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Abstract

Internal waves are formed in stably strati-
fied fluids where the natural frequency (N)
of the fluid is greater than the excitation fre-
quency (ω). If N < ω, only evanescent
waves form. Evanescent waves, which de-
cay at an exponential rate, can become prop-
agating internal waves if N increases above
ω. Experiments were performed to investi-
gate the effects of topography shape, distance
between the topography and the turning depth
(where N = ω), and the strength of the strat-
ification as measured by the Froude number
in both the evanescent and propagating re-
gions. It was found that internal waves with
the highest kinetic energy were generated by
the medium Gaussian and that decreasing the
distance between topography and the turning
depth increased the kinetic energy over the
entire range of tested values and topograph-
ical shapes. However, Frevan was a strong
influence on kinetic energy for only a portion
of the tested values.

1 Introduction

A stratified fluid is one where the density of
the fluid varies based on the height of the
fluid. The ocean and atmosphere are both ex-
amples of stratified fluids. In the ocean, the
increasing salinity and the decreasing temper-
ature leads to increased density with depth.

In the atmosphere, the decreasing tempera-
ture with increasing height causes the change
in density. A stratified fluid is defined by the
natural frequency, (N) which is calculated
with

N2 =
−g
ρo

dρ

dz
(1)

Here, g is the gravity constant, ρo is a refer-
ence density, and dρ/dz is the change of den-
sity with respect to height. As the change
in density increases, N increases, and is re-
ferred to as a strong stratification, while a
weak stratification indicates small changes of
density with height.

Because of the stratification of the atmo-
sphere and ocean, both fluids are capable
of sustaining internal waves [1, 2]. Internal
waves are generated from a disturbance in the
stratified fluid. One example of this is the
tides moving over oceanic topography. The
M2 semi-diurnal tide is a well known genera-
tor of internal waves [3]. As the M2 tide os-
cillates over underwater topography, internal
waves are generated. Internal waves prop-
agate away from their generation sites and
have an important impact on oceanic circu-
lation and mixing [1, 2]. Because of this,
it is important to understand where internal
waves are generated and factors that will af-
fect the energy within internal waves.

Internal waves can only be formed if the
natural frequency of the stratified fluid is
greater than an excitation frequency (ω) of
a disturbance (such as the tides), i.e. N > ω.
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Figure 1: A comparison of the natural frequency of the Philippine Sea to the M2 tidal frequency.
Evanescent regions occur where log(N/ωM2) < 0, and propagating regions where log(N/ωM2) > 0.
Figure created by [4].

If N < ω, then the bulk fluid cannot react to
the excitation frequency and only evanescent
waves are generated. While internal waves
suffer little to no viscous dissipation, the am-
plitudes of evanescent waves begin to decay
immediately after forming [5]. It has often
been assumed that evanescent waves have a
negligible effect in stratified fluids because
of their decaying properties, but linear the-
ory shows that evanescent waves can become
propagating internal waves [1]. If the strat-
ified fluid has a varying natural frequency,
then the there could be both an evanescent
region (N < ω) and a propagating region
(N > ω) present in the same fluid. King et al.
calculated the natural frequency of the ocean
in many different locations and compared N
to ωM2 [3]. Paoletti et al. plotted an exam-
ple of this data in shown in Figure 1 [4]. The
colors correspond to the logarithmic ratio of
N/ωM2. An evanescent region occurs where
log(N/ωM2) < 0, while the propagating re-
gion are indicated by a ratio greater than 0.
Because of the varying natural frequency, it

is possible for the M2 tide to generate both
evanescent and internal waves. Paoletti et al.
used numerical simulations and experiments
to show that evanescent waves could be gen-
erated, move towards a turning depth (where
ω = N), and then become an internal wave
once the wave passes into a propagating re-
gion. While these internal waves generated
from evanescent waves have less energy (due
to the dissipation of the evanescent waves),
they could still have in important impact on
the surrounding ocean. This paper uses ex-
periments to explore the effects of topogra-
phy shape and relative distance to the turn-
ing depth on the kinetic energy of internal
waves generated from evanescent waves pass-
ing through a turning depth.

