8-25-1987

Image Analysis and X-Ray Microanalysis in Cytochemistry

W. C. de Bruijn
Erasmus University

H. K. Koerten
Laboratory for Electron Microscopy

M. I. Cleton-Soeteman
University of Utrecht

C. J. G. Blok-van Hoek
Tracor Europe B.V.

Follow this and additional works at: https://digitalcommons.usu.edu/microscopy

Part of the Biology Commons

Recommended Citation

Available at: https://digitalcommons.usu.edu/microscopy/vol1/iss4/17

This Article is brought to you for free and open access by the Western Dairy Center at DigitalCommons@USU. It has been accepted for inclusion in Scanning Microscopy by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.
IMAGE ANALYSIS AND X-RAY MICROANALYSIS IN CYTOCHEMISTRY

W.C. de Bruijn*, H.K. Koerten**
M.I. Cleton-Soeteman*** and C.J.G. Blok-van Hoek****

Clinical Pathological Institute, A.E.M.-unit, Erasmus University, K 902, P.O.Box 1738, 3000 DR, Rotterdam
***Pathological Laboratory, University of Utrecht
****Tracor Europe B.V., Bilthoven, The Netherlands.

(Received for publication September 12, 1986, and in revised form August 25, 1987)

Abstract

When cytochemical reaction products are homogeneously distributed within an organelle, point analyses suffice for the quantitative approach. However, quantitative analysis becomes tedious, when the elements in the reaction product are inhomogeneously distributed. Problems arise when elements from two reaction products have to be related to each other, or to endogenous cytological products (ferritin, haemosiderin, calcium, electron dense markers), either topographically or in concentration. When analyzing inhomogeneous/heteromorphical reaction product-containing organelles special attention has to be paid to measure and relate both volume and concentration. In this paper a relative simple structure (eosinophil granules) is chosen to demonstrate that the acquisition of the requested morphometrical plus chemical information and their integration is possible. The following points will be covered to acquire the morphometrical and chemical information:
a). How to estimate the total cell cross-sectioned area. b). How to estimate the total cross-sectioned area of all reaction product-containing particles inside that cell. The ratio of these two areas will provide the requested information about the particle volume fraction. By using the X-ray detector in addition: c). How to acquire the chemical information at the requested resolution, within a reasonable total acquisition time d). How to integrate the morphometrical and chemical data per organelle, by matrix analysis in a reduced scan area. e). How to acquire quantitative chemical information, by the use of cross-sectioned standards. f). How to make this acquisition method independent from changes in the instrumental conditions during the acquisition.

Key words: Image analysis, X-ray microanalysis, morphometry, cytochemistry, signal integration, ultrathin sections, Bio-standards.

*Address for correspondence:
W.C. de Bruijn,

Introduction

The combination of either a scanning or transmission electron microscope and an X-ray microanalyzer allows the investigation of chemical elements present in morphologically defined structures in cells and tissues. In histo- or cytochemistry emphasis is placed on the chemical detection of (rest) activity. By the application of a cytochemical reaction the activity present in the cell or tissue is converted in a (mostly electron dense) reaction product. The attached X-ray microanalyzer allows the investigation of the obtained reaction product, either qualitatively for identification, semi-quantitatively (to establish the elemental ratio in it) or quantitatively.

The goal in histo- and cytochemistry is to acquire chemical information about the nature and activity of mostly chemically preserved (= aldehyde-fixed) tissue. Cytochemistry can be defined as: the aim to identify - in a section - the nature of cell structures and their activities, by the introduction of chemical reactions. The chemical reaction is considered successful when the reaction product can be related to a cytological item identified by its morphology.

In light microscopy, morphological contrast can easily be combined with absorption or emission types of colour contrast for the visualization of the reaction product. In electron microscopy, electron scattering was until recently the only way to visualize cytochemical activity. The "presence" of an electron-dense reaction product in a morphologically identified structure had to be related to its "absence" in the non-treated or inhibited control material. Application of X-ray microanalysis allows the differentiation of electron scattering produced by different elements, e.g. separating the elements from cytochemical reaction products from each other or from those visualizing the cellular morphology. Moreover, the obtained metal precipitates or complexes could be quantified, both chemically and/or morphologically.

The conventional transmission electron microscope equipped with an X-ray microanalyzer allows a combination of high morphological
resolution (in the order of 10-20 nm) with a fairly high accuracy of localization of the chemical elements (in the order of 50-100 nm) and rather high sensitivity (> 0.5% local concentration) of elements with a Z-number over 11 (=Na).

The conventional scanning electron microscope (with a secondary and/or backscattered electron detector and an X-ray analyzer can be used for this purpose. In the analysis of cells from suspensions or tissue cultures, though at a different level of resolution. This type of instrument will be indicated as SEM*

In the scanning transmission electron microscope (STEM) the specimen is scanned by a narrow beam and the image is formed by transmitted electrons. The scanning feature provides an easy way to digitize the image and thereby the possibility to perform image analysis, when the image can be scanned with a matrix of points at equidistance. To achieve both the morphological information, from the electron detector and the chemical information, (from the X-ray detector), the two information streams have to be integrated per matrix point (pixel point). This type of instrument will be indicated as STEM**. In Fig. 1 such an electron microscope is shown schematically.

In most cases, the acquisition and integration of the images have been performed by an operator. However, such a microscope also allows automated analysis, provided that the analyzed structures have sufficient (either chemical or morphological) criteria for recognition by a computer pattern recognition program [1].

In some STEM-type instruments, chemical analysis is not performed by X-ray analysis, but by electron energy loss analysis (30, 32, 52). In such instruments the electrons which have lost energy as a consequence of their interaction with the specimen, are passed through a spectrometer which separates the electron population according to their energy.

With such electron energy loss populations, images can be obtained, which can be related to chemical elements. Such elements allow to be compared with other electron energy loss images, with the elastically scattered or with zero-loss electron images. Investigations by electron probe X-ray microanalysis (EPMA) of endogenous elements by cryoprocedures are excluded from this paper, are integrated with the chemical reaction results in an electron dense reaction product of which it is desirable to obtain its concentration and volume. For the visualization of organelles to which the activity is related, osmium tetroxide is mostly used. However, conditions for X-ray microanalysis require the removal of the objective aperture and the use of unstained sections. Cytocchemical investigations have been undertaken to increase, in a controllable way, the original osmium contrast in cell membranes and/or glycogen [3, 20, 21, 23, 56, 67]. In addition such investigations contribute to discussions about the way in which osmium tetroxide cytochemically reacts with endogenous cellular structures [7, 71].

