Utilizing Fractionated Space Mission Design and Small Satellites for a Next Generation Gamma Ray Burst Observatory

Rashied B Amini
Outline

• Background
• Missions Objectives
• (Abridged) Satellite Overview
• Sortie Overview
• Conclusion
Background

- Most energetic event in the universe
- Discovered by Vela satellites during Cold War
- Recent GRB missions:
 - CGRO
 - SWIFT
 - Agile
 - HETE-II
- Many participated in the Interplanetary Network (IPN)
Background

• Why does this matter?

Early missions achieve all-sky coverage with limited precision. Current missions achieve high precision with limited coverage.

How can we get all-sky coverage with high precision for a next generation mission?
Mission Objectives

• Science Mission
 – To provide rapid detection and observation of GRBs as well as prompt relay of GRB coordinates

• Technology Mission
 – Utilize several small satellites as a demonstration of the viability of fractionated mission design for space science missions
Satellite Overview

• Formation of four satellites flying on a 10,000 km, equatorial, circular orbit
 – Position and direction provided to high precisions and accuracy by GPS and on-board gyroscopes
 – Right outside of Inner Van Allen Belt

• Each satellite has:
 – 5 Sodium Iodide (NaI) scintillating detectors
 – 2 Wide Field X-ray Cameras (WFXC)
 – Primary observation instrument
Satellite Overview

- Dry Mass: \(\approx 470\) kg
- Peak Power Consumption: \(\approx 515\) W
- Nominal Power Consumption: \(\approx 365\) W

- Subsystems Discussed:
 - ADC
 - Power
 - Propulsion
 - Comm
 - Payload
• Attitude Determination and Control (ADC)
 – Control Moment Gyros (CMGs) slew satellite quickly (3°/sec²)
 – Magnetorquers and hydrazine provide active control from CMG nulls
 – GPS provides position and timing information
 • Low MEO orbit utilization of GPS may lead to negligible errors
• Power
 – Solar panels with $A=1.17 \text{ m}^2$
 – Energy storage using NiMH batteries

<table>
<thead>
<tr>
<th>Subsystem</th>
<th>Power (W)</th>
<th>Power Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communications</td>
<td>89.</td>
<td>0.25</td>
</tr>
<tr>
<td>Power</td>
<td>123.</td>
<td>0.35</td>
</tr>
<tr>
<td>ADC</td>
<td>53.</td>
<td>0.15</td>
</tr>
<tr>
<td>Propulsion</td>
<td>0.</td>
<td>0.00</td>
</tr>
<tr>
<td>CDH</td>
<td>40.</td>
<td>0.11</td>
</tr>
<tr>
<td>Payload</td>
<td>49.</td>
<td>0.14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subsystem</th>
<th>Power (W)</th>
<th>Power Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communications</td>
<td>159.</td>
<td>0.31</td>
</tr>
<tr>
<td>Power</td>
<td>123.</td>
<td>0.24</td>
</tr>
<tr>
<td>ADC</td>
<td>53.</td>
<td>0.10</td>
</tr>
<tr>
<td>Propulsion</td>
<td>50.</td>
<td>0.10</td>
</tr>
<tr>
<td>CDH</td>
<td>55.</td>
<td>0.11</td>
</tr>
<tr>
<td>Payload</td>
<td>74.</td>
<td>0.14</td>
</tr>
<tr>
<td>Remaining Power</td>
<td>1.</td>
<td>0</td>
</tr>
</tbody>
</table>
• Propulsion
 – Two orbit insertion options:
 • Launch formation direct to MEO
 – Will require extra hydrazine for maneuvering
 – Continued hydrazine use for stationkeeping
 • Launch formation from LEO
 – Solid kick stage used for MEO insertion
 – Hydrazine used for stationkeeping
Satellite Overview

- Communications
 - 100 MHz crosslink used to relay GRB data, position, and telemetry data between satellites
 - S-band used for ground and GCN via TDRSS communication
 - L-band for ground communication to GCN for telemetry

<table>
<thead>
<tr>
<th>Table 2: Mission Communications Data Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance (km)</td>
</tr>
<tr>
<td>Frequency (GHz)</td>
</tr>
<tr>
<td>Data Rate (bps)</td>
</tr>
<tr>
<td>Output Power (W)</td>
</tr>
<tr>
<td>Tx Gain (dB)</td>
</tr>
<tr>
<td>Rx Gain (dB)</td>
</tr>
<tr>
<td>SNR</td>
</tr>
</tbody>
</table>
• Payload
 – NaI detectors
 • Area of 2,756 cm2/detector, total 13,780 cm2 for 5 detectors
 • Poor accuracy (on order of degrees, like BATSE)
 • All-sky coverage and high sensitivity

 – Wide Field X-ray Camera
 • Area of 175 cm2/detector, total 350 cm2 for 2 detectors
 • Good accuracy (~11’, like HETE’s WXN)
 • About 1.5 sr coverage for each instrument
Satellite Overview

• Arbitrary primary payload: Coded Cadmium Zinc Telluride (CZT) GRB detector
 – Lead-lined coded mask
 – 100 cm2 SWIFT-life detector
 – 10° field of view

• Primary payload can vary
 – CCD detectors
 – Scintillating fiber detectors
 – UV/Optical instruments
Baseline Accuracy
- Uses time delay to triangulate GRBs
- $\theta_\sigma = 44'$, for 2-satellite, 10 ms burst
 - Useful for GRBs $t < 0.1$ s
- GRBs observed by all satellites become over-determined
 - All GRBs above $\pm 22^\circ$ declination are visible to all satellites

“Stereoscopic” observation
- $\theta_\sigma \propto \theta_0 / \sqrt{N}$
 - NaI: 2.5°
 - WFXC: 5.5’
- Follow up observations can be accomplished quickly with a small field of view primary instrument
• Three phases:
 – Detection:
 • Individual satellites use NaI and WFXC to observe and locally target burst
 • Begin slew
 – Communication:
 • Satellites communicate differential light curve data and timing to utilize baselines and multiple observations to reform GRB coordinates
 • Satellites all slew to reformed coordinates
 • Satellites downlink to GCN, or via TDRSS if required
 – Observation
 • Primary instrument slews to observe and provides final coordinates for GCN
 • Data is recorded and forwarded to ground for the duration of the burst

• From detection to observation should take approximately 10 seconds, (SWIFT generally takes greater than 40 seconds)
• By utilizing fractionation and small satellites for GRB observation, we can provide:
 – Redundant, all-sky coverage
 – Fast observation times
 – Comparable accuracies to current missions
 – More robust mission performance
 – Multiwavelength observations with primary instrumentation
 – Confidence in future multi-spacecraft missions, such as Darwin, New Worlds, and LISA
 – Potentially cheaper than current flagship GRB missions
• Thank you to:
 – Dr. Henric Krawczynski, Dr. James Buckley, Dr. Michael Swartwout, and Andrea Huegetter of Washington University in St. Louis
 – Dr. Kevin Hurley at UC Berekley (PI of IPN)
 – Dr. Scott Bartholemy at GSFC
 – Frank J. Redd Student Scholarship Competition and SmallSat
• By utilizing fractionation and small satellites for GRB observation, we can provide:
 – Redundant, all-sky coverage
 – Fast observation times
 – Comparable accuracies to current missions
 – More robust mission performance
 – Multiwavelength observations with primary instrumentation
 – Confidence in future multi-spacecraft missions, such as Darwin, New Worlds, and LISA
 – Potentially cheaper than current flagship GRB missions