

Advances in the SLIM Lunar Spectral Irradiance Model; Many Observations, One Moon Hugh H. Kieffer ≡ Celestial Reasonings hhkieffer@gmail.com

Goal: Exactly how bright (spectral irradiance) is the Moon. Envision an evolving process with more people, additional data, decreasing uncertainty.

SLIMED model of lunar spectral irradiance. Continuous in all 6 dimensions.

Concept. Use all available data with appropriate weight. This is an update; with repeat of the fundamentals Charts designed for later study

Implimentation: Source area for each instrument, consistent file formats, segregate control files and arrays, save files between major stages, time-based model names. System that can incorporate all useful data, progressively approach the real Moon.

Some figures are overloaded; Black background improves color separation. Apologies to color-blind folks.

There is only one Moon; its reflectance must be smooth in all photometric and spectral dimensions.

SLIMED vrs SLIMFIT (2019):

SLIMED, each point has its own geometry and effective wavelength Avoids the spectral transform matrix of SLIMFIT

Normalize to a lunar reference spectrum, then fit with polynomials: In geometry and "wave" (length λ or $1/\lambda$ or $\ln \lambda$) Usually omit wide (pan) bands from the fit. Large matrix; typically 100,000 x 35 In English is simple, math is a little complex

Libration effect has been a major challenge, [most instruments use narrow phase range] Use fit to global albedo maps from lunar orbiters = MapLib

Evaluate all 24 instruments on hand with one model Useful for relative response comparisons; **Large differences**

SLIMED model is continuous in all dimensions. Residuals over all instruments are smaller than ROLO model About 35 terms instead of 328 !

SLIMED method: isolate the high-res spectrum

Presume the lunar spectrum is product of high-resolution reference spectra of Sun and Moon, times a smooth function TBD of geometry and wavelength.

The core of lunar models is lunar reflectance, the product lunar spectral irradiance in the form

$$
E_{\odot}(t,\lambda) = \underbrace{S_{\odot}(t,\lambda)}_{\text{Sun}} \frac{\Omega}{\pi D(t)} \bullet \underbrace{R_0(\lambda) \mathbf{L}(P,w)}_{\text{Moon}} \frac{\mathbf{\hat{B}}(P,w)}{\mathbf{B}(P,w)}
$$

 Ω is the solid angle of the Moon at standard distance.

 D is the $1/R^2$ correction to standard distances: Viewer:Moon 384,400 km, Sun:Moon 1 AU.

The 3 terms right of the bullet constitute the lunar model; the Disk Equivalent Reflectance (DER) $R_{\odot}(\lambda, P)$, a function of wavelength and five photometric angles represented by P .

 $R_0(\lambda)$ is the reference Moon, a high-resolution nominal surface reflection spectrum. L is an optional independent libration model derived from Lunar orbiter data. **B** represents the primary variation of lunar brightness with geometry and wavelength,

B does not have to address the high spectral-resolution features of lunar irradiance. This is the key to the SLIMED method

2021 CALCON 3

Solar and lunar references

Requires a reference lunar spectral reflectance; still using the Apollo breccia mix used in ROLO. Requires a reference solar spectral irradiance; recently adopted the HSRS [Coddington, 2021] Total Solar Irradiance (TSI) variation based on [Kopp,2120] with recent extension. Spectral sensitivity to TSI variation based on information from Greg Kopp, Then fit in log/log space with quadratic in λ that captures 98% of the sensitivity.

Solar spectral irradiance is implimented in SLIM as

$$
S_{\odot}(\lambda, t) = S_0(\lambda) \underbrace{\left[1 + f(\lambda) \left(\frac{H(t)}{H_0} - 1\right)\right]}_{\mathcal{H}(\lambda, t)}
$$

 $S_0(\lambda)$ is the solar reference spectrum : HSRS [Coddington, 2021] The term in brackets is the solar variation model.

 $H(t)$ the total solar irradiance (TSI); linear interpolation of 1-day sampling with subscript 0 being the long-term average 1361.623 W/m². The relative variation with wavelength $f(\lambda)$ is a

quadratic fit in log/log space over 290:2412 nm to data provided by G. Kopp, yielding $f = \exp(-0.338752 - 0.785894 \ln \lambda + 0.202152 \ln^2 \lambda)$

where λ is in micrometers; captures 98 % of the spectral variation.

