
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Plan B and other Reports Graduate Studies

12-2014

Design and Testing of a Nanosatellite Simulator Reaction Wheel Design and Testing of a Nanosatellite Simulator Reaction Wheel

Attitude Control System Attitude Control System

Fredric William Long
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/gradreports

 Part of the Mechanical Engineering Commons

Recommended Citation Recommended Citation
Long, Fredric William, "Design and Testing of a Nanosatellite Simulator Reaction Wheel Attitude Control
System" (2014). All Graduate Plan B and other Reports. 448.
https://digitalcommons.usu.edu/gradreports/448

This Thesis is brought to you for free and open access by
the Graduate Studies at DigitalCommons@USU. It has
been accepted for inclusion in All Graduate Plan B and
other Reports by an authorized administrator of
DigitalCommons@USU. For more information, please
contact digitalcommons@usu.edu.

http://library.usu.edu/

11

3.5 Power Supply

The motors and processor are powered using lithium polymer batteries. Batteries are

used instead of a power cord because even the small weight of a power cord may cause the

simulator to become unbalanced.

3.6 Platform

The platform rigidly attaches simulator components. The platform is bolted to the

brass hemisphere as shown in fig.(3.6). The hemisphere is the only portion of the simulator

which comes in contact with the air bearing cup under normal operating conditions. The

platform was designed such that the center of mass would be close to the center of rotation.

The simulator platform was created by a 3D printer and is made of Acrylonitrile Butadiene

Styrene (ABS) plastic.

Fig. 3.6: View of the underside of the platform while sitting on air bearing

Only a few hardware modifications had to be made from the previous hardware design.

Washers were attached to the platform in order to achieve better balance. The batteries had

to be moved vertically in order to bring the center of mass closer to the center of rotation.

Screws were added in the x-y plane so that the simulator would be easy to balance. Making

the sim table easy to balance was very important since even moving the battery cables could

cause the table to lean to one side on the air bearing. For a comprehensive description of

this system’s components including software see Samuels [4].

12

Chapter 4

Simulator Dynamic Model

The mathematic system model gives insight into the dynamics of the system and in-

dicates how to select a control law. The goal of this chapter is to find an expression for

the torque on the simulator in terms of the angular momenta of the simulator and reaction

wheels in the body frame. With this relation, many of sensor outputs may be directly used

in a controller since the sensors and actuators are fixed to the body frame. This system will

be modeled as a deterministic system.

4.1 System Dynamics

This derivation of the system dynamics follows the derivation presented by Sidi [5]. As

stated in eqn.(4.1), the angular acceleration in the inertial frame is equal to the external

torques. The total angular acceleration of the system can be split into the contribution of

the simulator and that of the reaction wheels.

Te = ḣIT = ḣIs + ḣIw (4.1)

Where the definition of angular momentum, h, is

h = Jω (4.2)

and Te is the external torque.

Using Euler’s equation for rigid bodies, eqn.(4.1) becomes

Te = ḣBs + ω × hBs + ḣBw + ω × hBw (4.3)

It is convenient to rotate the angular momentum of the wheels from the simulator reference

13

frame into each wheel’s reference frame using matrix G. This is so that the angular momen-

tum will be aligned with the wheels’ axis of rotation. Notice that the wheel frames and the

body frame are all fixed to the simulator. Only a static rotation is required to transform

from the body frame to the wheel frame.

The transformation matrix G can be determined from the orientation of the wheels

relative to the body frame. Figure (4.1) shows the pyramidal orientation of the wheels and

assumed torque directions. The wheels are numbered in this way simply because that is

2 3

10

×z

x

y

Fig. 4.1: Sketch of the top of the simulator identifying wheel numbering, body frame, and
torque directions.

the way the software for the system had been set up. Given that the wheels all point 45◦

in the negative z direction, the transformation matrix for this setup is

G =

√
3
3

√
3
3 −

√
3
3 −

√
3
3

−
√
3
3

√
3
3 −

√
3
3

√
3
3

−
√
3
3 −

√
3
3 −

√
3
3 −

√
3
3

 (4.4)

14

The first column of G describes the positive velocity of wheel 0 as having a positive x

axis, and negative y and z axis components. It is important to note that the L2 norm of

each column of G must equal unity. For example, when using G to transform the wheel

torques into torques on the simulator, the matrix representation is Ts = GTw. Since the

Pythagorean Theorem (T 2
0 = T 2

0x + T 2
0y + T 2

0z) must hold for each wheel, the L2 norm of

each column of G must equal one.

