Integrating Lithium Polymer Charging and Peak Power Tracking on a CubeSat Class Satellite

Dan Kaste, Dan Brinks, Jim Moore, Hugh White Zach Palmer and Will Holmes
Presentation Overview

• Students Involved

• Mission Summary
 – Design for Assembly
 – Mesh Network
 – Science Instruments

• Power System
 – Design Principles

• Summary / Conclusion
Students Involved

• Dan Kaste
• Hugh White
• Dan Brinks
• Jared Sutter
• Jim Moore
• Zach Palmer
Mission Objectives

• Demonstrate a functional wireless mesh network in orbit
• Take concurrent multipoint measurements of space plasma density
• Detect Very Low Frequency (VLF) “Whistler Waves” with spatial and temporal resolution.
• Langmuir Plasma probe and VLF must be able to interface into Boston University’s BUSAT
• Satellite must Demonstrate a high level of modularity, allowing subsystems to be reused on future missions and on BUSAT
Mission Objectives

• Demonstrate a functional wireless mesh network in orbit
• Take concurrent multipoint measurements of space plasma density
• Detect Very Low Frequency (VLF) “Whistler Waves” with spatial and temporal resolution.
• Langmuir Plasma probe and VLF must be able to interface into Boston University’s BUSAT
• Satellite must Demonstrate a high level of modularity, allowing subsystems to be reused on future missions and on BUSAT
Demonstrate a Mesh Network
(Zigbee or 802.15.4)
Demonstrate a Mesh Network (Zigbee or 802.15.4)
Demonstrate a Mesh Network (Zigbee or 802.15.4)
Demonstrate a Mesh Network (Zigbee or 802.15.4)
Mission Objectives

• Demonstrate a functional wireless mesh network in orbit
• Take concurrent multipoint measurements of space plasma density
• Detect Very Low Frequency (VLF) “Whistler Waves” with spatial and temporal resolution.
• Langmuir Plasma probe and VLF must be able to interface into Boston University’s BUSAT
• Satellite must Demonstrate a high level of modularity, allowing subsystems to be reused on future missions and on BUSAT
Mission Objectives

• Demonstrate a functional wireless mesh network in orbit
• Take concurrent multipoint measurements of space plasma density
• Detect Very Low Frequency (VLF) “Whistler Waves” with spatial and temporal resolution.
• Langmuir Plasma probe and VLF must be able to interface into Boston University’s BUSAT
• Satellite must Demonstrate a high level of modularity, allowing subsystems to be reused on future missions and on BUSAT
Langmuir Plasma Probe

- **Purpose:**
 Measure low energy, thermal electrons (0 to 6 eV) (L1-2)
- **Returns both Density and Energy (Temperature)**
VLF Receiver

• Detect “Whistler Waves.”

Image from Stanford website
Presentation Overview

• Students Involved
• Mission Summary
 – Design for Assembly
 – Mesh Network
 – Science Instruments
• Power System
 – Design Principles
• Summary / Conclusion
Power System Requirements

• Maintain Downlink Capability
 – Available power always above 2 watt hours
 – Charge batteries correctly

• Maximize Power Flow into Satellite
Power System Requirements

- Maintain Downlink Capability
 - Available power always above 2 watt hours
 - Charge batteries correctly
- Maximize Power Flow into Satellite
- Distribute Power to Satellite
- Have an efficiency greater than 80%
Status

• Implementation of Peek Power Tracking / Li Battery Charging not Complete
 – First Iteration of Circuit Board Complete
 – Software awaiting Hardware
 – Look for Testing Results at Booth at Next Year’s Conference

• Satellite Subsystems Developed
 – VLF, Plasma, Communications (Mesh Network), System
Lessons Learned / Summary

• Pay Attention to Assembly and Systems Engineering from the beginning of a Project.

• Make sure that Complexity does not increase.

• While satellite not delivered, six students were trained.