The main goal of this paper will be to demonstrate what information can be collected from in situ analysis of ultrathin sections with a chemical element-containing reaction product, in an organelle. When the organelles are subject to cellular processes that induce "shape changes" in these organelles or changes in their cytological activity, these changes can be: 1). changes in the volume of the organelles, or 2). changes in the concentration of the cytochemically detected activity. Stereologically related morphometrical methods can give information about the first point. Potentially the STEM** instrument [= with computer-assisted integrated chemical (X-ray) plus morphological (electron) image analysis] allows the additional investigation of a second aspect: the elemental concentration(s).

This paper will be restricted to the acquisition of the morphometrical and chemical data, and the integration of the latter in the former. The reader is referred to reviews dealing with this specific subject [33, 36, 74]. Three-dimensional reconstruction of biological macromolecules [48] is also not included in this paper.

Cytocchemical reactions are generally carried out on aldehyde-fixed tissue, though frozen material can also be used for this purpose. In the early days of cytochemistry, McGee-Russell and de Bruijn [47] formulated a series of considerations with respect to the aspect of "absence and presence" of cytochemical activity, which still are valid (Table 1). Here we will not discuss in detail various cytocchemical reactions that can be performed to obtain information on the chemical nature of cell organelles and components. A discussion on precipitate formation, inward and outward diffusion, etc. [14, 15, 29] is also outside the scope of this paper. We will simply assume that the chemical reaction results in an electron dense reaction product of which it is desirable to obtain its concentration and volume.

For the visualization of organelles to which the activity is related, osmium tetroxide is mostly used. However, conditions for X-ray microanalysis require the removal of the objective aperture and the use of unstained sections. Cytocchemical investigations have been undertaken to increase, in a controllable way, the original osmium contrast in cell membranes and/or glycogen [3, 20, 21, 23, 56, 67]. In addition such investigations contribute to discussions about the way in which osmium tetroxide cytochemically reacts with endogenous cellular structures [7, 71].

The main goal of this paper will be to demonstrate what information can be collected from in situ analysis of ultrathin sections with a chemical element-containing reaction product, in an organelle. When the organelles are subject to cellular processes that induce "shape changes" in these organelles or changes in their cytological activity, these changes can be: 1). changes in the volume of the organelles, or 2). changes in the concentration of the cytochemically detected activity. Stereologically related morphometrical methods can give information about the first point. Potentially the STEM** instrument [= with computer-assisted integrated chemical (X-ray) plus morphological (electron) image analysis] allows the additional investigation of a second aspect: the elemental concentration(s).

This paper will be restricted to the acquisition of the morphometrical and chemical data, and the integration of the latter in the former. The reader is referred to reviews published elsewhere [12, 25, 26], dealing with material, in which several elements (endogenous iron and cerium phosphate from the cytochemical acid phosphatase reaction) are integrated with morphometrical data. Moreover, changes in both sets of data are compared between pathological human liver material obtained before and after phlebotomy treatment.

Materials and Methods

Our basic instrument is a Philips EM 400 transmission electron microscope equipped with a scanning transmission and a primary backscattered electron detector. In this study only the primary backscattered annular detector was used. A Tracor Northern X-ray microanalytical system is connected to the electron microscope. For digital beam control, a TN 1310 unit is added. The Tracor Northern Image Processing Program (IPP) was modified to allow the scanning of only part of the normal field (Reduced scan program) [22]. Details of this modification are available, either from the authors or through Tracor Europe, The Netherlands. (Mrs. Blok-van Hoek). The system geometry is described elsewhere [25]. The present results were obtained with a LaB6 source installed. The beam intensity, measured on the thick...
Image analysis in cytochemistry

The ultrathin unstained sections are from a cell population from a mouse peritoneal cavity. In this population eosinophil granulocytes are present. The aldehyde-fixed population is treated with a peroxidase reaction with diaminobenzidine (DAB). The poly-DAB formed in the eosinophil granules is visualized by a reaction with H2PtCl6 as described elsewhere [27]. The ultrathin sections were collected on 70 mesh copper grids covered with a carbon coated Formvar film. The grids were placed in a beryllium low-background holder. The digital beam control (TN 1310 unit) allows the analysis of areas of the ultrathin section by a matrix of pixel points at equidistances from 16 x 16 to 1024 x 1024. The reduced scan program allows one to direct that matrix of pixel points to specific sites, scanning only a fraction of the total screen area, as in cytochemically treated specimens only particular parts of the cell contain the reaction product. The other features shown in the Results, are related to resolution and dwell time per point. In the present program the acquisition of the electron image is carried out separately from the acquisition of the (maximally four) elemental maps. This carries the risk that, between the two acquisitions, specimen drift has changed the relative positions of the electron image and elemental maps.

The image data acquired at the pixel points, and their relative position in the matrix, are stored on disk. They can be reentered into the computer, and subjected to mathematical treatment. The figures can be printed by the printer/ploter in such a way that the data are positioned on the paper in the matrix in which they were acquired. This makes the printed "image" resemble the original image on the screen [see Figs. 11, 13 and 14, 15]. This outprint of figures is called array, in arrays that contain two populations of data (cell in epon surrounding, granule in surrounding cytoplasm), a threshold can be introduced, which creates a second so-called overlay image. This overlay image differentiates (in the original array of figures) two sub-populations, one containing the figures above the threshold [called "inside" or I.P.] and one below [called "outside" or O.P.]. In the printed array these populations are separated, by lines drawn between the figures in the array.

In our present print program some relevant results are printed on top of the acquired array-outprints e.g.: total area, number of pixel points in the sub-populations "inside" and "outside", the mean plus standard deviation of the figures in these sub-populations, and whether these values are significantly different. The calculated value for the "inside" part of the image is converted into counts per point, per second, per nm². Other relevant information, e.g. the value: mean plus two times the standard deviation is also calculated and printed. This value is used in the objective determination of the tissue containing the unknown elemental concentration. These standards have rather high concentrations of a variety of elements, like in cytochemical precipitates. In addition, the cross-sectioned ion-exchange resin material can be conveniently used to adjust the instrumental conditions prior to analysis of the unknown. [for details see 12, 25, 26, 66].