2 Experimental Methods

All experiments were performed in an acrylic
tank with a length, width and height of
2.45m, 0.15m, and 0.91m respectively. A
modified version of the double bucket method
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[6] was used to create an exponential density
profile. Density measurements using an An-
ton Par density meter were taken every 2cm
before the first set of data was taken, and
then every 5 cm after every fourth experimen-
tal run. The density measurements were fit
to the equation

ρ = a exp(bz) + c (2)

where ρ and z have units of kg/m3 and m,
and a, b, and c are coefficients calculated from
the fit. This density profile ensures a varying
N profile for every experiment, with N rang-
ing from 0.3 − 2.0s−1. Along the top of the
tank, a track with a stepper motor controls
the oscillation frequency and excursion length
of the topography which generates waves. As
shown in Figure 2, the topography is inverted,
with lower values of N at the base of the to-
pography. Moving away from the topogra-
phy and towards the bottom of the tank, z
decrease while density and N increase.

Two different topographies were used in
the experiments. Both were Gaussian shaped
curves of the form

h = H exp(−x2/B2) (3)

where H is the peak height of the topogra-
phy and B2 = 18W 2. Here, W is the width
of the topography when the height of the to-
pography has decayed to 1% of the maxi-
mum height H. Two separate topographies
were used. The first is defined by H = 0.1m
and W/H = 1.45, and is referred to as the
Medium Gaussian. The second has H =
0.11m and W/H = 0.45, and is called the
Steep Gaussian.

The frequency of the topography oscilla-
tion was chosen based off of the desired lo-
cation of the turning depth (ztd), which is
calculated from the natural frequency profile
N(ztd) = ω. The height of the turning depth
also influences the value of H/D, where D is
the distance from the turning depth to the

(a) Experimental Setup

(b) Synthetic Schlieren Setup

Figure 2: A front (2a) and side (2b) view of the
experimental tank.

top of the topography. Table 1 outlines the
various experimental cases, including the to-
pography used, the coefficients for the den-
sity profile (2), the oscillation frequency (ω),
and H/D, and the total water height (ztotal).
Also listed are Frevan and Frprop. The Froude
number is the ratio of Fr = ω/N . Because N
varies with height, Fr will change throughout
the experimental tank, and so average values
of N in each region were used to calculate an
average Fr. This allows for a comparison of
the effects of the natural frequency on wave
kinetic energy.

Synthetic Schlieren was used to calculate
variations in density for each experiment
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Table 1: A summary of experiments and experimental parameters. Values of a, b, and c are used
in Eq. 2, ω is the frequency of the topography oscillation, H/D is the ratio of the height of the
topography to the distance from the tip of the topography to the turning depth, and Frevan and
Frprop are the average Froude numbers in their respective regions.

Case a b c
Water
Height (m)

