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ABSTRACT

A Standard Network Adapter for Spacecraft and Payloads

by

Colby Russell Salmon, Master of Science

Utah State University, 2014

Major Professor: Dr. Curtis Dyreson
Department: Computer Science

SNAP reduces space mission cost by providing an advanced modular, open systems

approach to software. As part of the space modernization efforts, SMC is sponsoring an

effort to develop advanced network architectures for spacecraft systems. Government and

DoD agencies are looking to the hosted payload concept to reduce space mission cost in

the current budget constrained environment. The hosted payload paradigm poses signifi-

cant system integration challenges due to payloads being developed independently of the

host spacecraft. SNAP is an adapter that uses software and hardware interfaces to provide

network connectivity and protocol translation to integrate a spacecraft and payload. In

addition to solving the systems integration problems associated with the hosted payload

concept, SNAPs advanced modular, open systems approach results in reduced overall cost

and length of development for spacecraft systems. SNAP has been demonstrated with the

Operationally Responsive Space (ORS) offices Modular Space Vehicle (MSV) and three dif-

ferent payloads. This document provides a system level overview of the SNAP architecture

and the design concepts used in its development.

(44 pages)
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CHAPTER 1

INTRODUCTION

1.1 Overview

This report provides a description and system level overview of the Standard Network

Adapter for Payloads (SNAP). Motivation for its development and the benefits of using

SNAP will also be explained. SNAP is a system comprised of both software and hardware

for connecting potentially disparate electrical and data protocol interfaces between a host

spacecraft and payloads. This report focuses primarily on the software.

The SNAP software provides services and management of networked communications

(data and commands) with a spacecraft bus and payload(s), as well as internal communica-

tions within the SNAP host avionics. SNAP includes general purpose processing; data rout-

ing (enabling multiple payloads per SNAP unit); protocol translation; time and ephemeris

distribution from the host to the payloads; and data buffering to assist in store and forward

scenarios.

The development of SNAP was sponsored by the US Air Force Space and Missile

Systems Center Development Planning Directorate (SMC/XR). SNAP was developed in

collaboration with other Modular Open Network Architecture (MONA) efforts for spacecraft

including; DARPA F6, NASA CII, AFRL Monarch, and ORS MSV.

1.2 Background

The current industry practice for satellite system development is an expensive and time

consuming process. Due to the unique system requirements for each particular mission,

satellite systems are typically build to order. Creating each new custom satellite generates

new, complex interfaces, and requires significant systems engineering followed by costly
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Figure 2.2. MONA native to payload and spacecraft

bus to be used with the system. Writing this single SNAP application for each component

is a non-recurring effort; once this translator application is written, the component is SNAP

compatible, and ready for use with any other SNAP compatible component. This means

that a SNAP compatible bus can be used with a number of SNAP compatible payloads

in a plug-and-play fashion. Use of an additional payload is accomplished by writing the

SNAP application for that specific payload, with no further changes to the bus or its SNAP

application. The fact that the bus and the payload are translated and adapted to a standard

interface inside SNAP is transparent to either unit.

The ease of integrating spacecraft and payloads could be incorporated into traditional

payload/spacecraft interfaces to reduce the cost and schedule associated with traditional

programs. The longer term goal would be systems where the spacecraft and payload can

natively communicate across a standardized MONA interface, as in Figure 2.2.

2.3 Scope

The SNAP software is modular in nature and is implemented as a suite of applica-

tions. The suite leverages the core components of the SPA Services Manager (SSM) [8],

including the SSM API. SNAP and SSM adhere to the Space Plug-and-Play Architecture

(SPA) standards [9] approved by the American Institute of Aeronautics and Astronautics

(AIAA). Software and hardware implementation for system interconnection using RS-422

and SpaceWire were completed for SNAP.

SNAP by itself is not a turn-key solution to a MONA approach across the entire mission.

SNAP does not address networked communications from space to ground, nor networked

ground links. SNAP has been implemented in a step-wise fashion in order to demonstrate
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technology capabilities and value, and requires additional work before it is flight ready.