Results

The electron image information. The electron dense platinum-containing eosinophil granules are taken as an example for morphometrical analysis. The SEM-image is shown in Fig. 2. The S(T)EM-image is used to obtain the morphometrical information: (a) the area occupied by the cross-sectioned cell, and (b) the area within that cross-section occupied by the items of interest (= granules). The granules are more electron dense than the cytoplasm and the surrounding platinum-free embedding medium (Figs. 3 and 4). The procedure to acquire the morphometrical information is illustrated in Figs. 5-13. On the S(T)EM-screen, a single cell is surrounded by a reduced scan frame (white lines in Fig. 3) and the area enclosed is analyzed by a matrix of...
CONSIDERATIONS IN CYTOCHEMISTRY

1. How much of the substance of interest was present in the object in life?

2. How much of this substance was lost or modified during the steps preceding the moment chosen to perform the reaction to detect its presence or activity or both, by an immuno- or cytochemical reaction?

3. Are chemical reactions available which form stable (electronic scattering) reaction products with specific ligands (SH, COOH, NH2, NH, P02) of the structures to detect?

4. Are such reactions applicable at the chosen moment?

5. If reactions are applicable successfully, what is the stability of the reaction product, and how much is sacrificed in subsequent steps of the procedure?

6. How much stable reaction product is formed in the object, and how much in its immediate surroundings (what is the acquired selectivity)?

256 x 256 pixel points. In Fig. 5 the electron-detector derived grey-level information of such a reduced scan is shown. The grey-level values between 0-256 counts per point, are converted to 16 coloured classes, black for the grey-level values between 1-16, white for those between 240-256 electron counts per point, per dwell time (= 4095 usecs). The frequency histogram of that image is shown in Fig. 6. In that frequency histogram three (Gaussian-shaped) populations of grey-level values are present, viz. embedding medium and the cytoplasm and the granules. To separate the three populations, the grey-level value closest to the cross-over of two Gaussian curves (e.g. those of the embedding medium and the cytoplasm) can be found, either visually by moving the cursor through the histogram, or on the basis of the mean value plus two (or three) times the standard deviation. When the cursor is placed at that position the (16-coloured) grey-level value frequency histogram can be manipulated, viz. one colour can be given to the part below the threshold, whereas the remaining grey-level values above can be redivided into 16 multi-coloured classes (Figs. 7 and 9).

Alternatively the histogram and hence the image can be made binary, viz. one colour below and one colour above the threshold value chosen (Fig. 8). This binary image can be compared with the original image to judge the correctness of the conversion. In the (binary) histogram the number of pixel points inside [I.P.J, or outside [O.P.J, the cell is given as a percentage of the total number of pixel points present (Fig. 9; 0-114 = epon = 25.25%). As the total area of the analyzed matrix is known, the cellular cross-sectional area can be calculated. A similar procedure can be carried out for the threshold between the cytoplasm and the cross-sectional granules (Fig. 10). The quotient of the particle area and the cellular area is the area fraction, which stereologically is related to the volume fraction of the particles within the cell volume, provided sufficient cross-sections can be measured in an identical way. In this way changes in either fraction can be monitored.

X-ray information. At this stage two types of X-ray information can be integrated with the morphometrical data. When the elemental distribution over the item is homogeneous, point analyses can be performed: (a) to discriminate chemically different particles with the same grey-level value, or, (b) to acquire quantitative chemical information. The discrimination can be performed at three levels of automation: 1) by hand, 2) semi-automatically, by localizing points inside the particles followed by point analyses performed automatically at the registered points, or 3) automatically, in our case with the Tracor Northern particle recognition program PRC, the centers of gravity of the particles and subsequently performs a point analysis [see for details 46, 54, 68]. Quantitative chemical data can be obtained by comparing, in turn, point analyses over a (cross-sectioned) standard with the items of interest, (under the same instrumental conditions).

The X-ray elemental net-intensity images, when elements are inhomogeneously distributed over particles, or the localization of more than one element has to be compared with and related to other elements, X-ray elemental net-intensity distribution images have to be acquired, in the following way:

Reduced scan program. On the S(T)EM*-screen the scan frame is directed towards a single particle to be analyzed, and reduced to fit it (white lines in Fig. 4) and elemental (X-ray) and electron information can be acquired simultaneously, for a range of 16 x 16 to 64 x 64 pixel points per reduced scan frame. The relation between the total acquisition time and the scan reduction is shown in Table 2.

Net-intensity values. To acquire net-intensity values a point analysis is performed on reaction product, to instruct the computer which parts of the spectrum contain the requested regions. In the spectrum (400 eV wide) main regions and several satellite regions are introduced. For each main elemental region selected (= peak plus background = P), a satellite region, representing the continuum under the peak (b), is installed which is subtracted on-line (= P-b). This SRS-method (= single region subtraction), has been described elsewhere [25, 26]. Main regions can also be selected in peak-free continuum regions. By subtracting virtually empty regions as a satellite region from peak-free continuum regions, X-ray continuum maps can be made, for mass distribution (b-b). Similarly, a satellite region can be subtracted from a continuum region to obtain extraneous-background corrected continuum values (b-b). At this moment the program is unable to calculate which portion of the peak-free continuum collected in the satellite region originates from extraneous background sources [see also Discussion with Reviewers]. A maximum of four main regions can be acquired at the same
Image analysis in cytochemistry

Fig. 2. CTEM-image of an eosinophil granulocyte in which the peroxidase activity located in the coffee-bean-shaped granules, is selectively visualized by a reaction with H_2PtCl_6 at $\text{pH} = 0.5$ at room temperature. No postfixation is applied in this case. Most of the contrast is present in the granules, though the chromatin in the nuclei has also acquired electron scattering capacity (N). One granule (1) is indicated. This granule will be analyzed later in detail. CTEM, 80 keV. Bar = 1 µm.

Fig. 3. STEM-image of the same cell as shown in Fig. 2, the position of the reduced scan area is simulated here by the white lines, giving about the same position the reduced scan had taken in reality. The contrast is manipulated to differentiate the electron scattering capacity of the cell plus granules from the surrounding epon. STEM, 80 keV. Bar = 1 µm.

