Aim
To create a four point probe that will consistently and accurately measure resistivity of thin films

Method
Needle spacing = 1 cm
Current (I) is passed through outer probes
Voltage (V) is measured across inner probes
Resistivity is calculated by applying geometry factors to $R = \frac{V}{I}$

Results
Collinear probes are evenly spaced to allow for consistent measurements

Conclusion
Measuring the resistivity of thin films is done using a four point probe. Voltage is measured when a known current is sent through the probes. Resistivity is then calculated using a modified version of $R = \frac{V}{I}$, where factors have been applied to account for geometry of sample.

Acknowledgements
Dr. Samuel Tobler, mentor
Dixie State University
Utah NASA Space Grant Consortium, funding