The Basis Functions

B carries the variation of the lunar irradiance over angles and wavelength in the form

$$
B_{ij}(P_i, w_j) = \sum_{k=0}^{K} F_k(P_i) \sum_{\substack{m=0 \ y_{jk}}}^{M_k} c_{km} w_j^m \quad \text{and} \quad B(P, w) = \exp B_{ij}(P_i, w_j)
$$

 i is an observation index

 j is a band index

 k runs over the selected geometric basis functions F

- The F_k terms are the angles comprising P, and some cross-products, each may be polynomials of low degree.
- M_k is the degree in wave for each of the k terms

 c_{km} are the model coefficients

The individual terms in the right-hand sum are required to generate the model, however the b_{jk} can be used in evaluating the model.

The fit process derives c_{_{km} . Finding the band gains is minimization in a 168 dimensional} **space. Hard to ensure one has found the global minimum; hence approach slowly!**

Lunar orbiter based libration model: MapLib

A libration model based on lunar orbiters maps has the form

$$
L(P_i, w_j) = \sum_k d_k \underbrace{\left[1, p, p^2, g, q\right]}_{\mathcal{L}} \# \underbrace{\left[1, x, y, x^2, y^2, xy\right]}_{\mathcal{L}} + \sum_k d'_k w \mathcal{L}
$$

 $\mathbf{L}_{ij} = \exp L(P_i, w_j)$

where $\mathcal L$ represents the 30 cross-terms of the two sets in brackets. Any subset of the 60 terms can be selected to include in a fit.

Five angles, with 4 independencies, comprise P ; p is the signed phase angle, increases through each lunation, changes sign (discontinuously) at full Moon x and y (or Vlon and Vlat): selenographic longitude and latitude of viewer h and z (or Hlon and Hlat): selenographic longitude and latitude of the Sun only odd powers of h are allowed to avoid near-degeneracy with $-p$.

Two varients of p are used for convenience in notation: $g \equiv |p|$ is the absolute value of p and $q \equiv 1/|p|$

Estimate libration effect using Clementine maps

Sources:

Clementine: all nadir, so shadows increase pole-ward relative to Earth view UVVIS (5 bands) to the poles, noisy beyond ±59˚ NIR (6 bands, omit longest two; thermal influence), to ±70˚ Lunar Orbiter Laser Altimeter, LOLA, 1.084 μm, to the poles, nadir, 0-phase

Source maps generally high resolution; reduce to 8 pixels/degree Fill poles with bland average where needed; 6% of view Synthesize orthographic image assuming Lunar-Lambert photometry A mix of Lambertian and Lommell-Seeliger photometric function Lambert fraction increases with absolute phase angle Normalize to zero libration

Compute grid of irradiance:

Vlon and Vlat: [-8, -4, 0, +4, +8] , 25 points p=Phase angle: [3,8,14,20,30,40,50,60,70,80,90-] and – these, 22 points Total of 550 points / band

5500 points. About 20 terms models most of the effect

Instruments that provided irradiance

Several LEO have narrow range of phase angle Into the model: all LEO, ROLOG, NIST and AerN. GEO all have more scatter

Model flexibility: joy and curse

Based on many [12] instruments, 90,000 measurements. Includes TSI and SSI variation. Optional: libration model derived from 10 maps by Lunar orbiters. ⇖ ⇧ 0.1% effect Basis functions (BF): abs. phase angle; Viewer Longitude, latitude; Solar lat., lon. Selected polynomials and cross-products of each, and those times polynomials in λ

Decisions: some of the categories

- **1) Which instruments to include in model.**
- **2) Teams rarely provide uncertainties, must be assigned.**
- **3) Heft: Overall weighting factor for each instrument to address abundance of points, apparent consistency, ...**
- **4) Use MapLib?**
- **5) Include solar variation?**
- **6) Which of the thousands of possible BF combinations to use.**
- **7) Dozens of fit control parameters**

Nested fit iterations for outlier rejection and gain of each instrument band. Typical model has 20:40 Basis Functions. [ROLO=GIRO has 328] Mean absolute residual ∼**0.65%**

Calibrate all instruments in inventory, and some fabricated models.

2021 CALCON 9

SLIMED fit Double iteration loops

A SLIMED model: 34 terms, no MapLib

slimel@288_20Sep13T1458

A 22-term model using MapLib correction is indistinguishable from this

2021 CALCON

12

Different Hefts => Weights: %

Only VIRRS (Suomi) is trend-corrected

Method

Ingest instrument data into standard formats. Processing all table driven. Select instruments to include in fit: **Judgement** Assign uncertainties (teams should do this).

Convert input location and time to photometric angles, adjust to std distances Do a calibration. If clear indication of trends, fit and apply

Select instruments to include, assign Heft to apply to each.