Fig. 4. Same STEM-image as shown in Fig. 3, however, the contrast is manipulated such that the electron scattering capacity is restricted to visualize the granules, containing the highest amount of platinum. The reduced scan applied around one granule (1) is again simulated by the white square. This granule, will be analyzed later (see Figs. 14 and 15). Figs. 5–13: see colour plate on page 1667.
monitor specimen drift or to relate the X-ray to

Reduced scan in mm

<table>
<thead>
<tr>
<th>Reduced scan in mm</th>
<th>Total area L^2</th>
<th>256x256</th>
<th>32x32</th>
<th>16x16</th>
<th>Final magnification</th>
</tr>
</thead>
<tbody>
<tr>
<td>90x90</td>
<td>52 µm^2</td>
<td>28 mm</td>
<td>225 mm</td>
<td>450 mm</td>
<td>12,500</td>
</tr>
<tr>
<td>40x40</td>
<td>10 µm^2</td>
<td>12 mm</td>
<td>100 mm</td>
<td>200 mm</td>
<td>28,125</td>
</tr>
<tr>
<td>20x20</td>
<td>2.6 µm</td>
<td>1.6 mm</td>
<td>50 mm</td>
<td>100 mm</td>
<td>56,250</td>
</tr>
</tbody>
</table>

Total pixel points: 65536

Total acquisition time is:
dwell time/point 1 second 18.2 hr 4.3 min
.5 second 9.1 hr 8.5 min 2.2 min

* Final magnification: 125/90 X this value calculated for the STEM-screen

run. The electron distribution image over the same reduced scan area can be acquired before and/or after the actual X-ray analysis, to monitor specimen drift or to relate the X-ray to the electron information.

Dwell time per pixel point. A line-scan is made across the middle of the reduced scan area, prior to the actual analysis, to determine the dwell time per pixel point. The result of that line analysis of 16 points (or 32 or 64) is given in a graph on the screen for all four main regions. Since the storage capacity of the information per point is only 256 bytes deep, the maximum intensity values have to be kept below 256 counts per point, by reducing the dwell time. Then the grey-level (Figs. 11 and 12) or X-ray net-intensity information (Fig. 13) can be acquired simultaneously. The threshold can be set, to separate the cytoplasm from the granules by finding the cross-over in the, now two (X-ray net-intensity, or electron grey-value) populations in the frequency histogram of the 256 pixel points (Fig. 12).

Integration of the signals. The digitized reduced scan images (Figs. 11 and 13) can be printed as an array of figures, maintaining the relative position of each pixel point in the selected matrix (16 x 16 to 64 x 64), as shown in Figs. 14 and 15. The arrays can be printed with or without a threshold value installed. When a threshold value is introduced, the program prints the original array and includes bars between the figures that separate the values over the threshold from those under. The number of pixels within each sub-population (viz. “inside” and “outside”) are printed and the area occupied by the “inside” pixel points calculated. The mean values and standard deviations of the pixels “inside” and “outside” are calculated and printed in the top-legend (Figs. 14-15). In addition it is indicated whether the two populations are significantly different.

As relevant information has been introduced into the computer, (e.g. magnification, spot size and dwell time) several data are directly calculated and printed: the interpixel distance, the total area of the matrix and of the “inside” (I.P.) particle area. The I.P.-area is compared to the number of I.P. pixel points times the spot area. This quotient, the analyzed area, determines the degree the particle is covered by spots used. The figure has to come close to 100%. The acquired X-ray elemental mean net-intensity value from inside the particle is converted into: counts/point/sec./nm^4. Similarly, the standard deviation is expressed in c/p/s/nm^4 plus as a percentage of the mean (= C.V.).

By defaulting the original image, the program prints the location of the separation lines, in relative position to the total array. This can be used to correlate topographically the elemental location in multi-elemental particles in one picture [see Figs. 15-17 in 26 and Figs. 4 and 9-12 in 12]. In the same way a boundary selected in e.g., the electron array can be superimposed over either of the elemental net-intensity arrays acquired (Fig. 16), or the other way around. Also boundaries of two elemental arrays can be superimposed. Irrespective which boundary is chosen, the program performs the same type of calculations from the data present in the original image array, within the superimposed delineation. When no threshold is introduced, the same calculations are performed for the whole array, viz. no “inside” points present (Fig. 17).

The calculated information: mean of the cytoplasmic values plus two (or three) times the standard deviation gives an alternative for the objective determination of the threshold value between cytoplasm and granules (Fig. 17, mean ± 2 x St. Dev. = 17 c/p; installed in Fig. 15 = 20 c/p).

Provided the cross-sectioned granule is completely covered by an interconnecting set of spots, the mean net-intensity values represent the exact estimate of the elemental concentration and not a sample out of it. Moreover, accurate morphometrical data are obtained either about the elemental, or about the grey level distribution.

Semi-automatic reduced scan analyses. Once the conditions for the acquisition of the reduced scan analyses of the items of interest (eosinophil granules) are established, the elemental concentration in, plus the area occupied by all particles within one cell can be determined. As mentioned before three levels of automation can be chosen. We preferred the semi-automatic analyses as a good first step, which is performed in the following way: In the binary 256 x 256 electron image of the granule-containing cell, the x/y-coordinates of the particles are introduced in the program. In that way all particles can be included and those not wanted excluded. Subsequently the size of the

Table 2

INTER PIXEL DISTANCE IN NM AT VARIOUS MATRICES
(initial STEM-screen magnification = 12,500 x)

<table>
<thead>
<tr>
<th>Reduced scan in mm</th>
<th>Total area L^2</th>
<th>256x256</th>
<th>32x32</th>
<th>16x16</th>
<th>Final magnification</th>
</tr>
</thead>
<tbody>
<tr>
<td>90x90</td>
<td>52 µm^2</td>
<td>28 mm</td>
<td>225 mm</td>
<td>450 mm</td>
<td>12,500</td>
</tr>
<tr>
<td>40x40</td>
<td>10 µm^2</td>
<td>12 mm</td>
<td>100 mm</td>
<td>200 mm</td>
<td>28,125</td>
</tr>
<tr>
<td>20x20</td>
<td>2.6 µm</td>
<td>1.6 mm</td>
<td>50 mm</td>
<td>100 mm</td>
<td>56,250</td>
</tr>
</tbody>
</table>

Total pixel points: 65536

Total acquisition time is:
dwell time/point 1 second 18.2 hr 4.3 min
.5 second 9.1 hr 8.5 min 2.2 min

* Final magnification: 125/90 X this value calculated for the STEM-screen
Image analysis in cytochemistry

Fig. 14 Outprint of the digitized electron image of Fig. 11 acquired at 16 x 16 pixel points. The grey values are printed within the matrix in which they were acquired. The threshold value (166 c/p/s) separates the granule from the cytoplasm in the printed array by vertical and horizontal lines. In the top-legend of the outprint several calculations, performed by the program can be found.