Additional software modules will be necessary to increase functionality, such as encryption

or interconnection using other physical media.
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CHAPTER 3

MONA

3.1 Modular Open Network Architecture

SNAP incorporates MONA principles, which stands for Modular Open Network Archi-

tecture. The Modular aspect of MONA means that the software is designed (in part), by

separation of the software responsibilities into different functional units, or modules. These

individual software components are used as building blocks to create a larger, complete

software system. Modules can be aggregated in various ways to provide the flexibility to

meet different system requirements.

Modular software has many advantages when designed and implemented well. Sepa-

ration of the software concerns results in the modules being decoupled. This means that

changes in one portion of a system remain isolated, and do not propagate or have far-

reaching effects in other parts of the system. Proper execution of modularity results in

software that is more maintainable because the components are capable of being upgraded

individually to respond to changing requirements or to increase functionality. This limits

the cost and scope of software upgrades. Software testing and validation is also simplified

because the system can be decomposed back into individual functional units. The individual

functional units are easier to test.

Modularity also results in decreased testing costs by increases the reusability of soft-

ware. All software is reusable to some extent. We often say that roughly 80% of software

is reused from one program to another. Unfortunately, that typically means that 80% of

each software component is reused, while the remaining 20% requires changes to adapt to

new hardware. In the old paradigm, introducing new hardware for a new mission means

the interfaces between hardware and software change. This is costly because the software
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Figure 3.1. Modular software reduces cost by reducing re-testing

that was only 20% modified needs to be 100% re-tested. SNAP represents a paradigm shift

because it has been designed and implemented in such a way that modules are reused in

their entirety. Using this modular architecture improvement, 80% software reuse and 20%

new or modified software for a space mission results in only 20% re-test. The modules that

are reused intact do not need to be re-tested.

One of the keys to modularity is standardized interfaces. Modules that are written to

the same interface are interchangeable and swappable. This is an important concept; two

modules may have completely different internal implementations to accomplish the same

task (interchangeable), or be implemented to accomplish the task with different hardware or

protocols (swappable), as long as they written to the same interface. This type of interface

programming is facilitated by having standardized interfaces.

The Open aspect of the MONA acronym indicates that the standards are open and

available to everyone. The benefits of open systems are discussed at length in a report by

the GAO [4]. The GAO report lists product manufacturers, consumers, and industries as

recipients of these benefits because open systems spur growth, competition, and innovation.

Building on an infrastructure that is supported by the industry increases the knowledge base

of the infrastructure, reduces risk, and lowers the costs of product development. Increased

competition puts more focus on product value, performance, and development schedules.

Figure 3.2 comes from the GAO report and is used here as a concise way to highlight some
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Figure 3.2. GAO analysis of DoD and industry data

of the reports findings.

MONA requires standardized interfaces, protocols, and processes. Having the stan-

dards open is the key to everyone working to the same standard, so that the individual

software components are truly modular. With an open standard, individual components

can be built without prior knowledge of how the system will be constituted in its final

form. It is important to note that an open standard does not preclude using proprietary

implementations. This concept is further discussed in section 3.3.

The Network part of MONA is message-based, interconnected communications. The

modular and open standards concepts are used to build an infrastructure for networked

communications. The network infrastructure increases the modularity of the system and

decreases the complexity of a module by eliminating the need of a single module to know how

to communicate with every other module. Instead, each module just communicates with

the network infrastructure which then provides data movement and delivery as a service to
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all of the modules.

These concepts do not suggest scrapping all the software the aerospace industry has

already built, only changing how the software works together and with the hardware so that

we improve the reusability and build on a common infrastructure.

MONA is about building a network communications infrastructure in such a way as to

make it reusable and extensible to future interconnection networks. Reusing a standardized

infrastructure reduces system development time and cost, and frees up resources for in-

creased content and capability rather than having individual entities generate independent

infrastructures.

3.2 Layered Architecture

In addition to the MONA principles, SNAP is also a layered system adhering to a

simplified version the Open Systems Interconnect (OSI) model [10]. The OSI model is

a broadly recognized and industry standard means of providing an ordered, flexible, and

extensible communications system architecture. This is how billions of lines of code have

been written for terrestrial network infrastructures such as cell phones communications and

the internet.

