticals (Costa Mesa, Calif., USA) and human
leukocyte derived interferon alpha-n3 (Alferon N
Injection) by Hemispherx Biopharma, Inc. (Philadelphia,
Pa., USA).
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Figure 1. Structures of the compounds most inhib-
itory of SARSCoV 

A: Calpain inhibitor VI, 4-fluorophenylsulfonyl-Val-Leu-CHO
B: Calpain inhibitor III, Z-Val-Phe-Ala-CHO
C:  β-D-N4-hydroxycytidine

O

O

O

O

H
N

H

H

N

N O

NHOH

N

OH

O

HO

OH

A

B

C



17

Inhibition of SARSCoV

Antiviral Chemistry & Chemotherapy 15:1

Cell culture studies

Cells and virus
African green monkey kidney cells (Vero 76) were
obtained from American Type Culture Collection (ATCC;
Manassas, Va., USA). The cells were routinely grown in
minimal essential medium (MEM) supplemented with 5%
heat-inactivated foetal bovine serum (FBS; Hyclone
Laboratories; Logan, UT, USA). For antiviral assays, the
serum was reduced to 2% and gentamicin was added to the
medium at a final concentration of 50 µg/ml.

SARSCoV, strain Urbani (200300592), was obtained
from the CDC and routinely passaged in Vero 76 cells.

Cytopathic effect (CPE) inhibition assay
Barnard et al.’s (2001) protocol was used. Compounds were
tested at varying concentrations (four 1 log10 or seven 1/2
log10 dilutions) once or twice with this assay and the activ-
ity was then verified spectrophotometrically by neutral red
(NR) uptake assay on the same plate (see below). Virus
[multiplicity of infection (MOI)=0.001] and compound
were added in equal volumes to 80–90% confluent cell
monolayers in 96-well tissue culture plates. The MOI used
was such that 100% of the cells in the virus controls
showed cytopathic effects (CPE) within 3–5 days. The
plates were incubated at 37°C until the cells in the virus
control wells showed complete viral CPE, as observed by
light microscopy. Each concentration of drug was assayed
for viral CPE inhibition in triplicate and for cytotoxicity in
duplicate. Six wells per microplate were set aside as unin-
fected, untreated cell controls and six wells received virus in
medium only per microplate and represented controls for
virus replication. Alferon was included as a positive control
drug for each set of compounds tested. For all CPE-based
assays, the 50% effective concentrations (EC50) were calcu-
lated by linear regression analysis of the means of the CPE
ratings, expressed as percentages of untreated, uninfected
controls for each concentration.

Morphological changes resulting from a compound’s
cytotoxicity were graded on a scale of 0–5, with 5 being
defined as complete cytotoxicity. The 50% cytotoxic doses
(IC50) were calculated by regression analysis and a selectiv-
ity index (SI) was calculated using the formula:
SI=IC50/EC50.

Neutral red (NR) uptake assay of CPE inhibition and
compound cytotoxicity
This assay was done on the same CPE inhibition test
plates described above to verify the inhibitory activity and
the cytotoxicity observed by visual observation. The usual
correlation between visual and NR assays in our hands has
been greater than 95% (Barnard et al., 2001). The NR assay
was performed using a modified method of Cavenaugh et
al. (1990) as described by Barnard et al. (1999).

Each well of the plate had medium removed and 0.034%
NR added. The plate was then incubated for 2 h at 37°C in
the dark. The NR solution was removed from the wells,
rinsed and the remaining dye extracted using ethanol
buffered with Sörenson’s citrate buffer. Absorbances at 540
nm/450 nm were read with a microplate reader (Bio-Tek
EL 1309; Bio-Tek Instruments, Inc., Winooski, Vt., USA).
Absorbance values were expressed as percentages of
untreated controls and EC50, IC50 and SI values were
calculated as earlier described.

Virus yield reduction assay
All compounds with an SI greater than 10 were evaluated
in a virus yield reduction assay to confirm the results of the
CPE inhibition/NR uptake assays. Infectious virus yields
from each well from a second CPE inhibition assay were
determined as previously described (Barnard et al., 2001).
After CPE was scored, each plate was frozen at –80°C
and thawed. Sample wells at each compound concentra-
tion tested were pooled and titred in Vero cells for infec-
tious virus by CPE assay as described previously by
Barnard et al. (2002).

A 90% reduction in virus yield was then calculated by lin-
ear regression analysis. This represented a 1 log10 inhibition
in titre when compared to untreated virus controls.