Fig. 15 Outprint of the Pt net-intensity distribution of granule 1 acquired at 16 x 16 pixel points, shown in Fig. 13. In this case the threshold value, which separates the cytoplasmic Pt net-intensity values from those in the granule, is (20 c/p/s) applied as overlay.

Fig. 16 Integrated image. The overlay threshold, that separates in the electron image (Fig. 14) the particle from the cytoplasm is projected over the Pt net-intensity array shown in Fig. 15. The values calculated are from the figures present in the (underlying) Pt net-intensity array.
reduced scan is adapted to the largest particle of the set and all particles marked are analyzed, and their data stored, in one sequence.

Granule to cytoplasm ratio. The mean granule to cytoplasm ratio can be obtained for both the electron and X-ray image values. In Table 3 such Pt net-intensity granule to cytoplasm ratios are collected for series (n = 20) of eosinophil granules.

Peak to background ratio program. When continuum regions are included in the reduced scan peak, peak minus background to background (P-b/b) ratio arrays can be calculated from the stored arrays. In the current ratio program the possibility is introduced to relate mathematically the content of one array to that of another in two ways: a) the two arrays can be divided point by point or b) each value in one array can be divided by the mean value of the other. As a result a quotient array is obtained [see also 12].

The acquisition of a quotient array from a (co-)embedded standard of known C, results in the value of K_cont:

\[C_x = K_{cont} \cdot I_x \]

in which \(I_x \) and \(I_{cont.} \) are the net-intensity values of the element or the continuum, and \(K_{cont.} \) is a proportionality constant. Or, replacing \(I_x/I_{cont.} \) by \(R_x \):

\[C_x = K_{cont.} \cdot R_x \]

In the ratio-program the acquired \(K_{cont.} \)-factor from the standard can be introduced, hence the quotient array of the unknown becomes directly the concentration array for that element, provided the concentration in the "unknown" does not deviate too much from the concentration in the standard.

To illustrate this point, experiments were performed in which \(R_x \) values are monitored in a predictable linear relation to the beam-intensity variation. Fig. 18 (for TEM/400 nm point analyses), shows that a linear relation is present between the values of the net intensities, calculated for the relation: P-b/I (left side) and P-b/b (right side). The linear regression coefficients of both plots are given in Table 4, from which the \(K_{cont.} \) value can be determined for this Bio-standard [18,3 % w/w]. Similar plots have been obtained for the mean values of 256 points acquired in a 16 x 16 reduced scan area over such cross-sectioned standard.

An additional feature of the ratio program is that from an array the distribution of \(R_x \)-values per pixel point can be plotted with increasing magnitude. In Fig. 19 three distribution histograms (256 pixel points) are shown, acquired from a cross-sectioned iron standard and two iron-containing lysosomes, (from material described in [12]). The distribution of the \(R_x \)-values in the Bio-standard is rather constant, whereas those from the lysosomes are not, leading to an objective criterion for homogeneous or heterogeneous elemental distribution. By application of the proposed program:

1. The cell cross-section can be estimated.
2. The total cross-sectioned area of reaction-product containing particles inside the cell can be established.
3. The ratio of the two areas represents an unbiased volume estimate of the reaction product in the cell. Volume changes can be determined, provided sufficient cross-sections can be measured in an identical way.
4. Chemical (X-ray) data have been acquired, that topographically can be related to the morphometrical data.
5. Relative concentration values have been established for both the unknown concentration in the reaction product and the co-embedded cross-sectioned standard, in such a way that the measurements are independent from beam intensity and section thickness variations.
6. Correction factors for the extraneous-background contribution and the differences in Z/A between, standard and the unknown can be introduced, though the sub-routines to calculate these corrections still have to be developed.

Discussion

Computer assisted image analysis at the light microscopical level was initially morphometrically oriented [28, 31, 53, see also references in 35]. Gradually also histochemical reaction products were analyzed [5, 43, 44, 45, 73]. The possibility of combining image and elemental analysis in the STEM is due to a convergence of developments in image analysis [8, 10, 34, 50, 51, 55, 62], quantitative X-ray microanalysis [2, 9, 11, 36, 59-61, 65, 69, 70, 72] and high resolution STEM instrumentation [4, 13, 16, 25, 26, 32, 39, 40, 52, 64]. In the past (gross) elemental (X-ray) distribution maps were obtained by using a combination of a rate meter and a so-called "dot-mode" of the STEM-screen [17, 49]. The disadvantages of this method were successfully alleviated by the introduction of mathematical morphology [63] in the SEM*-image analysis of polished metal surfaces. [41, 54]. The use of pixel masks to locate, measure and quantify continuous matrices of particles (such as in crystalline fractions in composite metals or ceramics) with the assistance of the Kontron/IBAS-computer is described by Bauer [6]. The computer assisted image analysis in which EELS is used to acquire the chemical information is mostly still qualitative. In the -in-column-spectrometer of the Castaing/Henry/Ottensmeeyer prism/mirror/prism-type, generally the electron spectroscopic images acquired by static beam analysis are digitized afterwards [52]. In the STEM*- instruments with the --out column-, Gatan-type, spectrometers, the focussed electron beam is scanned over the sample area, resulting in an elemental distribution pattern from the spectrometer [13]. As in the early days of the crystal spectrometers for X-ray detection, most of the EELS-detectors are sequential, (one element at a time), whereas background subtraction problems have to be conquered to obtain net-intensity information. (for theoretical aspects of section thickness etc. see [30]).
Image analysis in cytochemistry

Table 3

<table>
<thead>
<tr>
<th>GRANULES : CYTOPLASM RATIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eosinophil granules</td>
</tr>
<tr>
<td>Red reduced scan SRS-method</td>
</tr>
<tr>
<td>Pt 2.0 2.8 2.2</td>
</tr>
<tr>
<td>Reduced scan SRS method</td>
</tr>
<tr>
<td>Pt 2.0 2.8 2.1</td>
</tr>
</tbody>
</table>

Basic problems of computer-assisted image analysis are about the same for all types of analytical instruments. These problems will be explained here with our own system, as described in this paper, as an example.