The layers of the OSI model promote easier understanding of the architecture. The

design of each layer can be addressed individually, reducing the complexity of the associated

communication system. Each layer can be developed independently, can be tested at the

layer boundaries, and is easier to maintain. Since the responsibilities of the layer are well

categorized, swapping out a layer with an alternate implementation has minimal impact on

other layers. This provides a well-defined methodology for adding new and future network

technologies without affecting existing components. For example, support for a new or

future interconnection medium can be added by creating a new software module at the

data link layer.

For its network infrastructure, SNAP make use of the SPA Services Manager (SSM)

software. The SSM is an implementation of the AIAA SPA standards including the SPA

Networking Standard. The SSM was originally developed for Air Force Research Laboratory
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Figure 3.3. Network model comparison

by SDL using an ISO 9001 certified spaceflight software development process. SPA and SSM

are being actively used for the ORS/MSV. Full documentation of the SSM is available to

registered persons at https://pnpsoftware.sdl.usu.edu/projects/ssm/wiki.

The SPA model is fundamentally a simplified form of the OSI model, using a hierarchy

of five abstraction levels, with the traditional session and presentation layers being included

in the Application layer. The layers in the architecture model for SPA are the Physical,

Data Link, Network, Transport, and Application layers (see Figure 3.3).

A layered architecture is a further refinement of modularity. In addition to components

encapsulating and addressing a different aspect of the communication system requirements,

each layer is only required to interact with the layers directly above and below it. These

layers represent a hierarchy of abstraction levels, where a given layer provides services to

higher level layers and receives services from the layer below. The result is that software

components interoperate in a plug-and-play manner at the Application layer. Furthermore,

the components communicate and interoperate independently of the nature of the resource.

Consumers of services remain unaware of the physical type or the physical network location

of the component providing the service.
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Figure 3.4. Proprietary components can interface to the MONA network

3.3 Competitive and Proprietary in a MONA System

It is important to note that SNAP and MONA do not preclude proprietary software.

Compatibility can be achieved by exposing a standardized interface, while the implementa-

tion remains private. The PC industry has demonstrated that standardized communications

between computers does not prohibit competition or proprietary implementations of com-

puters and software. A good example of this can be found with email clients. While there

are many free and/or open implementations of email clients (e.g. Gmail, Thunderbird),

there are also very successful proprietary implementations (e.g. Microsoft Outlook, Apple

Mail).

Under the MONA paradigm, standardized communications for space systems represents

a network infrastructure as an industry shared investment, with shared benefit. Competition

is encouraged on cost, performance, and proprietary capabilities rather than proprietary

infrastructure.
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CHAPTER 4

SNAP ARCHITECTURE

4.1 SNAP Core Software Architecture

The SNAP software is architected in three groups or tiers. The three tiers are; Infras-

tructure, Services, and Translation. In the context of the OSI model, the components of

the Translation and Service tiers of SNAP reside in the Application layer. The communica-

tion and interoperation of these applications is supported by the SNAP Infrastructure tier,

which represents the other four OSI layers; Transport, Network, Data Link, and Physical.

The Translation tier is the only tier that is updated when integrating a new payload or

spacecraft bus. The Services and Infrastructure tiers are designed to remain unchanged as

various payloads and busses are integrated. This reduces the time and cost of testing and

validation because the reused tiers only need to be tested and validated once.

4.2 Infrastructure

The Infrastructure tier is responsible for the network communications on the SNAP

processor and its peripherals. This tier is the N and part of the O in MONA, and is

common to all payloads and spacecraft busses. The Infrastructure tier is comprised of

three applications; Lookup Service, Central Address Service, and SPA Local Manager.

These applications embody the modular reuse of the network communications infrastructure

provided by the SSM, which handles network communications using protocols described in

the SPA standards. Additional software modules can be added to the Infrastructure tier

to handle new subnet types and different physical transmission media types. The SSM

also provides a full API, reducing the development time and complexity of creating SPA

standards compliant applications.
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Figure 4.1. SNAP architecture

4.3 Services

There are five applications that make up the Services tier. These are SPA applications

and provide services that are available to all payloads and busses. The applications are;

Data Handler, File and Data Service, Command Handler, Telemetry Monitor, and Processor

Monitor. These services are offered to payloads and busses, but their use is optional. This

optional service design allows the flexibility to integrate payloads and busses of varying

features and capabilities.

