CHARACTERIZATION FOR IR AND MICROWAVE INSTRUMENTS WITH SOLAR SYSTEM OBJECTS

> MARTIN BURGDORF, S. A. BUEHLER, V. JOHN UNIVERSITÄT HAMBURG

INTRODUCTION: WHAT USE ARE CELESTIAL OBJECTS?

- Serendipitous obs. of well-known objects in flight during mission
- Geometric calibration: position well known, object < FoV
- Checks ground characterization in flight
- Radiometric calibration: surface not changing, disk-integrated
- Check photometric stability, alternative to vicarious cal. / SNO
- How accurate are the observations of celestial objects?

Characterization for IR and MW with Solar System Objects

8/30/2021

2

OBSERVING THE MOON WITH AMSU-B AND MHS

- DSV: circle close to celestial equator
- Moon close to ecliptic
- Moon moves through the DSV circle.
- Bigger circle => more intrusions
- Bigger beam => longer intrusions

UH

8/30/2021

3

SIGNAL FROM THE MOON IN THE DEEP SPACE VIEW

AMSU-A

POINTING ACCURACY AND CO-ALIGNMENT

Ground Test (Airbus Defense & Space)

In-Flight From Moon in the DSV

MEAN HALF POWER BEAMWIDTH - AMSU-B AND MHS

Sat.	$(16/\mathrm{H1})_{gr}$	$(16/H1)_{op}$	$(17/{\rm H2})_{gr}$	$(17/{\rm H2})_{op}$	$(18 - 20/\mathrm{H3} - 4)_{gr}$	$(18-20/{\rm H3}-4)_{op}$	$\mathrm{H5}_{gr}$	$H5_{op}$
N15	1.12	1.199 ± 0.005	1.03	1.293 ± 0.011	1.05	1.207 ± 0.006		
N16	1.12	1.212 ± 0.006	1.05	1.338 ± 0.014	1.08	1.227 ± 0.009		
N17	1.16	1.210 ± 0.010	1.00	1.239 ± 0.010	1.00	1.093 ± 0.007		\frown
N18	1.09	1.172 ± 0.004	1.03	1.067 ± 0.006	1.05	1.221 ± 0.004	1.05	1.241 ± 0.005
N19	1.10	1.178 ± 0.003	1.15	1.141 ± 0.003	1.12	(1.271 ± 0.008)	1.12	1.260 ± 0.003
M-A	1.11	1.177 ± 0.036	1.17	1.158 ± 0.037	1.07	1.215 ± 0.025	1.08	1.263 ± 0.041
M-B		1.120 ± 0.031		1.066 ± 0.029		1.140 ± 0.021		1.182 ± 0.033
M-C		1.245 ± 0.066		1.223 ± 0.062		1.278 ± 0.05		1.308 ± 0.073

Characterization for IR and MW with Solar System Objects

6

RADIOMETRIC CAL.: OBSERVATION AND MODEL

The measured T_B of the Moon at 89 GHz

Cyan: AMSU-B on NOAA-16 Yellow: NOAA-17

Red: MHS on NOAA-18 Magenta: NOAA-19

Grey dot: NOAA-20 ATMS. Blue: Keihm (1984) Green: Liu & Jin (2020).

UH ...

8/30/2021 7

SUMMARY – MICROWAVE SOUNDERS

• Pointing accuracy at DSV

Requirement: ±0.1° for AMSU-B, ±0.09° for AMSU-B

Not compliant in 1/3 of the cases, more than ±0.3°

• Beamwidth at DSV

Requirement: 1.1° ± 10%

➢ Not compliant in half of the sounding channels, discrepancies to ground tests ≥ ten sigma

Radiometric calibration

- Need to take distance of Moon to Sun and Observer and phase angle into account
- Scatter around Liu & Jin's model of 2 K for MHS, absolute level 5.5% off

Characterization for IR and MW with Solar System Objects

8/30/2021

8

CONSECUTIVE OBSERVATIONS OF MERCURY (SEVIRI) I

Meteosat-10 at 3.92 μm on 5/15, 2017, 22:15

22:30

8/30/2021

9

UH

CONSECUTIVE OBSERVATIONS OF MERCURY (SEVIRI) II

Movement in North-South direction agrees with obs.

Sampling is accurate within a fraction of a ‰ over one hour.

10

CHANNEL CO-REGISTRATION WITH SEVIRI

Venus at 800 nm on 9/30, 2019

Venus at 6200 nm on 9/30, 2019 Distance IR-VIS channels: 1.4 km

Characterization for IR and MW with Solar System Objects

8/30/2021 11

A MODEL FOR RADIOMETRIC CALIBRATION

The disk-integrated flux of Mercury compared to a model. Problem: IFOV > sampling Feature at 6.25 μm? Feldspar at 9.66 μm? For VIS use Venus or Procyon.

Model by Thomas Müller, MPE

Characterization for IR and MW with Solar System Objects

UHH iilii

8/30/2021 12

SUMMARY – SEVIRI ON METEOSAT

• Geometric calibration

- Relative accuracy tested over 18.3° (> diameter of Earth) and consecutive images
- Mis-registration between VIS/NIR and IR/WV focal planes confirmed for Meteosat-11

• Radiometric calibration

- Short-term radiometric error requirements fulfilled for WV channels
- Measurement uncertainties in VIS/NIR similar to vicarious calibration (single obs.)

• Problems with VIS/NIR

- Venus not a point source, might be variable
- ABI, AHI, and AMI have ten times smaller IFOV at 640 nm, use Procyon instead

8/30/2021 13

CONCLUSIONS

- Moon intrusions in the deep space view are helpful for characterising MW sounders in flight.
- Performance of quasi-optics not compliant with ground tests and requirements in several cases
- Check of radiometric stability has accuracy of 2 K for a single observation with MHS.
- Mercury in the corners of the image is helpful for characterising SEVIRI's IR channels in flight.
- For VIS/NIR imagers with small IFOV: star close to celestial equator => make raw data available.