Autonomous Navigation using Gravity Gradient Measurements

Rachit Bhatia, Dr. David Geller
Utah State University

13th April 2017
Student Research Symposium
The art of navigation was first developed with the need to explore sea. Earliest records show that navigation is older than 1000 B.C.

On 21st Dec 1968, with the launch of Apollo 8 mission, we pioneered Space Navigation.
Satellite Navigation Systems

<table>
<thead>
<tr>
<th>Global Navigation Satellite System (GNSS)</th>
<th>Regional Navigation Satellite System (RNSS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational</td>
<td>Operational</td>
</tr>
<tr>
<td>1. GPS (USA)</td>
<td>1. NAVIC (India)</td>
</tr>
<tr>
<td>2. GLONASS (Russia)</td>
<td>2. Beidou (China)</td>
</tr>
<tr>
<td>In Development</td>
<td>In Development</td>
</tr>
<tr>
<td>1. Galileo (EU)</td>
<td>1. QZSS (Japan)</td>
</tr>
<tr>
<td>2. Compass (China)</td>
<td></td>
</tr>
</tbody>
</table>
Current GNSS

1. Strong Dependence on Ground-Based Infrastructure ⇒ Low Accuracy
2. Range Limitation, Constant Maintenance Requirement, & Continuous Tracking ⇒ Unsuitable for Beyond Earth Exploration Missions

Autonomous Navigation

1. Self-Contained & Passive System ⇒ Enhanced Accuracy
2. Autonomous, Resistant to Signal Blockage & Spoofing ⇒ Suitable for Beyond Earth Exploration Missions
Conventional Space Navigation Techniques

- GPS/STST
- Onboard Optical Systems
- IMU
- Star Tracker
- Doppler
- Delta-DOR

Autonomous Navigation

- Magnetometer Measurement Gradient
- Gamma Ray Photons
- Starlight Refraction
- X-ray Pulsars
- Gravity Gradient
Conventional Space Navigation + Gravity Gradiometry = Autonomous Space Navigation
The Gravity Gradiometry has been in use since mid 20th century, mostly for Marine Navigation & the survey of Mineral/Oil Fields.

However, the space application of the Gravity Gradiometer has been very limited.

Source- International Center for Global Earth Models (ICGEM), the model used is HUST-Grace2016s, with Orion Nebula in the background.
The Gravity Gradient Tensor \(\nabla g \) is defined as the second order derivative of the gravitational potential \(U \):

\[
\nabla g_{ij} = \frac{\partial^2 U}{\partial r_i \partial r_j}, \quad i,j = X,Y,Z
\]

\(r \) is Position vector

\[
\nabla g = \begin{bmatrix}
\nabla g_{XX} & \nabla g_{XY} & \nabla g_{XZ} \\
\nabla g_{XY} & \nabla g_{YY} & \nabla g_{YZ} \\
\nabla g_{XZ} & \nabla g_{YZ} & \nabla g_{ZZ}
\end{bmatrix}
\]

(Cesare S., 2008)
<table>
<thead>
<tr>
<th>Gradiometer</th>
<th>Developer</th>
<th>Noise, 1-(\sigma) Eö</th>
<th>Data Rate, sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotating Accel. GGI</td>
<td>Bell Aerospace/Textron</td>
<td>2(Lab.), 10 (Air)</td>
<td>10</td>
</tr>
<tr>
<td>Rotating Torque GGI</td>
<td>Hughes Research Lab</td>
<td>0.5(Goal)</td>
<td>10</td>
</tr>
<tr>
<td>Floated GGI</td>
<td>Draper Lab</td>
<td>1(Lab.)</td>
<td>10</td>
</tr>
<tr>
<td>Falcon AGG</td>
<td>LM/BHP Billiton</td>
<td>3</td>
<td>Post Survey</td>
</tr>
<tr>
<td>ACVGG</td>
<td>Lockheed Martin(LM)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3D FTG</td>
<td>LM/Bell Geospace</td>
<td>5</td>
<td>Post Survey</td>
</tr>
<tr>
<td>FTGeX</td>
<td>LM/ARKeX</td>
<td>10(Goal)</td>
<td>1</td>
</tr>
<tr>
<td>UMD SGG (Space)</td>
<td>Univ. of Maryland</td>
<td>0.02(Lab.)</td>
<td>1</td>
</tr>
<tr>
<td>UMD SAA (Air)</td>
<td>Univ. of Maryland</td>
<td>0.3(Lab.)</td>
<td>1</td>
</tr>
<tr>
<td>UWA OQR</td>
<td>Univ. of Western Australia</td>
<td>1(Lab.)</td>
<td>1</td>
</tr>
<tr>
<td>Exploration GGI</td>
<td>ARKeX</td>
<td>1(Goal)</td>
<td>1</td>
</tr>
<tr>
<td>HD-AGG</td>
<td>Gedex/UMD/UWA</td>
<td>1(Goal)</td>
<td>1</td>
</tr>
<tr>
<td>Electrostatic GGI</td>
<td>European Space Agency</td>
<td>0.001(Goal)</td>
<td>10</td>
</tr>
<tr>
<td>Cold Atom Interfer.</td>
<td>Stanford Univ./JPL</td>
<td>30(Lab.)</td>
<td>1</td>
</tr>
</tbody>
</table>