The optional services are provided in case there is a service gap that results from the

payload and spacecraft being developed separately. Consider that currently a spacecraft

and its payloads are designed together as a system, and system engineers provide a division

of responsibility between the spacecraft and its payloads on a per system basis. If the

payload and spacecraft are developed independently, then there could be responsibilities

that are not provided by either. An example of this is data storage. On a spacecraft

designed for one mission, it could be decided that the payload will handle its own data

storage, and on a design for another mission it may be decided that data storage will be

handled by the spacecraft. Since there is a potential shortfall of needed services SNAP has
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to be capable of providing any service that the spacecraft and payload expects the other

to provide. In the case of data storage, SNAP has a service application called the File

and Data Service that can provide the data storage functionality. However, if either the

spacecraft or payload already provide data storage, then using the File and Data Service

application is not mandatory.

The software applications of the service tier do not need to be modified as different

payloads and busses are integrated, but it is possible to add new applications for additional

service functionality.

4.3.1 File and Data Service

File and Data Service is a SPA application that manages file and data buffers. Its

primary function is to store data produced by the payload. File and Data Service provides

a standard file interface that provides the ability to: create, delete, open, close, read, write,

append, and list files. In addition to payload telemetry data, this application is capable of

storing configuration files and data sent by any of the other service applications.

By managing file and data buffers, File and Data Service allows the integration of

payloads to the spacecraft system with minimal impact to the bus. Use of this application

is optional, as the system allows for storage of data on the payload hardware, or payload

data being transmitted straight through SNAP to the spacecraft bus. File and Data Service

is particularly useful however, in a situation where neither the payload nor the bus have

the capability to store data, or an instance where the systems engineer chooses to keep the

payload data separated from the bus. See the use case in Figure 4.2.

4.3.2 Data Handler

This application acts as a throttle for dispensing data that is stored by the File and

Data Service. Architecturally, the Data Handler separates the concerns of the rate of data

reporting from the concerns of file storage. The Data Handler reduces both dropped packets

and impact to the bus by controlling the rate at which payload and SNAP telemetry data
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Figure 4.2. Payload sends data to ground via File and Data Service

is passed to the spacecraft bus. Data packets are not sent until the Data Handler receives

a notification from the spacecraft bus that the bus is ready for data.

The flow of data is orchestrated as follows: File and Data Service sends a notification

containing file meta-data to the Data Handler each time a file is created or updated. This

file information is stored in a priority queue that is serviced when the spacecraft bus alerts

the Data Handler to send more data. The Data Handler then uses the file information from

the priority queue to request data from the File and Data Service. The role of the Data

Handler in the SNAP software is also illustrated in Figure 4.2.

The Data Handler was designed to simplify synchronization of system data flow. This

makes it easier to integrate payloads and busses that have different data rates.

4.3.3 Command Handler

The Command Handler manages system command messages. This a very powerful

SPA application that has the flexibility to be used in a number of different ways. The

Command Handler features a real-time execution queue which orders commands based on
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Figure 4.3. Ground sends timed command stack

time (seconds) and a priority field. Command execution can be tailored to a specific system

by adjusting the rate that the Command Handler releases the commands from the queue.

For example; the Command Handler can be configured so that once per second, n number

of commands are released. These released commands are encapsulated in messages that

may be destined for the payload, any SNAP component, or the spacecraft bus.

This application also features the ability to store a number of command sequences.

These stored command sequences allow the Command Handler to be used to execute timed

system routines. The real-time execution queue used in combination with the stored com-

mand sequence structures provides the means for commands to be stored, delivered and

executed at a specific time, and reused. For example, a command could be sent from the

ground station: At system time x, load command sequence b into the real-time execution

queue. The last command of sequence b could be to load another sequence. The Command

Handler is an application that is intended to be used in creative ways; even beyond what

was initially imagined by its designers. See Figure 4.3 for the primary use case for the

Command Handler.



18

Figure 4.4. Ground sends command to payload

Although the Command Handler may be a very powerful tool, its use is also optional.

There may be situations where the payload ground station would like to send a command

directly to the payload for immediate execution. The SNAP software allows for this, as

encapsulated command messages can be routed up through the bus, then translated by

SNAP and delivered to the payload. This use case is shown in Figure 4.4.

4.3.4 Processor Monitor

Another application in the service tier of the SNAP software is the Processor Monitor.