Image analysis. Images can be considered to be composed of an infinite number of small image fragments. The (S)TEM-image is formed by a series of lines, and each line can be sub-divided in small bits of length or time: image units (= #). Similarly, an image can be subdivided by horizontal and vertical lines drawn at equidistances. At the line intersections (= pixel points) image information can be acquired. Each element of image information collected at the pixel points can be considered to be an image unit #. When the acquired image information can be recorded as a single number, the image can be considered to be digitized. Storing these numbers and their relative positions during acquisition allows image reconstruction. The number of image units, #, needed to adequately reconstruct the total image matrix depends on the resolution one wants to achieve. When the acquired digital information is of "structural origin", (recorded as grey-level values, see Fig. 14) the inter pixel distance (IPD) can replace the term resolution (= minimal distance to be resolved/recorded). For the chemical X-ray information, the acquired figure represents a fractional concentration, which topographically can be related to other concentrations of the same or other elements.

Resolution of the images. In most scanning microscopes the resolution of the screen is 1000 lines per frame height. At a frame height of 90 mm, the vertical line resolution is 90 µm. The relation of the screen resolution to the specimen resolution is given in equation (3):

\[d_{sp} = \frac{d_{sc}}{M \cdot N} \]

(3)

in which d is the distance on the specimen (sp) and dsc = the screen height, M the microscope magnification and N the number of lines per frame height.

When a 90 x 90 mm screen area is covered by 1024 x 1024 pixel points, the same vertical and lateral resolution on the original screen is obtained and hence the interpixel distance on the specimen:

\[IPD_{sp} = d_{sp} = \frac{d_{sc}}{M \cdot N} \]

(4)

in which N is the number of pixel points/line. For SEM-micrographs, it is required that the minimal diameter (dmin) of the image "particle" to be resolved, is 2-5 times (= f, in eq. 5) the "noise particle diameter" (dno) of the film material used for recording:

\[d_{min} = f \cdot d_{no} \]

(5)

If we assume that on the STEM*-screen the particle to be resolved, has to be crossed by at least 4 lines and \(d_{sp} = \) screen resolution (dsc), the relation between \(M \), the magnification and the (minimal) particle diameter at the specimen plane becomes:

\[d_{min} = \frac{4 \cdot d_{sc}}{M} \]

(6)

At \(M=12,500 \), \(d_{min} \) is about 28 nm at the specimen plane. A square particle of 28 x 28 nm in the specimen plane is covered by 16 pixel points, a circular particle by 12 pixel points, each at an equidistance of 7.2 nm (= IPDsp for \(N=1024 \)). So:

\[d_{min} = f \cdot IPD_{sp} \]

(7)

When the full (90 x 90 mm) screen is not scanned, the actual length of the reduced line is directly introduced for dsc or a reduction factor F has to be added in the numerator of eq. 4. The IPDsp remains the same when in the denominator of eq. 4, N is multiplied by the same reduction factor.

Interpixel distance, spot size and coverage. Special attention must be paid to the aspect that the whole area/volume of the item is analyzed, by choosing the correct spot size and IPD. (See Figs. 15-16 in ref. [25] and Figs. 9-12 in ref. [12] and Figs. 14-17 in this paper). The section surface, within a scanned square, is covered by an Interconnecting, partially overlapping, matrix of spots, when (at \(M=12,500 \) and 1024 x 1024 pixel points) a circular spot of 10nm diameter is used (spot-size = IPDsp \(\times \sqrt{2} \)). When the section thickness is considered, the information comes from a truncated conical volume with a top area of 78.5 mm² and a bottom area of unknown diameter, due to (element-dependent) beam-broadening. Therefore, beam-broadening has to be taken into account to determine the correct volume for the calculation of the X-ray (or grey level value) concentration in the cross-sectioned object. This condition of complete coverage of the object's section surface can be considered a prerequisite for a correct chemical resolution. Beam-broadening can be calculated from homogeneously distributed elements in Bio-standards [see for discussion 25, 26]. In our instrument the available (STEM) spot sizes are 100, 50, 20, 10, 5, 2 nm. By balancing the components of eq. 4, the whole range of spot sizes can be covered. The percentage of the matrix covered by
Method used in the reduced scan analysis: SRS = the IPD is printed in the top-legends of the joined. For a given elemental peak the continuum generally much smaller, whereas the backscattered electron yield per incident electron is higher than the X-ray yield, so longer dwell times per pixel point are needed for good X-ray acquisition in most cases a complete spectrum has to be acquired over all 256 pixel points, without sacrificing resolution.

Total acquisition time in relation to dwell time per pixel point. The main practical reason to propose the reduced scan program was to economize on the acquisition time by eliminating the area not containing relevant cytochemical information. We used the annular detector to image the ultrathin sections. The backscattered electron-detection efficiency of this detector is very high due to the large solid angle of collection and consequently a rather short dwell time per pixel point can be accepted for good statistics. This limits the total acquisition time for the full frame. The X-ray detection efficiency is generally much smaller, whereas the backscattered electron yield per incident electron is higher than the X-ray yield, so longer dwell times per pixel point are needed for good X-ray acquisition statistics. In Table 2 it is illustrated that X-ray analysis at 1 sec. per pixel point can only be performed within reasonable time in matrices with less pixel points (e.g. in 16 x 16, 32 x 32 or 64 x 64 matrices), without sacrificing resolution.

Subtraction of the continuum portion under the peak. The true continuum part present under the characteristic X-ray signal in the main region has to be subtracted, to obtain net-intensity values [37, 38, 69]. For point analyses, several subtraction methods are known [26, 57]. However, not all methods can be applied here, as in most cases a complete spectrum has to be available and not main and satellite regions, like in this program. We proposed two methods of background subtraction applicable to the on-line background-mode.

The information now present in the top-legends of the array-outprints is also valuable without the printed array at the bottom, and the array can easily be eliminated.

The discussion whether to use the mean background value acquired over all 256 pixel points or to use the background acquired per pixel point has not yet come to a conclusion. When the section has a high number of imperfections (holes, thickness variations) the point/point ratio mode will follow these variations closer than the mean background-mode.