Illustration of EGG system onboard GOCE (image credit: ESA, ONERA)
The objective is to use 6 accelerometers arranged on a distance of 1 meters, on three mutually perpendicular baselines, as shown in the figure. (Cesare S., 2008)

Assuming that all perturbations, except drag are negligible. A simple acceleration Measurement Model (ECI frame) can be defined as:-

\[a \downarrow i = a \downarrow \text{grav} (r \downarrow \text{Sc}) - a \downarrow \text{grav} (r \downarrow \text{Sc} + R \downarrow i) + a \downarrow \text{drag} (r \downarrow \text{Sc}, V \downarrow \text{Sc}) + \omega \times (\omega \times R \downarrow i) + (\omega \times R \downarrow i) + 2 \omega \times R \downarrow i + R \downarrow i \]
The accelerometer model can now be written as:

\[a_R = (-\nabla g - \omega \times \omega) \left[\mathbf{R} \mathbf{i} \right] + 2[\omega] \mathbf{R} \mathbf{i} + \mathbf{R} \mathbf{i} + \mathbf{D} \]

where term \((-\nabla g) \mathbf{R} \mathbf{i} = a_{\text{grav}} (r \downarrow \text{Sc}) - a_{\text{grav}} (r \downarrow \text{Sc} + \mathbf{R} \mathbf{i})\),

\([\omega] = \begin{bmatrix} 0 & -\omega_Z & \omega_Y & \omega_Z \; & 0 & -\omega_X \; & \omega_Y \; & \omega_X \; & 0 \end{bmatrix} \) is the cross-product matrix, and

\(\mathbf{D} \) is the acceleration due to non-gravitational forces, like Atmospheric Drag.
Assuming ideal case the 3 OAGRFs are coincident, we get: $C \downarrow 1 = C \downarrow 2 = C \downarrow 3 = C$

The vectors $R \downarrow i$ and its derivatives can thus be expressed as-:

$$R \downarrow i = A \downarrow i - C, \quad R \downarrow i = -C, \quad R \downarrow i = -C$$

Rewriting the equation for $a \downarrow i$, we get:

$$a \downarrow i = -(\nabla g - [\Omega \uparrow 2] - [\Omega])(A \downarrow i - C) + 2[\Omega](-C) - C + D$$

$$\Rightarrow a \downarrow i = -(\nabla g - [\Omega \uparrow 2] - [\Omega])A \downarrow i + (\nabla g - [\Omega \uparrow 2] - [\Omega])C - 2[\Omega]C - C + D$$
To isolate the Perturbation (Drag) and Gravity Gradient Tensor, we define following two modes-: (Cesare S., 2008)

1. Common-Mode Acceleration measured by the accelerometers $A_{\downarrow i}, A_{\downarrow j}$ -:

$$a_{\downarrow c,ij} = \frac{1}{2} (a_{\downarrow i} + a_{\downarrow j})$$

$$\Rightarrow a_{\downarrow c,ij} = - (\nabla g - [\Omega \times [\Omega \times \Omega]]) A_{\downarrow c,ij} + (\nabla g - [\Omega \times [\Omega \times \Omega]]) C - 2[\Omega]C - C + D$$

where $A_{\downarrow c,ij} = \frac{1}{2} (A_{\downarrow i} + A_{\downarrow j})$
To isolate the Perturbation (Drag) and Gravity Gradient Tensor, we define following two modes-: (Cesare S., 2008)