If each wheel has the same moment of inertia about its axis of rotation,

hBw = JBw ω +GJwwΩ (4.5)

Where

Ω =

Ω0

Ω1

Ω2

Ω3

(4.6)

Where Jww is the scalar moment of inertia of one wheel about its axis of rotation and Ω is the

velocity of each wheel in its wheel frame. Equation (4.6) could be altered to accommodate

an arbitrary number of wheels.

Using the definition JBs + JBw = JBT , combining eqn.(4.3), and eqn.(4.5) results in eqn.

(4.7).

Te = ḣBT + ω × hBT +GJww Ω̇ + ω ×GJwwΩ (4.7)

Equation (4.7) can be rewritten as

ḣBT = Te − ω × hBT −GJwwu− ω ×GJwwΩ (4.8)

Where

u = Ω̇ (4.9)

Equation (4.8) allows the sensor inputs from the body frame to be used directly to find

15

the behavior of the simulator in the inertial frame. The transformation matrix G cannot

simply be inverted to determine the desired input wheel torque. With this configuration of

reaction wheels, there is freedom in how to provide the desired torque on the simulator.

4.2 External Torques

In space, external torques on a satellite are due to the earth’s magnetic field, aerody-

namics, solar radiation, and expulsion of gas or particles. For a quantitative description

of external torques at various altitudes, see Prado [8]. The primary external torque on

this simulator is due to the center of gravity not being aligned with the center of rotation.

Because of this, great care is taken to balance the simulator before each test.

4.3 Motor Dynamics

The dynamics of the servo controller and motor can be simplified to eqn.(4.10).

Ω̇ =
1

τ
(Ωd − Ω) (4.10)

From this equation it is clear that wheel velocity will converge to the commanded velocity

but has a first order dynamic.

16

Chapter 5

Control Strategy

This control strategy focuses strictly on attitude control and does not approach trans-

lational motion control. This is because air bearing prevents the simulator from translating.

5.1 Determining Body Axes Torque from Wheel Torques

Since the four momentum wheels are not collinear and not in the same plane, there

is freedom in how to control about the three body axes. One additional equation will be

chosen in order to determine the control law. The equation chosen is one that minimizes

the L2 norm of the wheel torques in order to decrease power consumption. This equation

is derived below using the Lagrangian method of optimization. The cost function is defined

as

c = T 2
0 + T 2

1 + T 2
2 + T 2

3 (5.1)

Where the subscripts refer to the wheel the torque is generated from. The constraint

equations describe that the wheels and their orientations must result in the specified torque

on the simulator. Torque may be transformed from the wheel axes into the body axis

through the relation
Tx

Ty

Tz

 = G

T0

T1

T2

T3

(5.2)

17

From eqn.(5.2) and the definition of G, the constraint equations are

√
3

3
(T0 + T1 − T2 − T3)− Tx = 0 (5.3)

√
3

3
(−T0 + T1 − T2 + T3)− Ty = 0 (5.4)

√
3

3
(−T0 − T1 − T2 − T3)− Tz = 0 (5.5)

The Hamiltonian is then

H = T 2
0 + T 2

1 + T 2
2 + T 2

3 + λ1(

√
3

3
(T0 + T1 − T2 − T3)− Tx) +

λ2(

√
3

3
(−T0 + T1 − T2 + T3)− Ty) + λ3(

√
3

3
(−T0 − T1 − T2 − T3)− Tz) (5.6)

Where λ is the Lagrange multiplier. The necessary conditions for the minimum are then

∂H

∂T0
= 2T0 +

√
3

3
(λ1 − λ2 − λ3) = 0 (5.7)

∂H

∂T1
= 2T1 +

√
3

3
(λ1 + λ2 − λ3) = 0 (5.8)

∂H

∂T2
= 2T2 +

√
3

3
(−λ1 − λ2 − λ3) = 0 (5.9)

∂H

∂T3
= 2T3 +

√
3

3
(−λ1 + λ2 − λ3) = 0 (5.10)

Solving this system of equations by eliminating λ1, λ2, λ3 in eqn.(5.7-5.10), the minimum

torque equation is

T0 − T1 − T2 + T3 = 0 (5.11)

This result is only a static minimum; it does not take into account the dynamics of the

system to find the minimum. For a description of reaction wheel regenerative power optimal

control, see Blenden [1].

