The Interstellar Boundary Explorer (IBEX) Mission Design: A Pegasus Class Mission to a High Energy Orbit

Ryan Tyler, D.J. McComas, Howard Runge, John Scherrrer, Mark Tapley
IBEX Science Requirements

- IBEX makes full-sky measurements of the interaction between the sun’s heliosphere and the interstellar medium by measuring Energetic Neutral Atoms (ENA) that come from this interaction
 - Based on statistical extrapolation, so significant sample size needed
 - The attitude must remain constant over long periods of time
 - ENAs from Earth’s magnetosphere will drown out ENAs from this interaction so IBEX must maximize time above the magnetosphere
 - Apogee altitude 25-50 earth radii (R_E)
 - Goal: maximize apogee altitude to 50 R_E
The IBEX Mission (1 of 2)

- IBEX is a sun-pointed spinner with payload sensor pointed out radially.
- Target orbit altitude is 7000 x 318900 km.
- Every orbit (~8 days) S/C re-points to track the sun.
- A single full sky image is completed every 6 months by re-pointing to maintain sun pointing once per orbit.
The IBEX Mission (2 of 2)

- Orbit is broken into 2 pieces:
 - High Altitude Science Operations (HASO)
 - Above 10 R_E (corresponds roughly to extent of Earth’s magnetosphere), inertially fixed attitude, lasts ~7.5 days
 - Low Altitude Housekeeping Operations (LAHO)
 - Below 10 R_E, includes re-pointing maneuver & high-rate data downlink, ~½ day
Flight System Configuration

- Flight system includes spacecraft, solid rocket motor (SRM), and launch vehicle adapter cone
 - Following completion of the SRM burn, only the spacecraft remains

Initial Concept
- SRM nozzle embedded in Pegasus
- Adapter cone attached to SRM during burn

Design Innovation
- Nozzle not embedded, 3rd separation system added to separate adapter cone
 - Allows clean separation from Pegasus
 - SRM propellant savings outweighs mass of additional separation system

[Diagram showing spacecraft, solid rocket motor, adapter cone, and separation systems]
Launch Vehicle Insertion

- Pegasus provides a low-cost launch to a 200 km target insertion orbit
 - 200 km selected as min. safe altitude; SRM fires 22 sec after Pegasus sep.
 - Pegasus points IBEX in proper burn direction and spins IBEX up to 60 rpm

Initial Concept
- Pegasus performs energy scrubbing to minimize insertion errors
 - SRM dispersions already fairly large, so want to minimize insertion dispersions

Design Innovation
- No energy scrubbing, allowing Pegasus to use all of its performance to provide energy to IBEX
 - Results in significantly higher average orbit energy
 - Large insertion errors
Ascent Profile

• Perigee altitude raised to 7000 km by Hydrazine Propulsion System (HPS)
 ─ Perigee raising propellant goes down as apogee goes up

Initial Concept
• SRM performs entire apogee raise
• HPS performs perigee raise

Design Innovation
• HPS performs part of apogee raising in addition to perigee raise
 ─ SRM offloaded some, HPS prop increased by a similar amount
 ─ Apogee increased over several orbit raising burns during LEOps
Achieved Orbit Statistics (1 of 2)

- Uncertainty in SRM performance from several sources:
 - Uncertainty in specific impulse delivered by motor
 - Uncertainty in loaded SRM propellant mass
 - Uncertainty in pointing and nutation provided by Pegasus
 - Uncertainty in nutation growth due to dynamics of separations and sloshing liquid HPS propellant in a minor axis spinner

- End-to-end Monte Carlo dynamic analysis shows “effective” SRM performance statistics
 - The amount of delta-V that that was produced in the velocity vector

![Histogram of Effective SRM Delta-V](image)
Achieved Orbit Statistics (2 of 2)

Initial Concept
- Total uncertainty from effective SRM delta-V and Pegasus insertion velocity uncertainty +28 / -39 m/s
 - 3-sigma is 50 R_E
 - Nominal is 39.5 R_E
 - Mean is 38.0 R_E
 - 3-sigma low is 30.4 R_E

Final Design
- Post-SRM parking orbit is lower and has larger delta-V dispersions
- However, in all 3000 Monte Carlo runs, there is enough hydrazine to then raise apogee to 50 R_E in subsequent orbits
- Pegasus over-performance greatly outweighs any SRM under-performance
- Use of HPS allows taking advantage of Pegasus over-performance without risk
 - Hydrazine for apogee raising can be used or not used, as needed
Conclusions

• IBEX is the first Pegasus-class mission to reach such a high energy orbit
 – Can be a pathfinder for future missions looking to get beyond LEO on a low budget
 • Potential for lunar missions, libration points, even Earth escape
 • Mass is the key limiting parameter – IBEX is a very simple spacecraft
• The IBEX team has addressed many issues inherent to the unique mission design, including:
 – Analysis of the dynamics of a minor axis spinner with onboard liquid propellant through the SRM burn phase
 – Dynamics of multiple spinning separation events
 – Operational strategy for dealing with significant lunar effects on the orbit as well as potential for eclipses longer than 12 hours
 – Autonomy and fault detection & correction for a spacecraft that only talks to the ground once every 4 days
 – Assessment of the radiation environment from both inner & upper belts
 – And many more!
• IBEX is currently scheduled to launch on October 5th