The print program. The reason to develop the print program was to have access to the figures in the array, to perform quantitative calculations.

The information now present in the top-legends of the array-outprints is also valuable without the printed array at the bottom, and the array can easily be eliminated.

Particle to cytoplasm ratio. The possibility to discriminate between a particle and the surrounding cytoplasm is determined by the difference between the elemental concentrations in the two compartments [42]. Our program calculates whether these (mean) values are significantly different. It has been discussed elsewhere [27] that by introducing X-ray microanalysis in
Image analysis in cytochemistry

Fig. 18. At the left-hand side, multiple point analyses over a Chelex maximally-Pt-loaded cross-sectioned Bio-standard, acquired at 80 keV in the CTEM mode with 400 nm spot size. All beam-intensity variations are imposed. Dotted line Pt Na net-intensities, drawn line, Pt-La-net-intensities. (C = Peak minus background vs. beam intensity). At the right-hand side the same Pt net-intensity values are related to the concomitantly acquired values in a peak-free background region. The regression lines calculated are also given in Table 4.

Quantitative cytochemistry the absence of a (positive) signal implies that the local elemental concentration is below the minimal detectable limit of this analytical instrument, i.e., between 0.04 and 2.5 \% w/w. [66]). Contrary to the rather pessimistic view of Shuman et al. [64] our results show that in cytochemistry compositional element mapping can successfully be applied, in spite of a rather low granule to cytoplasm ratio of about two (Table 3).

References

Fig. 19 Compilation of iron mass fractions (P-b/b-ratio) per pixel point (0-256) of two lysosomes, before (= H1L1) and after (H2L2) phlebotomy and the iron-containing Bio-standard (Fe.). The mean values in the cytoplasms (13 and 25) are indicated. The angles between the lowest values over the threshold (Th) and the highest value are indicated for both lysosomes.

of the capture reaction in phosphatase cytochemistry. I. Theoretical aspects of the local formation of crystalline precipitates. J. Histochem Cytochem. 21, 607-613.

44. Knoll TF, Brinkley LL, Delp EJ. (1985). Different picture algorithms for the analysis of extracellular components of histological images. J. Histochem Cytochem. 33,
Image analysis in cytochemistry

261-267.

Discussion with Reviewers

GM Roomans: In Fig. 17, the threshold is set 0; I would think it would be more logical to call all points "in" rather than "out". What happens
if you put the threshold at 256?
Authors: You are right. We just selected one of
The two to obtain the results. We had it changed
afterwards. Recent changes also include: the
possibility to obtain the top legend, without
having the array printed, and to have only part
of the information (Total area, (IP)-area, mean
(IP) values plus (IP) standard deviation).

GM Roomans: The background subtraction method
used by the authors is certainly correct with
isolated peaks and high P/B values. I have no
objections in the context of this paper, but the
authors could mention filter methods or even
least square fitting methods as further develop-
ments.
Authors: We agree, but underline that not all
methods can be applied on-line. We can imagine
the possibility to obtain the top legend, without
having the array printed, and to have only part
of the information (Total area, (IP)-area, mean
(IP) values plus (IP) standard deviation).

GM Roomans: The background subtraction method
used by the authors is certainly correct with
isolated peaks and high P/B values. I have no
objections in the context of this paper, but the
authors could mention filter methods or even
least square fitting methods as further develop-
ments.
Authors: We agree, but underline that not all
methods can be applied on-line. We can imagine
the possibility to obtain the top legend, without
having the array printed, and to have only part
of the information (Total area, (IP)-area, mean
(IP) values plus (IP) standard deviation).

GM Roomans: I would suggest that the extraneous
background could be subtracted by the following
procedure:

Complete spectra are acquired from each of the
structures mapped (specimen, sp), the film (f)
covering the grid (g) and the naked grid (g). If W
denotes the background, and G the net counts of the
grid material, the extraneous background is given by:

\[W_e = W_f - (G_f - G_g) \left(\frac{W_g}{W_{sp}} \right) \] \hspace{1cm} (q)

(75-77). It is a reasonable assumption that these
values are the same for each pixel point of the
reduced scan. This means that G_g only needs to
be determined once for each structure mapped, W_f
and G_f once for each grid, and W_g and G_g once
for each experiment. For differences in collection
time between the spectrum and pixel point one can
correct by:

\[(W_e/W_{sp}) \text{ spectrum} = (W_e/W_{sp}) \text{ pixel point} \]

and either calculate W_e based on W_sp for each
pixel point or better on the average W_sp for
all pixel points (W_e will not vary noticeably
between pixel points). Then, the correction for
W_e simply amounts to subtracting a constant from
the obtained background array. Would it be
possible to incorporate this procedure in your
program?

Authors: The answer to the question is yes. Once
a background array is obtained (in our terminol-
ogy B=b0) it is clear that a fraction of each
pixel point value or the mean value belongs to
the extraneous background. The idea is try to
cut off that slice either from each pixel point
or from the mean value calculated afterwards. The
simplest way to do so was to move the satellite
time zero to a point in the spectrum where the
contents represented that extraneous background.
In that case the satellite would become the (b-b)_array
and in the ratio program the R_x-array, would become the R_x-array (= cor-
rected for extraneous background) for both the
standard and the "unknown", when the standard and
the unknown are in the same section. Now you are
pushing the ball one step further, viz. to
determine the b, correctly. This might be the
object for a future study (78).

GM Roomans: In the cases such as described in
this paper, the changes in Z/A_m are mainly
determined by changes in the C_{pt,sp}^*. Hence we can
say that by approximation:

\[Z^2 / A_m = C_{pt,sp}^* \cdot Z^2 / A_m + (1 - C_{pt,sp}) \cdot \frac{Z^2 / A_m}{A_m} \]

where \(Z^2 / A_m \) is the weighted mean value of \(Z^2 / A_m \)
for the "matrix" (all elements except Pt) in the
specimen. C_{pt,sp}^* is given as mass fraction. The
approximation lies in treating \(Z^2 / A_m \) as a
constant. We can also define a constant S_{pt,sp} as:

\[S_{pt,sp} = \frac{C_{pt,sp}^* \cdot Z^2 / A_m}{R_{pt,sp} \cdot Z^2 / A_m} \] \hspace{1cm} (s)

By inserting these two equations into equation
(8) of the paper, and rearranging the terms, we
obtain:

\[C_{pt,sp} = \frac{S_{pt,sp} \cdot Z^2 / A_m}{1 + S_{pt,sp} \cdot R_{pt,sp} (Z^2 / A_m - Z^2 / A_{pt})} \] \hspace{1cm} (t)

(76). Since all terms on the right hand side of this
equation, except R_{pt,sp} are constant, it
would be theoretically possible to carry out a
simple (non-iterative) calculation on all R_{pt,sp}.
Would it be practically possible to incorporate
this procedure in your program?