18

This additional constraint can be used alongside the physical constraint by adjoining

the matrix G with eqn.(5.11) to create the matrix H .

H =

√
3
3

√
3
3 −

√
3
3 −

√
3
3

−
√
3
3

√
3
3 −

√
3
3

√
3
3

−
√
3
3 −

√
3
3 −

√
3
3 −

√
3
3

1 −1 −1 1

(5.12)

Using this result, the desired wheel angular accelerations ud can be derived from the desired

body axis torques Td. That is to say

Ω̇d = ud =
H−1

Jww

Td
0

 =
H−1

Jww

GJwwud
0

 (5.13)

Note that this result is equivalent to method using the right pseudoinverse of G presented

by Wertz [6].

5.2 Controller Design

The design of this nonlinear controller will be based on the developed system model.

The controller presented implements feedback linearization to make nonlinear system dy-

namics negligible. Feedback linearization is the method of choosing an input that cancels

nonlinear system dynamics. The resulting linear system is controlled using a Proportional

Integral Derivative (PID) controller. With the assumption that the external torque is con-

sidered negligible,

Te = 0 (5.14)

Using this and eqn.(4.8) leaves the equation

ḣBT = −Td − ω ×GJwwΩ− ω × hBT (5.15)

19

Where

Td = GJwwud (5.16)

Therefore, the feedback linearization portion of the control law is chosen as

TFL = −ω̂ ×GĴww Ω̂− ω̂ × ĥBT (5.17)

Whereˆdenotes a measured value. The resulting system dynamics are

ḣBT = −TPID + (ω̂ ×GĴww Ω̂− ω ×GJwwΩ) + (ω̂ × ĥBT − ω × h
B
T) (5.18)

Assuming the errors in the observed values are negligible,

ḣBT = −TPID (5.19)

The chosen PID portion of the control law is then

TPID = −ĴT (Ki

∫
Φedt+Kp(Φe) +Kd(Φ̇e) + Φ̈d) (5.20)

Where Φ is the angular position of the simulator derived from the quaternion position and

the subscript e denotes the error between the body frame and the desired frame. The gains

Kd, Kp, and Ki are scalar values. Instead of JsK, any gain matrix for the PID gains

could be chosen based on the desired response. This gain matrix was chosen such that the

convergence rate about each axis of the inertial frame would be the same. The total desired

torque input is then

Td = TFL + TPID (5.21)

Using this in eqn.(5.15) gives

ḣBT = JT Φ̈ = ĴT (Ki

∫
Φedt+Kp(Φe) +Kd(Φ̇e) + Φ̈d) (5.22)

20

Assuming the estimate of the simulator inertia tensor to be accurate, eqn.(5.22) can be

rewritten in the form

0 = Ki

∫
Φedt+Kp(Φe) +Kd(Φ̇e) + Φ̈e (5.23)

using the definition

Φ̈d − Φ̈ = Φ̈e (5.24)

Based on the characteristic polynomial of eqn.(5.23), a deadbeat controller may be designed.

A deadbeat controller is a PID controller with gains chosen such that the resulting response

has zero steady state error, minimum rise and settling times, less than 2% overshoot and

undershoot, and very high control signal output [12]. The characteristic polynomial of

eqn.(5.23) is

0 = Ki +Kps+Kds
2 + s3 (5.25)

The desired characteristic equation is

0 = 1 +
α2s

wn
+
α1s

2

w2
n

+
s3

w3
n

(5.26)

where the constant α values are found by table look-up and ωn is the closed loop natural

frequency. From this requirement, the gains are found as

Ki = w3
n (5.27)

Kp = w2
nα2 (5.28)

Kd = wnα1 (5.29)

Therefore, based on the desired closed loop natural frequency, the gains Kd, Kp, Ki are

defined. Note that eqn.(5.25) is based on a continuous controller. Since the sampling time

of the controller is fast relative to the system dynamics, this approximation is justified for

the discrete controller being used.

21

5.3 Quaternion Error

The IMU outputs the angular position of the simulator relative to the inertial frame.

An expression for the angular position error between the desired and body frames is needed

for the controller. Because Euler angles are limited by singularity points and perform poorly

for large angle maneuvers, quaternions (Euler-Rodrigues symmetric parameters) were used

to describe the state error. Instead of using three rotations as in Euler angles, quaternions

represent an orientation as just one rotation. This development follows the explanation

shown by Sidi [5]. A quaternion may be defined as

q =

êx sin(θ2)

êy sin(θ2)

êz sin(θ2)

cos(θ2)

(5.30)

where θ is the magnitude of the rotation between frames and êi are unit vectors describing

the frame which the orientation is relative to. The first three elements of a quaternion can

be interpreted as the vector portion −→q , while the fourth element is the scalar portion q4.