This application publishes state of health and other telemetry specific to the SNAP system.

This application should be customized for each SNAP instantiation.

4.3.5 Telemetry Monitor

The Telemetry Monitor is a generic SPA application that manages telemetry data

produced by other SNAP components. The application subscribes to the telemetry noti-

fications published by any of the hardware or software components of the system. These

subscriptions can be set up based on a configuration file or by system query. The Telemetry



19

Monitor coordinates subscriptions and marks stored files as telemetry. It has the potential

to contain logic to trigger events based on observed telemetry conditions which could be

used to have the system perform service tasks autonomously. The Telemetry Monitor is not

responsible for storing or sending data as these are done by the File and Data Service, and

Data Handler applications, respectively.

4.4 Translation

Translation between different hardware and software interfaces is at the heart of SNAP.

The software tier that represents translation contains the SNAP software modules that

are specific to the attached payload and spacecraft bus. These applications perform the

function of translating device communication protocols to the standard SNAP formats and

protocols, and so are individually developed on a case by case basis for each payload and

each spacecraft bus. The good news is; since a translator application is the single part of

the software that adapts a device to the SNAP system, it only needs to be done a single

time. In other words, once a bus translator application is written for a particular spacecraft

bus, the integration of that bus to the SNAP software is complete and remains unchanged

as any number of payloads are adapted to the system. Likewise, once a payload translator

application adapts a particular payload to SNAP, that application remains the same as a

host spacecraft bus is adapted to SNAP.

4.4.1 Bus Translator

Interpreting communications between a spacecraft bus and SNAP is done by a Bus-

Translator application. It is responsible for receiving and handling messages coming from

the spacecraft side of SNAP. These messages may be information from the bus itself or en-

capsulated commands from the ground station intended for SNAP or the payload. The Bus

Translator application must also translate SNAP messages into something the spacecraft

bus can handle. Messages being sent from the Bus Translator to the bus need to be in the

bus protocol, and may include requests directly to the bus or encapsulated telemetry data

on its way to the payload ground station.
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Figure 4.5. A spacecraft bus is adapted to SNAP a single time and is then compatible with
any number of SNAP-adapted payloads

Figure 4.6 shows a use case for the Bus Translator. This use case depicts a situation

where the payloads ground station needs the spacecraft to change attitude (slew) prior the

payload being commanded to perform a task.

To make the task of adapting a new spacecraft bus easier, SNAP provides a generic

Bus Translator which includes as much of this application as possible. The application

contains roughly half of the needed functionality by implementing the SPA interface which

is used for communication between the Bus Translator and the rest of SNAP. The part of

the application that cannot be provided ahead of time is the custom portion for a specific

spacecraft bus. Using this schema, the complexity of adapting a specific spacecraft is

reduced, and spacecraft that are not yet invented can be adapted to SNAP in the future.

Additional information about translator applications for spacecraft busses can be found in

section 3.1 Integrating a Spacecraft Bus.
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Figure 4.6. The Bus Translator handles command destined for spacecraft bus

4.4.2 Payload Translator

A Payload Translator application is responsible for interpreting communications be-

tween a payload and the SNAP software. The application must accept messages from

SNAP and convert those messages into the payload protocol before sending those messages

to the payload. The Payload Translator must also accept messages or data from the pay-

load, convert the data from the payload protocol to the SNAP protocol, and then perform

the appropriate operation including sending the message to the correct party in the SNAP

software.

A use case involving both translator applications is shown in Figure 4.7. In this situa-

tion, the payload needs to know the position of the spacecraft. The figure depicts how the

Payload Translator and Bus Translator applications facilitate communications between the

spacecraft and the incompatible payload it is hosting.

Again, to reduce development time and duplication of effort, SNAP provides a generic

Payload Translator for use in developing an application for a specific payload. The generic

translator contains the SPA interface portion for communication between a Payload Trans-

lator application and the rest of the SNAP applications. The part of the application that
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Figure 4.7. The Payload Translator requests data from spacecraft bus

is not provided ahead of time is the portion that must be customized for a specific payload.