Evaluation of cytotoxicity in rapidly dividing cells
Cytotoxicity in rapidly dividing cells was evaluated by deter-
mining the total number of cells, as reflected by a NR uptake
assay after a 3-day exposure to several concentrations of
compound (Barnard et al., 2002). To quantitate cell growth
after 72 h in the presence or absence of drug, the plates were
treated as described above for the NR assay. Absorbance val-
ues were expressed as percentage of untreated controls and
IC50 values were calculated by regression analysis.

Results

Using CPE reduction assays, visually assessed and verified
spectrophotometrically by NR uptake assay in the same
plate, we evaluated a number of metabolic inhibitors,
including calpain inhibitors and several nucleotides, nucle-
osides and nucleoside analogues, for anti-SARSCoV activ-
ity in Vero 76 cells. Compounds found active in those two
assays were further evaluated for inhibition of infectious
virus production.

The most inhibitory calpain inhibitor had the motif
Val-Leu-CHO and an EC50 of 1 µM as determined by NR
assay (Table 1). Calpain inhibitor III (Z-Val-Phe-Ala-
CHO) was also active against SARSCoV; the EC50=0.5
µM by visual assay and 1 µM by NR assay.

Of the cytosine-type compounds, β-D-N4-hydroxycyti-
dine was very active, with an EC50 of 5 µM, but with some
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cytotoxicity detected, the IC50 was equal to 50 µM by NR
assay (Table 2). N4-Benzoyl-5′-O-(dimethoxytrityl)-5-
methyl-2′-O-methylcytidine slightly, but selectively, inhib-
ited SARSCoV replication as assessed by NR assay
(EC50=4 µM). However, slight viral CPE was evident at
every dilution of compound tested (data not shown). N4-
Benzoyl-5-O-(dimethoxytrityl)-3′-deoxycytidine, N4-ben-
zoyl-3′-deoxycytidine, N4-acetyl-5-methyl-2′-O-methyl-
cytidine, 2′-deoxycytidine, 3′-deoxycytidine, cytosine,
N4-benzoyl-2′-O-methylcytidine, 2′-deoxycytidine hydro-
chloride, 2-thiocytidine, 5-bromo-2′-deoxycytidine,
5-chlorocytidine, cidofovir, cyclic cytosine monophosphate
(cCMP), dideoxycytosine triphosphate and 2′,3′-dideoxy-
cytidine were inactive.

Of the guansosine-like compounds evaluated, ribavirin
was found to be active against SARSCoV in the Vero cells
at a very high concentration by NR assay with an EC50=622
µM (Table 3). In this same group of compounds, pyrazofu-
rin was also inhibitory, but only near cytotoxic levels (SI=3
by NR assay). Dideoxyguanosine and 7-deaza–2′-
deoxyguanosine were inactive.

None of the adenosine derivatives (2′-deoxyadenosine,
2′,3′-deoxyadenosine, 7-deaza-2′-deoxyadenosine and 3-
deazaneplanocin A) was particularly selective in their in-
hibition of SARSCoV replication, although 7-deaza-2′-
deoxyadenosine (2′-deoxytubercidin) was inhibitory at 
<0.2 µM (Table 4).

The activity of the some of the active compounds was
confirmed by a third assay, the virus yield reduction assay

(Table 5). The calpain inhibitor, 4-fluorophenylsulfonyl-
Val-Leu-CHO, reduced virus yields by 90% at 3 µM, Z-
Val-Phe-CHO reduced virus yields by 90% at 10 µM and
N-acetyl-Leu-Leu-Nle-CHO had an EC90=15 µM. β-D-
N4-hydroxycytidine reduced virus yields by 90% at 6 µM,
which confirmed the activity demonstrated by CPE reduc-
tion assay and NR assay.

Discussion

The SARCoV infection induced in Vero 76 cells used in
these experiments appeared to provide a reproducible
antiviral system for evaluating the test compounds
described. Vero cells are standard cells used for many
antiviral studies with a number of viruses (i.e., acyclovir and
herpes simplex viruses) and, in our experiments, yielded the
greatest viral titres. In addition, a very pronounced viral
cytopathic effect leading to complete lysis of the cell mono-
layer was seen in these cells, unlike that seen in Caco-2 cells
derived from a human colon adenocarcinoma (See Cinatl et
al. 2003b). The combined use of visual and NR-determined
CPE inhibition, confirmed by virus yield reduction, has
been useful in antiviral studies with other viruses as we have
described in a number of previous reports (Barnard et al.,
1999, 2001, 2002). Only one strain of SARSCoV was eval-
uated in this study. Thus, it remains to be determined if
other SARSCoV strains have similar antiviral susceptibility
profiles as the Urbani strain.