A quaternion represents the rotation from one reference frame to another. The conjugate

of the quaternion is defined as

q∗ =

−êx sin(θ2)

−êy sin(θ2)

−êz sin(θ2)

cos(θ2)

(5.31)

The conjugate of a quaternion represents the opposite orientation or rotation. The result

of the quaternion multiply operation between two quaternions can be interpreted as the

rotation between the two sets of axes. As such, the rotation of the current position and to

the desired position can be written as

q′′ = q ⊗ q′ (5.32)

22

The quaternion multiply function may alternatively be implemented in matrix multiplica-

tion form as

q′′ = q ⊗ q′ =

q′4 q′3 −q′2 q′1

−q′3 q′4 q′1 q′2

q′2 −q′1 q′4 q′3

−q′1 −q′2 −q′3 q′4

q1

q2

q3

q4

(5.33)

The objective is to find an expression for the angular position error. The error is

defined as the rotation from the simulator frame into the desired frame. Equation (5.34)

shows how this quaternion error is found.

q∗s ⊗ qd = qe (5.34)

This equation may be interpreted as meaning the orientation of the inertial frame in the

simulator frame quaternion multiplied with the orientation of the desired frame in the

inertial frame results in the orientation of the desired frame relative to the body frame.

A useful trigonometric identity is

sin(θ/2) cos(θ/2) =
1

2
sin(θ) (5.35)

From this, and based on eqn.(5.30) the position error can be unwrapped as

Φe = 2−→qeqe4 = 2ê sin(θ/2) cos(θ/2) = ê sin θ (5.36)

This result shows the significance of the quaternion error. From this definition, it follows

that ∫
Φedt =

∫
2−→qeqe4dt (5.37)

At this pont, Φ can be more concisely described as

Φ = 2−→qsqs4 (5.38)

23

Because the angular velocity output of the IMU is in terms of the body frame, the

angular velocity error term did not need be transformed. The error of angular velocity is

simply

Φ̇e = Φ̇d − Φ̇ (5.39)

and the acceleration error is

Φ̈e = Φ̈d − Φ̈ (5.40)

5.4 Trajectory Generation

Trajectory generation determines suitable Φd, Φ̇d, and Φ̈d values based on the desired

final positions. A list of desired final angular positions and times are read in as a .txt

file. Based on these desired final positions, the trajectory generation provides the values of

position and its derivatives as a function of time.

The trapezoidal trajectory being developed is limited by a specified constant maximum

velocity (Vmax) and acceleration (Amax). Figure (5.1) shows an example of a trapezoidal

trajectory.

Fig. 5.1: Example of a trapezoidal trajectory

24

In this figure, the maximum acceleration is in effect for the first two seconds. The

next three seconds are at Vmax and no acceleration occurs. From five to seven seconds, the

maximum deceleration is in effect. Based on the magnitude of the position error and Amax,

the trajectory generator may never even reach Vmax.

The desired position needs to be reformed into a quaternion in order to find the quater-

nion error. This quaternion trajectory is shown in eqn. (5.41).

qtraj =

êx sin(θd/2)

êy sin(θd/2)

êz sin(θd/2)

cos(θd/2)

(5.41)

The unit vector ê and θd of this quaternion have been extracted from the quaternion q∗s ⊗

qreference. The trapezoidal trajectory is generated relative to the start position of the

trajectory. Because of this, a quaternion multiply can be used to find the desired quaternion

as shown in eqn.(5.42).

qd = q∗traj ⊗ qstart (5.42)

where qstart is the simulator quaternion qs at the beginning of the maneuver.

5.5 External Motor Controller

In addition to the internal servo controller of the motor, another controller was designed

for the dynamics of the motor. The servo controller requires a rate command instead of a

torque command in the closed loop operating mode. Based on the motor model, the wheel

velocity for each wheel can be found in terms of the desired toque as shown in eqn.(5.43).

Ω̇ =
1

τ
(Ωcmd − Ω) (5.43)

25

where Ωcmd is the command which reaches the servo controller. Taking the Laplace trans-

form of eqn. (5.43) and rearranging leads to the transfer function

Ω̇

Ωcmd
=

s

τs+ 1
(5.44)

The external servo controller shown in fig.(5.45) was designed with the purpose of canceling

the motor dynamics.