This design choice of creating a framework in which a developer completes the application

for payload eliminates the need for SNAP to provide an implementation for every possi-

ble payload in existence, and allows payloads that are not yet invented to be more easily

adapted to SNAP in the future. Additional information about translator applications for

payloads can be found in 5.2 Integrating a Payload.
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CHAPTER 5

SYSTEM INTEGRATION

5.1 Integrating a Spacecraft Bus

A spacecraft bus is adapted to SNAP by implementing a bus translator application.

Implementing a translator application for a spacecraft is a one-time effort; once the space-

craft is adapted to SNAP, it is compatible with any number of SNAP-adapted payloads. To

facilitate developing the translator application for a specific spacecraft bus, SNAP provides

an abstract base class named BusTranslator. The abstract base class already contains the

SPA interface code for communication between a bus translator application and the rest

of the SNAP applications. Providing this functionality reduces duplication of effort and

development time for individual spacecraft busses.

To complete the integration, a developer derives an application from the provided base

class. A graphical representation of the bus translator showing the division of what is

provided and what is left to be implemented can be seen in Figure 5.1. The developer

must implement the abstract functions appropriately for the spacecraft bus that is being

integrated. Implementing these functions is the essence of translating the data from SNAP

(which uses SPA protocol standards) into the bus protocol and sending the data to the

bus. The application must also be written to convert data from the bus protocol into SPA

protocol and call the appropriate setter function already implemented by the non-abstract

portion of the provided application. This represents translation of messages coming from

the bus on their way to SNAP or the Payload. Additional implementation details about

bus translator applications are provided in 6.1.
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Figure 5.1. Spacecraft bus translation interface

5.2 Integrating a Payload

A payload is adapted to SNAP by implementing a payload translator application.

Implementing this translator application for a payload is a non-recurring effort. The payload

is adapted to SNAP a single time and is then compatible with any number of SNAP-adapted

spacecraft. SNAP provides an abstract base class named PayloadTranslator to facilitate

developing the translator application for a specific payload. The abstract base class already

contains the SPA interface code for communication between a payload translator application

and the rest of the SNAP applications. Providing this functionality in the base class reduces

duplication of effort and development time for each individual payload.

To complete the integration of a payload to SNAP, a developer makes a SPA application

that is derived from the base PayloadTranslator. A graphical representation of the payload

translator can be seen in Figure 5.2, showing the division of what is provided and what is

left to be implemented. The developer must implement the abstract functions according to

the particular payload they are integrating. These implemented methods will be called by

functions in the non-abstract side of the application, and represent the translation of SPA

standard messages going in the direction of the payload. If a payload cannot provide the

functionality represented by any of these abstract functions, the developer may implement
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Figure 5.2. Payload translation interface

a function stub. The developer then uses the payload protocol to receive messages and

make appropriate calls to the non-abstract functions provided in the base class. This rep-

resents translation of payload communications going in the direction of SNAP. Additional

information about bus translator applications is provided in 6.2.
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CHAPTER 6

SNAP IMPLEMENTATION

6.1 Spacecraft Bus Translator Implementation

This section takes a closer look at implementing a bus translator application which is

needed to adapt a spacecraft bus to SNAP. The application is derived from the provided

C++ abstract base class named BusTranslator, and will be run on the same processor unit as

the rest of the SNAP applications. The abstract base class is in fact a SPA Application and

contains the SPA interface code for communication between a bus translator application and

the rest of the SNAP applications. SPA Applications use the SSM network infrastructure

to communicate with other system components using messages and protocols defined by

the SPA standards.

Implementing a bus translator application for a spacecraft is a non-recurring effort.

The spacecraft is adapted to SNAP a single time and is then compatible with SNAP-

adapted payloads. To finish the integration of a spacecraft to SNAP, the derived bus

translator application is completed by implementing the abstract functions according to

the spacecraft bus that is being integrated. These implemented methods will be called from

methods in the non-abstract portion of the application, and represent the translation of SPA

standard messages going in the direction of the spacecraft. If a payload cannot provide the

functionality represented by any of these abstract functions, the developer may implement

a function stub. The application must also be written to convert data from the bus protocol

into SPA protocol and call the appropriate setter functions already implemented by the non-

abstract portion of the provided base application. This represents translation of messages

coming from the bus on their way to SNAP or the Payload.