Table 1. Inhibition of the Urbani strain of SARSCoV replication in African green monkey kidney (Vero 76) cells
by calpain inhibitors

Visual assay Neutral red assay

Compound EC50 IC50 SI EC50 IC50 SI
(µM) (µM) (µM) (µM) (µM)

Selective calpain inhibitors
4-Fluorophenylsulfonyl-Val-Leu-CHO (VI) 2 >100* >50 1 >100 >100
Z-Val-Phe-CHO (III) 0.5 20 40 1 10 10
N-Acetyl-Leu-Leu-Nle-CHO (I) 2 20 10 4 11 3
Z-Leu-Leu-Tyr-CH2F (IV) 2 17 9 7 8 1
Z-Leu-Nle-CHO (I & II) 2 17 9 25 25 1
2S,3S-trans-Epoxysuccinyl-L-leucylamido-3-
methylbutane ethyl ester (II) >100 >100 ND >100 >100 ND

Non-selective calpain inhibitor
3-(4-Iodophenyl)-2-mercapto-(Z)-2-propenoic acid >100 >100 ND >100 >100 ND

*Concentrations higher than those shown were not tested.
ND, not determined.
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Table 2. Inhibition of the Urbani strain of SARSCoV replication in African green monkey kidney (Vero 76) cells
by cytosine nucleosides and analogues

Visual assay Neutral red assay

Compound EC50 IC50 SI EC50 IC50 SI
(µM) (µM) (µM) (µM)

β-D-N4-hydroxycytidine 10 >100* >10 5 50 10
N4-Benzoyl-5′-O-(dimethoxytrityl)-5-methyl-
2′-O-methylcytidine 20 25 1 4 23 6
N4-Benzoyl-5′-O-(dimethoxytrityl)-3′-deoxycytidine 2 2 1 3 3 1
N4-Benzoyl-3′-deoxycytidine 80 >100 >1 >100 >100 ND
N4-Acetyl-5-methyl-2′-O-methylcytidine 100 >100 >1 >100 >100 ND
N4-Benzoyl-2′-O-methylcytidine >7 >7 ND >7 >7 ND
Cytosine >100 >100 ND >100 >100 ND
2′-Deoxycytidine >100 >100 ND >100 >100 ND
3′-Deoxycytidine >100 >100 ND >100 >100 ND
2′-Deoxycytidine hydrochloride >100 >100 ND >100 >100 ND
2′,3′-dideoxycytidine >100 >100 ND >100 >100 ND
Cyclic cytosine monophosphate >10 >10 ND >10 >10 ND
Dideoxycytosine triphosphate >1.5 >1.5 ND >1.5 >1.5 ND
S)-1-[3-hydroxy-2-(phosphonylmethoxy)propyl]cytosine
(cidofovir) >360 >360 ND >360 >360 ND
5-Bromo-2′-deoxycytidine >100 >100 ND >100 >100 ND
5-Chlorocytidine >0.25 >0.25 ND >0.25 >0.25 ND

*Concentrations higher than those shown were not tested.
ND, not determined.

Table 3. Inhibition of the Urbani strain of SARSCoV replication in African green monkey kidney (Vero E6) cells
by guanosine nucleosides and analogues

Visual assay Neutral red assay

Compound EC50 IC50 SI EC50 IC50 SI
(µM) (µM) (µM) (µM)

Pyrazofurin 8 39 5 8 20 3
Ribavirin 1384 875 ND 622 2293 5
Dideoxyguanosine >2* >2 ND >2 >2 ND
7-Deaza–2′-deoxyguanosine >100 >100 ND >100 >100 ND

* Concentrations higher than those shown were not tested.
ND, not determined.
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β-D-N4-hydroxycytidine was one of the active com-
pounds found in the current study. β-D-N4-hydroxycyti-
dine has previously been shown to inhibit bovine viral diar-
rhoea virus and hepatitis C virus (HCV) replicon RNA
production in Huh7 cells (Stuyver et al., 2003), at concen-
trations similar to those inhibiting SARS in this study. In
cell-free HCV NS5B assays, the compound appeared to act
as a weak alternative substrate for the viral polymerase,
causing the mobility of the polymerase to change in a gel
electrophoresis assay. Thus, it was postulated that β-D-N4-
hydroxycytidine might affect the thermodynamics of the
secondary structure of the polymerase to cause inhibition of
viral replication. Although there are few proven inhibitors
of viral RNA replicases, a small number of other 