Topography ω ztd H/D Frevan Frprop

1 100.41 -2.36 992.75 0.605 Medium 1.03 0.32 0.70 1.17 0.82
2 97.67 -2.35 994.17 0.630 Medium 0.99 0.34 0.83 1.17 0.80
3 95.16 -2.55 997.64 0.636 Medium 0.94 0.34 0.83 1.17 0.80
4 110.42 -1.35 974.60 0.729 Medium 0.94 0.35 0.48 1.13 0.88
5 101.58 -1.51 983.59 0.712 Medium 1.04 0.41 0.28 1.20 0.91
6 106.61 -1.39 978.11 0.686 Medium 0.90 0.41 0.72 1.09 0.86
7 89.84 -2.17 998.60 0.651 Medium 0.84 0.42 1.28 1.11 0.77
8 84.88 -2.48 1004.92 0.617 Medium 0.84 0.42 0.94 1.12 0.75
9 92.56 -2.39 996.75 0.605 Medium 0.85 0.45 1.78 1.09 0.75
10 86.93 -2.81 1004.45 0.605 Medium 0.80 0.46 2.12 1.10 0.70
11 92.56 -2.39 996.75 0.591 Medium 0.93 0.38 1.33 1.13 0.78
12 95.21 -2.64 1002.57 0.581 Medium 1.20 0.19 0.31 1.27 0.87
13 95.21 -2.64 1002.57 0.545 Medium 1.08 0.28 0.42 1.18 0.82
14 118.87 -1.87 981.55 0.484 Medium 1.12 0.28 0.40 1.09 0.87
15 127.28 -1.48 967.40 0.508 Medium 1.20 0.16 0.36 1.13 0.94
16 116.81 -1.76 980.83 0.547 Medium 0.99 0.40 0.76 1.06 0.83
17 95.31 -3.37 1012.53 0.511 Medium 0.99 0.24 1.90 1.15 0.73
18 88.82 -3.71 1008.09 0.627 Steep 1.03 0.29 0.37 1.34 0.74
19 87.77 -3.50 1006.67 0.667 Steep 1.23 0.19 0.27 1.47 0.83
20 87.77 -3.50 1006.67 0.609 Steep 1.16 0.22 0.43 1.37 0.81
21 92.17 -4.01 1010.61 0.565 Steep 0.96 0.34 0.68 1.24 0.69
22 94.71 -4.49 1013.92 0.592 Steep 0.81 0.41 1.11 1.21 0.60
23 85.10 -4.27 1014.45 0.565 Steep 0.85 0.36 0.77 1.22 0.65
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[7]. Synthetic schlieren is similar to stan-
dard schlieren techniques that use the lin-
ear relationship between changes in density
and changes in index of refractions to visu-
alize changes in density. However, synthetic
schlieren uses a digital camera to track the
apparent movement of a randomized dot pat-
tern behind the experiment, which is differ-
ent from standard schlieren which uses light
focused on a knife edge. For this experimen-
tal setup, the camera shown in Figure 2b
was focused on the mask of random dots be-
hind the experiment. The mask was illumi-
nated by a light box. The jAi Cv-M4+Cl pro-
gressive scan camera began recording images
after the topography oscillated for 15 peri-
ods, which allowed the waves to reach steady
state. Images were recorded for three minutes
and processed with the commercial software
DigiFlow at 6 fps. Digiflow calculates values
of ∇ρ′/ρo, where ρ′ is the perturbations of
density. By multiplying these values by −g,
equation 1 is recovered, although instead of
N2, values for ∆N2 are generated. An exam-
ple of the synthetic schlieren results is shown
in Figure 3. An outline of the topography
has been superimposed over the image in the
top left corner. The evanescent waves start
at the topography and then moves vertically
down towards the turning depth. At the turn-
ing depth, the evanescent waves becomes an
internal wave and begins to propagate away
at an angle. A curved line has been superim-
posed over the wave to help detail the angle of
propagation. This curve was derived from the
exponential density profile, and as expected,
the internal wave follows the same path. The
distance Hr is measured from the bottom of
the tank to the turning depth.

With ∆N2, the kinetic energy of the waves
can be estimated using the methods described
by Wunsch and Brandt [8]. By assuming
that planar wave velocities are multiplied by
an amplitude which slowly varies in the z-
direction, Wunsch and Brandt related inter-

Figure 3: The evanescent wave starts at the tip
of the topography, moves vertically downward
until it hits the turning depth. Then the evanes-
cent wave becomes a propagating wave and be-
gins to propagate away following a line similar
to the curve fit. The color bar shows values of
∆N2.

nal wave velocities and ∆N2 to form the
equation

KEp =
ω2N2

k2(N2 − ω2) + (ω∂zN2/N2)

∣∣∣∣∆N2
o

N2

∣∣∣∣2
(4)

Here ∆N2
o represents the Fourier coefficients

of ∆N2 and k is the horizontal wavenumber.
Unfortunately, this equation is not valid in
the evanescent region because the horizontal
(u) and vertical (v) wave velocities are de-
fined differently between the two types of re-
gions. Instead, the following equations define
wave propagation.

q2(z) = k2(1−N2(z)/ω2) (5)

u(x, z, t) = U exp(−qz) exp[−i(kx− ωt)]
(6)

w(x, z, t) = W exp(−qz) exp[−i(kx− ωt)]
(7)

∆N2(z) = ∆N2
o exp(−qz) exp[−i(kx− ωt)]

(8)

Following the methods outlined by Wunsch

5



and Brandt to derive (4), we find that kinetic
energy in the evanescent region can be esti-
mated by

KEe =

∣∣∣∣ qω∆N2
o

k(ω∂zN2 + qN2)

∣∣∣∣2+∣∣∣∣ iω∆N2
o

ω∂zN2 + qN2

∣∣∣∣2
(9)

It should be noted that m1 = iq, which ac-
counts for the decaying wave. Thus while q
is real and is used throughout this paper, the
vertical wavenumber in the evanescent region,
m1, is imaginary.

3 Results

To compare each of the cases, the calculated
kinetic energy was normalized by the kinetic
energy at the tip of the topography. This
value is denoted as KEe,m. The normalized
energy is then KE∗ = KE/KEe,m. Sim-
ilarly, the height was normalized as z∗ =
(z − ztd)/ztd. Thus z∗ = 0 at the turning
depth, is positive in the evanescent region,
and negative in the propagating region.