The UML diagram in Figure 6.1 depicts the inheritance hierarchy for bus translators.
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Figure 6.1. Each derived bus translator must implement the pure virtual functions of the
parent bus translator

The diagram also shows the specifications for the required interfaces (pure virtual functions)

that must be implemented by each derived bus translator.

6.1.1 Provided Functionality

In addition to the functionality provided by the C++ class SpaApplication, the base

class BusTranslator provides five public functions designed specifically to be called by the

derived bus translator applications as data is received and translated from the spacecraft

bus.

The SendMessage function is provided to allow a derived bus translator application
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to pass received spacecraft data to the SNAP software. The function has a parameter list

consisting of a pointer to a (byte) buffer, and an unsigned 32 bit integer representing the

size of the data buffer.

There are four notify functions provided as a way to issue data notification messages

to SNAP when the derived bus translator receives data published by the spacecraft. There

is one function each for time, attitude, and navigation data. The notifyDataReady function

is called by the derived bus translator to let SNAP know that the spacecraft is ready for

more data.

6.1.2 Required Implementation

The C++ abstract base class BusTranslator has seven functions that must be imple-

mented by all derived bus translator applications. These functions are defined in BusTrans-

lator.hpp as pure virtual so that the derived bus translator will not successfully compile

until the functions are implemented. These seven function prototypes have no return value,

so if any of the functions are not necessary to adapt a spacecraft to SNAP, they may be

implemented as stubs, or empty functions.

The initSubclass and shutdownSubclass functions may be written to perform initializa-

tion tasks and tasks in preparation for shutting down. For example, a developer can use the

initSubclass function to set up buffers and start threads. The shutdownSubclass function

can be used to join threads and perform any other necessary clean-up.

The sendData function is called by the base BusTranslator when there is data coming

through the SNAP software that is to be forwarded to the spacecraft bus. The parameters

are a pointer to a (byte) buffer and an unsigned 32 bit integer representing the size of

the data buffer. The function is intended to be used by a developer to both prepare and

send the data to the spacecraft bus. Depending on the specific spacecraft and the over-all

system configuration, preparing the data could represent anything from a straight pass-

through of data, to extensive translation and processing of the data. In this function, the

developer has the responsibility to get the data to the spacecraft bus in a format the bus

understands. Exactly what this entails and how it is implemented is the decision of the
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developer integrating the spacecraft.

There are four handler functions to implement that may be used to request services

from the spacecraft bus. These functions are called by the base BusTranslator when the

application receives commands to affect the power, thermal, or ADCS state of the spacecraft.

The implementation of these functions is intended to be used to then request these services

from the spacecraft using the spacecrafts native protocols. In other words, these functions

can be implemented to translate service requests from the incoming SPA message protocol

into the protocol of the spacecraft, then pass the requests to the spacecraft.

6.2 Payload Translator Implementation

This section takes a closer look at implementing a payload translator application which

is needed to adapt a payload to SNAP. The application is derived from the included C++

abstract base class PayloadTranslator. The derived application will be run on the same

processor unit as the rest of the SNAP applications. The abstract base class is a SPA

Application and contains the SPA interface code for communication between a payload

translator application and the rest of the SNAP applications.

Implementing a translator application for a payload is a non-recurring effort. The

payload is adapted to SNAP a single time and is then compatible with SNAP-adapted

spacecraft. To complete the integration of a payload to SNAP, a developer completes a

derived payload translator application by implementing the abstract functions according to

the particular payload they are integrating. These implemented methods will be called by

functions in the non-abstract side of the application, and represent the translation of SPA

standard messages going in the direction of the payload. If a payload cannot provide the

functionality represented by any of these abstract functions, the developer may implement

a function stub. The developer then uses the payload protocol to receive payload data

and make appropriate calls to the non-abstract functions provided in the base class. This

represents translation of payload communications going in the direction of SNAP.

The inheritance hierarchy for payload translators is depicted in the UML diagramin

Figure 6.2. The diagram also shows thespecifications for the required interfaces (pure virtual
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Figure 6.2. Each derived payload translator must implement the pure virtual functions of
the parent payload translator

functions) that must be implemented by each derived payload translator.

6.2.1 Provided Functionality

In addition to the functionality provided by the C++ class SpaApplication, the base

class PayloadTranslator provides five public functions designed specifically to be called by

the derived payload translator applications.

