Direct Optical Detection of Microorganisms in Exoplanet Atmospheres: Models & Results

Ryker Eads, Caitlin Murphy, Natalie Sullivan, Joseph Burton, and Dr. Timothy Doyle
Departments of Physics and Chemistry
Utah Valley University

ABSTRACT

This poster will focus on the analysis of extinction spectra obtained from simulations of exoplanet atmospheres, these spectra have been simulated using a variety of particle types and size distributions. To simulate these spectra, we have created a MATLAB program that uses mathematical models and complex algorithms to model Mie and spherical scattering. This scattering of light from aerosols has been modeled in the ultraviolet to near infrared band (200-1100 nm). We have modeled atmospheric compositions that are typical of Jovian planets, using known information about the atmosphere of Jupiter (see our first poster, entitled "Direct Optical Detection of Microorganisms in Exoplanet Atmospheres: Methods"). Extinction spectra were simulated for six particle types: Erwinia herbicola (EH), Bacillus atrophaeus (BG), ovalbumin (OV), ammonia ice, water, and water ice. Initial results show that the extinction spectra of microorganisms are distinctly different from those of water and ammonia ice clouds, all spectra resemble complex polynomial functions, but the size and location of the peaks vary according to the composition of the particles simulated. These differences are amplified when the size of the particles tested is proportional to the wavelength of the light. There are many variables that could affect this change in extinction spectra. The resulting data from the simulations detailed above has been analyzed to determine which variables most affect the spectra. This analysis focused on the variation of four parameters: refractive index, average particle size, percent volume, and standard deviation.

RESULTS

The preceding graphs show the extinction spectra for six different particle types simulated with a constant size distribution. The spectra of the bioaerosols are virtually identical; therefore, the spectra in the second graph have been individually scaled in order to increase visibility. Although each spectrum has a similar shape, the biological spectra lie distinctly above those of the liquid and ice clouds. Therefore, we can conclude that while the refractive index does not drastically affect the shape of the extinction spectra, it does vary features of the spectrum, such as local extrema and range. This result is somewhat conclusive; we now know that variations in refractive index could account for change in features of measured extinction spectra.

EXPERIMENT 1: REFRACTIVE INDEX

Using a constant refractive index, simulate extinction spectra for six different Gaussian size distributions. This is to test the sensitivity of the spectra to changes in average particle size.

Results show that the type of distribution (Gaussian or lognormal) had virtually no effect on the shape of the resulting spectra.

EXPERIMENT 2: AVERAGE PARTICLE SIZE

Using a constant refractive index, simulate extinction spectra for six different Gaussian size distributions. This is to test the sensitivity of the spectra to changes in average particle size.

EXPERIMENT 3: PERCENT VOLUME

Simulate extinction spectra for particle size distributions that vary by percent volume. In this experiment, each simulation will compare the spectra of two particle types that are present in relative volumes. This is to test how the spectra react to changes in percent volume of bioaerosols, liquid clouds, and ice clouds.

EXPERIMENT 4: STANDARD DEVIATION

These simulated spectra show that variations in standard deviation do indeed affect extinction spectra; the severity of the spectra's trends decreases as standard deviation increases. This result confirms that simulated spectra are highly sensitive to individual factors in a size distribution.

CONCLUSION

The results of these four experiments show that each variable does affect simulated extinction spectra, but in different ways. Varying the percent volume showed that bioaerosols affect combined spectra much more drastically than non biological particles; this positive result suggests that detection of bioaerosols may be possible, even if they are only present in small volumes. Furthermore, our results show that variations in size distribution drastically affect the shape of the extinction spectra, whereas variations in refractive index merely shift features of the spectra. These conclusions are beginning to show us how to decipher the composition of an atmosphere from its measured extinction spectrum alone. Our further research will focus on determining how size distribution varies by aerosol type; this will help us further understand, simulate, and analyze the distributions of natural bioaerosols.