Ωcmd

Ωd
=
τ̂ s+ 1

s
= τ̂ +

1

s
(5.45)

Note that Ωd is actually the desired angular acceleration for this choice of controller. Thus,

using this external servo controller before the motor will result in the wheels reaching the

desired angular acceleration based on the motor model. This means that only multiplying

by the desired acceleration and an integration of the desired acceleration are required to

compensate for the motor dynamics. This integration operation was performed discretely

using trapezoidal integration. The motor model does not take into account any nonlinear

affects of the motor. The resolution error of motor rates may cause significant error when

using trapezoidal integration and degrade the external servo controller performance. The

motor reaching the maximum torque it can provide may also limit this controller perfor-

mance.

5.6 Controller Implementation

The output of the IMU and the Hall sensors are used by the controller to determine

the desired wheel velocities Ωcmd. Figure (5.2) illustrates the structure of the controller

with respect to the sensor outputs.

26

Fig. 5.2: Closed loop system structure

The reference is the input specified by the user in the form of a text file which is read

in at runtime. The references are quaternion positions and times to begin approaching the

positions. The Euler angles output by the IMU are transformed into a quaternion by the

controller. The resulting quaternion is used by the trajectory generator once per reference

to determine the desired position trajectory to reach the reference position based on the

current position. The simulator quaternion and the desired position are used at each time

step to determine the position error.

5.7 Linear System Approximation

Under the control law with feedback linearization, the system can be simplified. The

state space representation of the uncontrolled linearized system treated as a continuous

27

system is given by eqns.(5.46-5.51).

x =

Φ̇

Φ∫
Φdt

Ω

(5.46)

ẋ = Ax+BΩd (5.47)

y = x (5.48)

(5.49)

A =

[0] [0] [0] −J−1s JwwG/τ

[I] [0] [0] [0]

[0] [I] [0] [0]

[0] [0] [0] − 1
τ [I]

(5.50)

B =

J−1s JwwG/τ

[0]

[0]

1
τ [I]

(5.51)

This model of the plant neglects any amount of nonlinearities which are not canceled by

feedback linearization. Also, the wheel velocities required for feedback linearization are not

accounted for by this model. A classical representation of this plant with a PID controller

is shown in fig.(5.3).

28

Fig. 5.3: Continuous linear approximation of controlled system dynamics

5.8 Nonlinear System Approximation

The nonlinear system model shown in fig. (5.4) is based on eqn.(5.15). This figure

shows the nonlinear system dynamics with a controller that implements PID and feedback

linearization control.

Fig. 5.4: Continuous nonlinear approximation of controlled system dynamics

Note that if the desired angular velocity and its derivative are zero, the closed loop

transfer function is

Φ

Φd
=

sKp +Ki

s3 +Kds2 + sKp +Ki
(5.52)

The analytic response resulting for this case can be used to compare with the physical

system response.

29

If
∫

Φddt, Φd, Φ̇d, Φ̈d are all specified the closed loop transfer function is

Φ

Φd
=
s3 +Kds

2 + sKp +Ki

s3 +Kds2 + sKp +Ki
= 1 (5.53)

This means that the simulator should exactly track the desired trajectory based on this

model. This model is only an approximation of the system dynamics however and the

simulator will not exactly track the desired trajectory in actuality.

30

Chapter 6

Testing

6.1 System Properties

All testing results use the data presented unless otherwise stated.

Table 6.1: Table of testing properties

Property Value

Wheel inertia Jw 1.53e−4kgm2

Expected motor time constant τ̂ 0.0s

Motor filter cutoff frequency 20Hz

External gyro rate filter cutoff frequency 20Hz

Sampling period 20ms

The moment of inertia of the simulator and reaction wheels is

JT =

2.99e−2 −1.04e−5 9.23e−5

−1.04e−5 3.03e−2 1.84e−6

9.23e−5 1.84e−6 4.66e−2

 kgm2 (6.1)

This moment of inertia was estimated through a computer aided drafting software. Since

some hardware changes to the simulator have been made and not accounted for, this is a

very approximate estimate.

6.2 IMU Performance

For this test, the simulator was set on a stand so it could not move, even if the wheels

were set to run. The gyros were calibrated using internal IMU software before this test.