The kinetic energy of the evanescent and
internal waves was calculated for each test
case. An example comparing two cases is
shown in Figure 4. The blue line is Case
12 and the red line is Case 14. The high-
est kinetic energy is seen at the top of the
graph, where the evanescent wave starts and
moves down towards the turning depth. A
general decrease in kinetic energy is seen in
this region, as would be expected for decay-
ing, evanescent waves. At the turning depth
(z∗ = 0), the evanescent waves become propa-
gating internal waves. It is expected that the
normalized kinetic energy would be constant
in this area. Case 12 shows a slight increase
in kinetic energy in the propagating region,
while Case 14 indicates an oscillating kinetic
energy with a slight decrease. However, the
changes in kinetic energy in the propagating
region for both cases are much smaller than
the changes in the evanescent region.
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Figure 4: A comparison of Case 12 and Case
14 which have the same topography. The over-
all higher kinetic energy for Case 14 is due to a
higher H/D and a lower Frevan.

The two cases have the same value of
Frprop, but Case 14 has a higher H/D and a
lower Frevan. The increase in H/D indicates
that the topography is closer to the turning
depth in Case 14, and thus the evanescent
wave did not decay as much because it trav-
eled a shorter distance. A higher Frevan in-
dicates a weak stratification, and thus the
evanescent wave would decay more quickly.
Case 12 has a higher Frevan and a lower
kinetic energy in both the propagating and
evanescent region than Case 14.

A full comparison of each test case is pre-
sented in Figure 5. Each data point corre-
sponds to the average kinetic energy through-
out the propagating region, normalized by
KEe,m. Notice that trends seen in Figure 4
are still clear, though more trends are now
visible. In Figure 5a, decreasing Frevan in-
creases kinetic energy, and there is a very
similar trend for both the Medium and Steep
topography, although there is a large spread
for KE∗ at Frevan near 1.1. This may be
an indication that there is a limit on the im-
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(c) Frprop vs KE∗

Figure 5: Each figure compares the average, normalized kinetic energy (KE∗) in the propagating
region for the 23 cases shown in Table 1. The black triangles represent the Steep Gaussian, while
the red circles represent the Medium Gaussian. Each axis is on a log-log scale.
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pact of the Frevan. Further testing would be
needed to see if this grouping occurs also for
the Steep topography.

In Figure 5b, there is a separation between
the Medium and Steep topographies. While
they follow similar slopes, two separate trend
lines might be needed to describe each topog-
raphy. It is possible that these differences are
due to the variation in the Froude numbers
for each point. As H/D increases, the to-
pography comes closer to the turning depth,
and it is expected that the normalized kinetic
energy will eventually asymptote towards 1
as there would be no loss of kinetic energy
through the evanescent region. This is be-
cause the topography is so close to the turn-
ing depth that there is no longer an evanes-
cent region. While the data seems to indicate
a leveling off of the increase of kinetic energy,
further testing at higher H/D values would
be required.

Figure 5c indicates that increasing Frprop
decreases the kinetic energy of the propagat-
ing waves, and that there are separate but
similar trends for each topography. While
the affects of Frevan seem to decrease for val-
ues approaching 1, this trend is not seen in
Frprop. The overall trend of decreasing rela-
tive kinetic energy was not expected. Based
on Eq 4, it was assumed that as Frprop in-
creases, the overall kinetic energy would also
increase. Further exploration of this param-
eter is needed to fully understand this differ-
ence.

All of the data indicates that for the same
non-dimensional values, the medium topogra-
phy has more relative kinetic energy than the
steep topography. However, there needs to
be further testing done to increase the over-
lap of each non-dimensional parameter for the
two topographies. Also, while the individual
trends of each parameter was shown here, it
is possible that there is an interdependence
of Frevan, Frprop, and H/D; combinations of
these parameters compared to kinetic energy

may provide further insight on how a turning
depth affects the kinetic energy of propagat-
ing internal waves, as well as give understand-
ing to the unusual trend seen with Frprop.

4 Conclusions

Internal waves generated by evanescent waves
passing through a turning depth are affected
by the shape of the topography, the Froude
number and the distance from the topog-
raphy to the turning depth. By increasing
W/H from 0.45 to 1.8, the kinetic energy of
the internal waves always increased, regard-
less of the other factors.

Future work includes a comparison of ex-
periments to linear theory accounting for the
variation in natural frequency. This model
will then allow the estimation of kinetic en-
ergy of internal waves generated from evanes-
cent waves formed in the ocean.
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