⇒ ⇒ Make fitReady file: includes empirical gain factors

- ⇑ Once: Decide whether to apply MapLib correction
- ⇑ Select basis functions, and what power of wave, to include.
- $↑$ ⇒ Do the fit. (~30 x 100,000 matrix inversion)
- ⇑ ⇑ ⇑ Loop 1:4 times with tighter statistics
- ⇑ ⇑ Key metric, Mean Absolute weighted Residual (MAR)
- ⇑ ⇑ **Adjust empirical gains**, fit again.

```
⇑ ⇑ ⇐ Outer fit loop on this until convergence. Typically 15 times.
```
- ⇑
- ⇑ Look at results. Can check for trends in calibrated data, apply to irrad. file.
- ⇑⇐ Modify Heft (and instrument selection). Do again.

Output: A lunar model, and empirical gain factor for every instrument band Can then use this model to calibrate any/all instrument observations Any systematic calibration bias over all instruments would be incorporated into a model

21Aug23T1645=a45 a58=21Aug23T1649 LibMod=21Aug13T1720 jit=16 Slim?.inp, ?_unc.bin8, heft?.tab, *_eg.bin8, H, wP= d 1 B unity 1 f ROLOG OLI HypM MODT MODA VIIRS VIIRN SeaW PleA PleB NIST AerN

Uncert*E3 is formal SVD uncertainty

 $2021\,\mathrm{CALCON}$. The contract of the contract

Typical model This is the Base model: (for this talk) 21Aug23T1649 or w3Base

34 coefficients, 18 are pure geometric 16 involve wave, here $\ln \lambda$ With MapLib and Solar variation Mean absolute residual: MAR= 0.62%

Columns 3 and 4, Symbol and value, +MapLib, are a complete specification of this SLIMED model !

Last col: Magnitude == importance: Absolute magnitude of the coefficient times the standard deviation of the basis function

9 model calibration results for all instruments and: models on GSICS geometry grid

2021 CALCON **16 CALCOM 15 Version 3 data with new reference solar model** 2021 CALCON 216

Trends: sensitivity ~0.1%. OLI example

2021 CALCON 17 **With ROLO model, SW1 ~1.5% scatter, SW2 ~0.8% annualOnly Aerosol band shows decline; first 1/2 year**

Empirical Gains: LEO and surface obs.

slimel@558 21Aug22T1035s

2021 CALCON 18 **Model: ln λ , MapLib, Solvar. MAR=0.62%. "Reality plot"**

Consistency of observations to model
slimel@559 21Aug22T1035s

 $2021\,\mathrm{CALCON}$ 19 NOAA-20 VIIRS best. HSRS ROLO better than version 3. Some MODIS bands poor

Aspects of SLIM calibration

Some major disagreements. VIIRS very different than MODIS, but the same folks.?

Cluster below 880 nm of MODIS & PLEIADES & NIST Relative to these, SeaWiFS about -5%, GIRO≡ROLO model about -10%

Using MapLib or SLIM ~12 libration basis functions yield similar models

SeaWiFS about 5 % below others. Below 850 nm general agreement except for VIIRS. Some MODIS bands long of 1μ are inconsistent

GEO calibrations are [much] more noisy than LEO. ABI-17 excepted.

Possible causes of large Lunar calibration differences Hardware techniques: Changes between nadir look and lunar look Change in optics from a Z-axis observation Response changes, thermal load effect. Processing techniques: Extracting the lunar irradiance from an lunar observation Myriad of possibilities, all addressable! Misunderstandings and blunders

Some conclusions

A lot of decisions are required This talk has been a solution for method, the model is transitory.

Believe that SLIM model is closer to true moon than ROLO Absolute scale still uncertain, but differences between instruments are solid.

LEO's mostly within a few %, outliers may be due to maneuver or team procedures. Fit trends; look for periodic behavior, sensitivity ∼0.01%

Serious need for high-accuracy lunar irradiance measurements at any phase: Spectral resolution 1/ 15 or better Eagerly await upcoming higher accuracy observations. SLIMED models indicate need of a better lunar reference spectrum. All 3 wave methods drop at extreme wavelenghts, ln λ the least.

Substantial problems exist in lunar calibration for a few instruments. Instrument calibration must be better than indicated by lunar calibration.

∴ **Irradiance extraction techniques need work.**

 If instrument irradiance is suspect, then any trending is suspect.

Teams should re-examine their image-to-irradiance methodology. E.g., What is limiting GEO consistency?