compounds have also been shown to inhibit viral RNA
polymerases. The nucleoside analogue 2′-deoxy-2′-
fluoroguanosine (2′-fluorodGuo), an influenza virus
inhibitor, was shown to be phosphorylated by cellular
enzymes and reversibly inhibited influenza virus replication
in chick embryo cells (Tisdale et al., 1995). In that same
study, the triphosphate of 2′-fluorodGuo was a competitive
inhibitor of influenza virus transcriptase activity derived
from disrupted virus. Recently, Xu et al. (2003) described
the types of nucleoside analogues that should inhibit the
SARSCoV RNA polymerase. The authors suggested that
potential nucleoside analogue inhibitors of SARS-CoV
RNA-dependent RNA polymerase should contain groups
at the 2′ and 3′ positions that are capable of making hydro-
gen-bonding interactions with the amino acid residues
Asp623 and Asn691 of the enzyme. Analysis of the mole-
cular model of SARS-CoV polymerase also suggests that
potential nucleoside inhibitors should have the C3′ endo
sugar puckering conformation in order to maintain its abil-
ity to makie a hydrogen bond at the 3′ position and to avoid
steric conflicts at the 2′ position. Thus, the molecular
model of the SARS RNA polymerase would predict that
2′-C-methyadenosine and 2′-O-methylcytidine could be
potential inhibitors of SARS-CoV polymerase. The data
presented here showed that a 2′-O-methylcytidine deriva-
tive, N4-Benzoyl-5′-O-(dimethoxytrityl)-5-methyl-2′-O-
methylcytidine, was slightly inhibitory to SARSCoV repli-
cation. In addition, β-D-N4-hydroxycytidine seems to par-
tially fulfil some of the criteria for an inhibitor of SARS
polymerase described earlier as well.

The 3C-like proteinase or main protease of SARSCoV,
designated as 3Clpro or Mpro to indicate both its similarity
to picornavirus 3C proteinases and that it is the main pro-
tease of the virus, can potentially cleave at three unusual
cleavage sites with Phe, Met or Val (Anand et al., 2003).

Table 4. Inhibition of the Urbani strain of SARS-CoV replication in African green monkey kidney (Vero E6) cells
by adenosine nucleosides and analogue

Visual assay Neutral red assay

Compound EC50 IC50 SI EC50 IC50 SI
(µM) (µM) (µM) (µM)

7-Deaza-2′-adenosine 0.2 0.2 1 0.1 0.4 4
2′-Deoxyadenosine >100* >100 ND 8 20 3
5′-Deoxyadenosine >100 >100 ND >100 >100 ND
2′,3′-Deoxyadenosine >100 >100 ND >100 >100 ND
3-Deazaneplanocin A >380 >380 ND >380 >380 ND

*Concentrations higher than those shown were not tested.
ND, not determined.

Table 5. Reduction of Urbani strain of SARSCoV
infectious virus yields in African green monkey 
kidney (Vero 76) cells by selected agents

Compound EC50 IC50* SI
(µM) (µM)

Calpain inhibitors 
4-Fluorophenylsulphonyl-Val-Leu-CHO 3
>100† >33
N-Acetyl-Leu-Leu-Nle-CHO 15 57 4
Z-Val-Phe-Ala-CHO 10 43 4

Nucleoside analogues
β-D-N4-hydroxycytidine 6 15 >3
Pyrazofurin 27 32 1

*Determined from a 72 h exposure actively growing to compound.
†Concentrations higher than those shown were not tested.
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Since 3-(4-iodophenyl)-2-mercapto-(Z)-2-propenoic acid,
a non-competitive, non-peptide inhibitor, was not active,
perhaps peptide inhibitors that mimic these sites might
selectively and competitively disrupt proteolytic cleavage by
the SARSCoV Mpro. Interestingly, some of the most active
calpain inhibitors contained Val or Phe. However, 4-
fluorophenylsulphonyl-Val-Leu-CHO was the most
potent and selective inhibitor of the compounds tested,
regardless of the assay used. Calpain inhibitor IV and E-
64d, both irreversible inhibitors of calpains, inhibited
SARSCoV but were not selective inhibitors of the virus, as
they were cytotoxic near the same levels viral CPE was
inhibited.

These results suggest that the compounds found active
in this study should be studied further as potential agents
for SARS therapy. More probably, they could be used as
lead compounds for the development of even more potent,
nontoxic inhibitors of SARSCoV.
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