Authors: In this case also, the answer to the
question is yes. In the ratio-program converting
R_x into C_x, a multiplicative factor is required.
In our case we suggested to include the K_cont.-
factor, with the restriction that C_{st} and C_{sp}
(using your terminology) were about equal. The
idea to match these concentrations was originally
put forward when introducing the Bio-standards
[18, 19, but see also 66 and 78].

Whenever that is not the case, the K_cont.-
factor needs further correction. Equation (s)
for S_{pt,sp} can be written in our terminology as
K_{cont.}, whereby K_{cont.} = \frac{S_{pt,sp} \cdot Z^2 / A_m}{R_{pt,sp} \cdot Z^2 / A_{pt}}.
From your eq. (r) we had prepared a nomogram in which
values for C_{pt,sp} ranged from 1 - 50% and the
calculated values were used to correct the K_cont.
or K_{cont.}-factor. The \(Z^2 / A_m \) value according
to eq. (s) was 10 (taking \(Z^2 / A_m \) as 3.1).

Your proposal can be rearranged according to
the demands of the ratio program according to:

\[f_{pt,sp} = \frac{f_{pt,sp} \cdot R_{pt,sp}}{1 + (K_{cont.} \cdot R_{pt,sp} \cdot Z^2 / A_m - Z^2 / A_{pt})} \]

using your terminology.

\[\left(\frac{Z^2 / A_m}{A_m} \right) \]

1664
K Zierold: Why do you use the backscattered electron? Is the backscattered electron signal sufficient for studies of ultrathin sections?
Authors: There is not a particular scientific reason. In the first instrument we had only the annular detector available. So we were quite used to it for the studies of ultrathin sections with cytochemical reaction products. Up to now we have not met a situation in which the annular detector could not provide what the STEM-detector could. The contrast of both detectors can be inverted by a switch.

K Zierold: What is the advantage of the pseudocolour pixel images?
Authors: There is not much gain from multipseudocoloured images beyond the point the human eye can appreciate better differences in colour than shades of grey. In the binary images black and white are as adequate. In the frequency histograms the colours are somewhat conflicting in the aim to differentiate the (three) sub-populations of grey values (see Figs. 6 and 9).

HK Hagler: I think the authors should substitute the word correlate for the word "integrate" throughout the paper.
Authors: We prefer to reserve the word correlation for the topographic relation of two elements. The term integration is used to underline that the measured electron scattering is composed as the sum of the elemental concentrations per pixel point within the delineated area. We agree that in the example chosen only one detectable element, platinum, is present. When more than one element is co-localized in the same pixel point, as shown elsewhere [14], this point can be made clearer.

HK Hagler: How have the various spot sizes been calibrated and how reliable are the numbers with changes in beam current?
Authors: The various spot sizes are not calibrated, the values given are the scale readings. So the conversion into counts/point/nm² suffers from the possible inaccuracy between scale reading and actual spot size. The net-intensity ratio between two spot sizes is rather constant, but does not include the mathematically predicted increase or decrease exactly. The variation in numbers with changes in beam current, measured directly at the insulated condenser-2 aperture, is shown in Figs. 18-19 and Table 4. In Fig. 18, the beam intensity was varied between typically 0.005 and 1.100 A upwards and downwards. It shows a straight line ($R^2 = 0.9939$ and 0.9931) for the PtMα and PtLα respectively, which values are somewhat improved for the correlation between P-b/b, 0.9983 and 0.9978. The lines go rather nicely through the origin. Similar observation can be obtained for the main values of the 256 points inside the reduced scan area analysis of these standards. The variation among the 256 points within the reduced scan area can be estimated from Fig. 19. The iron standard-derived R-value does show a rather straight line, though not completely horizontal. Standard deviations are shown elsewhere [12].

Please see page 1666 for legends to figures on the color plate at page 1667.
Fig. 5 Digitalized electron image of the reduced scan area indicated by the white square in Fig. 3. Unmanipulated colour monitor (CM) image.

Fig. 6 Frequency-histogram of the pixel points collected in Fig. 5. The original grey-value distribution-scale is shown. The three Gaussian-shaped sub-populations can be observed. The area from one grey-value population indicated by the cursor (white line) is given at the bottom (3.91%). CM-image.

Fig. 7 Partially binary image. The pixel points with grey values belonging to the resin are made monochromatic, the grey values inside the cell maintain their sub-division in which grey-value intervals are converted in colours. Manipulated CM-image.

Fig. 8 True binary image in which at the same threshold as chosen in Fig. 7, now all intracellular grey-level values are also made monochromatic. The area occupied by the cytoplasm can be calculated from the percentage of pixel points occupied by the cytoplasm. Manipulated CM-image.

Fig. 9 Frequency histogram of the picture shown in Fig. 7. The area of one grey-level value class selected (= epon) is indicated at the bottom (25.25%). Unmanipulated CM-image.

Fig. 10 Binary image showing the highest electron values, comprising the grey-level value in the highest classes, at the right hand side of the frequency histogram. Manipulated CM-image.

Fig. 11 Electron image of granule nr 1, obtained by reduction of the scan area to enclose only this single granule. (see Fig. 3). The image was obtained at 16 x 16 pixel points. The grey-level values are again converted in colours. Binary image: the cytoplasm and granule are monochromatic. The threshold chosen to separate the cytoplasm from the granule is 166 c/p/s., which is identical with the threshold chosen in Fig. 10. Manipulated CM-image.

Fig. 12 Frequency histogram of the image shown in Fig. 11, at threshold 166 c/p/s. Manipulated CM-image.

Fig. 13 Platinum net-intensity distribution of granule 1. The (X-ray) threshold value that separates the granule Pt net-intensity best from the cytoplasmic Pt net-intensity values is 20 c/p/s. The way this value is objectively determined is calculated in Fig. 17. Manipulated CM-image.
Image analysis in cytochemistry