There are three enabler functions provided, one each for time, attitude, and navigation.
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These functions are used (called) by derived payload translators to enable or disable the

flow of time, attitude, and navigation data notification messages coming from SNAP. These

functions have no return value, and each have a boolean parameter. Use true to enable,

and false to disable the notifications.

Two functions are provided to allow a derived payload translator to pass received

payload data to the SNAP software. The two functions have identical parameter lists

consisting of a pointer to a (byte) buffer, and an unsigned 32 bit integer representing the

size of the data buffer. Call downlinkBuffered to append this data to a file managed by

SNAPs File and Data Service. The function downlinkDirect is used to send data directly

if the SNAP hardware is configured with a downlink transmitter. These functions have no

return value.

6.2.2 Required Implementation

The C++ abstract base class PayloadTranslator has six functions that must be im-

plemented by all derived payload translator applications. These functions are defined in

PayloadTranslator.hpp as pure virtual so that the derived payload translator will not suc-

cessfully compile until the functions are implemented. These six function prototypes have

no return value, so if any of the functions are not necessary to adapt a payload to SNAP,

they may be implemented as stubs, or empty functions. The initSubclass and shutdown-

Subclass functions may be written to perform initialization tasks and preparatory tasks for

shutting down. For example, a developer can use the initSubclass function to set up buffers

and start threads. The shutdownSubclass function can be used to join threads and perform

any other necessary clean-up.

The sendToPayload function is called by the base PayloadTranslator when there is a

message coming through the SNAP software destined for the payload. The parameters are

a pointer to a (byte) buffer and an unsigned 32 bit integer representing the size of the data

buffer. The function is intended to be used by a developer to both prepare and send the data

to the payload. Depending on the specific payload and the over-all system configuration,

preparing the data could represent anything from a straight pass-through of data to the
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payload, to extensive translation and processing of the data. In this function, the developer

has the responsibility to get the data to the payload in a format the payload understands.

Exactly what this entails and how it is implemented is the decision of the developer integrat-

ing the payload. An example implementation can be seen in the DiscPayloadTranslator.cpp

file.

There are three setter functions; time, attitude, and navigation. These functions are

called when the payloadTranslator receives the corresponding time, attitude, or navigation

notification message from SNAP. These three setter functions can be implemented to pass

time, attitude, and navigation data to the payload.



33

CHAPTER 7

CONCLUSION

7.1 Results

The SNAP software provides an adaptable interface for hosted payloads or other na-

tively incompatible spacecraft and payload. The derived bus translator represented in

Figure 6.1, (MsvBusTranslator) was completed in the SNAP source code, and was used to

adapt Northrop Grummans Modular Space Vehicle (MSV) to the SNAP system during the

demonstration of SNAP software conducted November 20, 2013 for SMC/XR.

The demonstration incorporated three payloads which were selected to represent dif-

ferent payload types, protocols, and data rates. The three derived payload translators

represented in Figure 6.2, (SofiePayloadTranslator, DiscPayloadTranslator, and ChirpPay-

loadTranslator) were used to adapt the payloads to MSV.

The SofiePayloadTranslator application communicated over an RS-422 link with a low

data-rate (115kbps) simulation of SDLs Solar Occultation For Ice Experiment (SOFIE) sun

sensor. Actual on-orbit data from SOFIE was used for the simulation.

The DiscPayloadTranslator application used a SpaceWire interface to communicate

with a Digital Imaging Space Camera (DISC) imager. The imager is an engineering unit

similar to the DISC imager used on the International Space Station. The imager was used

to demonstrate real-time command and control of a payload, and sent image data through

SpaceWire at a medium data-rate (40 Mbps).

The third payload was adapted to the SNAP system using the ChirpPayloadTranslator

application. This payload was a simulation of a next-generation Commercially Hosted

Infrared Payload (CHIRP), and featured high rate data (141 Mbps) over SpaceWire.

These three payloads were integrated in three days, which is a dramatic improvement
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over the traditional three to six months that it would normally take. These results and

the SNAP message were shared in two related conference papers presented by SNAP team

members [5] [7].

The successful demonstration of SNAP and its modular concepts received largely pos-

itive feedback from the attending government and industry representatives. Interest in

SNAP was sufficient to follow up the demo with an industry workshop that was conducted

in early 2014.
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