2. Differential-Mode Acceleration measured by the accelerometers $A_{\downarrow i}, A_{\downarrow j}$ -:

$$a_{\downarrow d,ij} = \frac{1}{2} (a_{\downarrow i} - a_{\downarrow j})$$

$$\Rightarrow a_{\downarrow d,ij} = - (\nabla g - [\Omega \uparrow 2] - [\Omega]) A_{\downarrow d,ij}$$

where $A_{\downarrow d,ij} = \frac{1}{2} (A_{\downarrow i} - A_{\downarrow j})$
Now, if the accelerometer A_{ij}, A_{j} belong to the same OAG ($ij = 14, 25, 36$), then $A_{ij}=0$, and $A_{ij}=A_{i}$

1. Common-Mode Accel. $\Rightarrow a_{ij} = (\nabla g - [\Omega \tau] - [\Omega])C - 2[\Omega]C - C + D$

2. Differential-Mode Accel. $\Rightarrow a_{ij} = -(\nabla g - [\Omega \tau] - [\Omega])A_{i}$
Assuming \(c=0 \), i.e. COM of the Spacecraft is coincident with the center of all 3 OAGs.

Thus, ignoring terms \((\nabla g - [\Omega \Omega_2] - [\Omega])C, 2[\Omega]C, C\), we get:

\[
\downarrow d_{ij} = - (\nabla g - [\Omega \Omega_2] - [\Omega]) A \downarrow i
\]

Hence, using the common-mode, the non-gravitational force like drag, can be measured, while using the differential-mode, the GGT can be measured.
Results have been obtained for an orbit defined as:

Altitude = 400 km.
Eccentricity = 0.01
Inclination = $\pi/6$ rad.
Right Ascension of the Ascending Node = $\pi/6$ rad.
Argument of Periapsis = $\pi/2$ rad.
True Anomaly = 0 rad.

Results have been shown for an ideal Gravity Gradiometer Measurement Model, using 3x3 Spherical Harmonics Gravity Model.
However, we can never have perfect measurements.

Hence, there is always a need for:-

- Error Modelling of the system
- Estimation Techniques like Kalman Filter
- Covariance Analysis by Monte Carlo or Linear Covariance
Future work includes:-:

i. Formulate the Measurement Model with appropriate error model,

ii. Implement Kalman Filter for Orbit Determination, and

iii. Complete Covariance Analysis using techniques like Monte Carlo or Linear Covariance analysis

iv. Identify various Error Sources, and determine the contribution of each.
<table>
<thead>
<tr>
<th>Year</th>
<th>Gradiometer</th>
<th>Developer</th>
<th>Noise, 1-σ Eö</th>
<th>Data Rate, sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960s-70s</td>
<td>Rotating Accel. GGI</td>
<td>Bell Aerospace/Textron</td>
<td>2(Lab.), 10 (Air)</td>
<td>10</td>
</tr>
<tr>
<td>1960s-70s</td>
<td>Rotating Torque GGI</td>
<td>Hughes Research Lab</td>
<td>0.5(Goal)</td>
<td>10</td>
</tr>
<tr>
<td>1960s-70s</td>
<td>Floated GGI</td>
<td>Draper Lab</td>
<td>1(Lab.)</td>
<td>10</td>
</tr>
<tr>
<td>March’94</td>
<td>Falcon AGG</td>
<td>LM/BHP Billiton</td>
<td>3</td>
<td>Post Survey</td>
</tr>
<tr>
<td></td>
<td>ACVGG</td>
<td>Lockheed Martin(LM)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3D FTG</td>
<td>LM/Bell Geospace</td>
<td>5</td>
<td>Post Survey</td>
</tr>
<tr>
<td>2005</td>
<td>FTGeX</td>
<td>LM/ARKeX</td>
<td>10(Goal)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>UMD SGG (Space)</td>
<td>Univ. of Maryland</td>
<td>0.02(Lab.)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>UMD SAA (Air)</td>
<td>Univ. of Maryland</td>
<td>0.3(Lab.)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>UWA OQR</td>
<td>Univ. of Western Australia</td>
<td>1(Lab.)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Exploration GGI</td>
<td>ARKeX</td>
<td>1(Goal)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>HD-AGG</td>
<td>Gedex/UMD/UWA</td>
<td>1(Goal)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Electrostatic GGI</td>
<td>European Space Agency</td>
<td>0.001(Goal)</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Cold Atom Interfer.</td>
<td>Stanford Univ./JPL</td>
<td>30(Lab.)</td>
<td></td>
</tr>
</tbody>
</table>