The goal of this test was to evaluate the performance of the IMU. Figure (6.1) and fig.(6.2)

show the angular position and velocity respectively for a test where the table was stationary

and the motors were not commanded to run.

31

Fig. 6.1: Euler angles of a fixed simulator test

32

Fig. 6.2: Angular velocity of a fixed simulator test

These figures show the output from the IMU; no external filtering is shown. While the

gyro rate sensors stayed close to zero, the position in yaw continued to drift. The drift rate

of yaw is 1.9deg./min.. Based on the data in fig.(6.1) and fig.(6.2), table (6.2) shows the

standard deviation and mean of the measured variables.

Table 6.2: Table of mean and standard deviation for drift test

Mean Std. dev.

Roll 4.01deg. 2.79e−2deg.

Pitch −8.50e−1deg. 2.86e−2deg.

Φ̇x 6.64e−2deg. 2.14e−1deg.

Φ̇y −6.01e−2deg. 2.17e−1deg.

Φ̇z 2.68e−2deg. 1.99e−1deg.

33

The mean of the gyro rates is not zero. Based on testing before and after gyro calibra-

tion, it can be inferred that the majority of the drift is due to the fact that the IMU uses

the gyro readings to get a better estimate of position. Gyro bias error effectively causes the

estimate of position to drift.

Additional error may be a result of the magnetic fields of electronics interfering with

the magnetometer. Because motors can produce magnetic fields of significant strength, tests

with the motor given a command were performed. However, these tests had similar results

to tests without a command to the motor. While these tests lasted only 50 seconds, it is

possible that affects of the change in temperature on the sensors may be seen after a longer

amount of time. This source of error is likely minimal since the IMU uses temperature

sensors to compensate for this effect.

6.3 Motor Response

The dynamics of the motors can be significant in system control. Because of this, a

dynamic model of the motor including the servo controller was needed. For this test, the

simulator was again set on a stand so the simulator would not move. The speed of a motor

was commanded to reach a speed of 200rad/s. Figure (6.3) shows the response of the motor

given this step input and the expected response using the developed motor model.

34

Fig. 6.3: Unfiltered motor response with step input

This response shows the motor model developed tracks the actual response. The motor

transfer function was approximated as being first order with a time constant of 0.1s and a

unity gain.

During testing it became apparent that the cancellation of the motor dynamics by the

external motor controller caused significant steady state oscillations. For a closer look at

these oscillations, consider fig.(6.4) and fig.(6.5).

35

Fig. 6.4: Angular velocity of the simulator using τ̂ = 0.1

Fig. 6.5: Velocity of wheel 0 using τ̂ = 0.1

36

These figures are taken from the same test a stationkeeping test using τ̂ = 0.1. The

angular velocity of the simulator oscillates with a frequency of about 4Hz. Figure (6.5)

shows the oscillation of the momentum wheels having a frequency of about 4Hz with about

the same phase as the negative angular rates. The angular rates are 90◦ out of phase with

the angular acceleration of the simulator. The wheel speeds are 90◦ out of phase with the

wheel torques. Thus, the wheels attempt to counter the higher angular acceleration. From

this it can be concluded that the oscillations are not effectively dampened by the controller.

This could be attributed to the expected motor time constant τ̂ being too small compared

to the sampling time. Latency of the Hall sensors could be the cause. It is also possible

that dynamics of the servo motor controller which weren’t accounted for affect the response.

Because of these oscillations, τ̂ = 0 was used for testing.

6.4 Stationkeeping

The simulator was set on the air bearing and free to move. Based on the way the

simulator oscillated about its center of rotation, the simulator table was balanced by tight-

ening the balancing screws. A commanding computer was attached to the BB through an

ethernet cable. A command to execute the code after an amount of time was given and the

commanding computer was detached. For safety, a maximum wheel speed was set by the

controller code.

For the first stationkeeping test, a controller natural frequency of 1rad/s was selected.

Only one reference position was used so that, after the initial response, the steady state

behavior could be observed. Figure (6.6) shows the position of the simulator quickly converg-

ing to the reference position, having a period of accurate pointing, and finally succumbing

to momentum saturation. The reason for the divergence in position near the final time is

that the wheels are reaching their maximum allowed speeds near 110s. Figure (6.7) shows

the commanded and measured wheel velocities. Near 110s it is clear that the wheel is not

reaching the desired velocities but only reaching the maximum allowed velocity.

37

Fig. 6.6: Euler angles of the simulator for stationkeeping test with ωn = 1rad/s

