
2017
Fellowship Symposium, 8 May 2017, Weber State University

Implementation of OpenFOAM for Inviscid,
Incompressible Aerodynamic Flows

Jackson T. Reid∗ and Douglas F. Hunsaker†

Utah State University, Logan, Utah, 84321, USA

Abstract

This paper is the description of the Utah State University AeroLab’s Aerodynamic
Center Analysis Tool (AeroCAT), which is an implementation of the OpenFOAM CFD
toolbox. AeroCAT takes in a user input file, generates a mesh, and solves a steady,
inviscid, incompressible flow, automatically repeating the process for a range of angles of
attack. It then processes the results to predict the wing’s span-wise locus of aerodynamic
centers. The mesh generator used in this tool is GridX, developed by a former PhD
student at USU, and the CFD solver is OpenFOAM.

Nomenclature

x Axis from leading to trailing edge of
the root airfoil

y Axis perpendicular to root chord line in the
root airfoil plane

z Axis span-wise along a wing, perpendicular
to both the x and y axes

i Cell index from wing root to tip
j Cell index around each cross-section
k Cell index radially from wing to boundary
α Angle of Attack, deg or rad
cref Length of the root airfoil’s chord
x̄ac x location of the aerodynamic center
ȳac y location of the aerodynamic center
Cm,ac Coefficient of moment about the aero-

dynamic center
CN Coefficient of the normal force (y direction)
CA Coefficient of the axial force (x direction)
Cm Coefficient of moment about the leading edge
CN,α Derivative of CN with respect to α
CA,α Derivative of CA with respect to α
Cm,α Derivative of Cm with respect to α
CN,α,α Derivative of CN,α with respect to α
CA,α,α Derivative of CA,α with respect to α
Cm,α,α Derivative of Cm,α with respect to α

∗Graduate Research Assistant, Mechanical & Aerospace
Engineering, 4130 Old Main Hill

†Assistant Professor, Mechanical & Aerospace Engineering,
4130 Old Main Hill

I. Introduction

The AeroLab at Utah State University (USU) is
dedicated to discovering and publishing fundamen-
tal aerodynamic principles. 1 As such, we actively
work to develop open-source tools that will help us,
and others, in aerodynamic design, analysis, and op-
timization. In order to perform this research and de-
velopment, it was necessary to both have a means to
gather data—to observe trends and create empirical
equations—and have a manner in which to validate
potential flow and other aerodynamics models devel-
oped by the lab. To this end, the Aerodynamic Cen-
ter Analysis Tool (AeroCAT) was developed. Initially
designed to run CFD simulation of steady, inviscid,
incompressible flow over wings and airfoils, then cal-
culating the span-wise locus of aerodynamic centers,
AeroCAT is also capable of providing spanwise lift
distribution data to validate our aerodynamic mod-
els against.

II. Tool Overview

AeroCAT begins with a .json input file that con-
tains mesh specifications, and simulation settings. Be-
cause this tool is meant to be user friendly and sim-
ple to run, not all possible settings are available in
this input file, but rather are hard-coded into the
source script. AeroCAT takes in the values from the
input file and generates a mesh using GridX. Then,
that mesh is used in an OpenFOAM simulation of the

1AeroLab Mission Statement as seen on aero.usu.edu

1 of 17

Utah NASA Space Grant Consortium 2017

flow. The forces and moments on the airfoil or wing
are recorded by OpenFOAM automatically to be used
in post-processing routines. The process is then re-
peated for the next angle of attack, and continues
throughout the range of angles of attack specified by
the user.

A new mesh is generated for each angle of attack
in the desired range because GridX uses a trailing
edge streamline approximation to position the cells
behind the aerodynamic surface. Once all angles of
attack have been simulated and all the data collected,
AeroCAT post-processes the collection, calculating
the locus of aerodynamic centers and lift distribu-
tions, plotting them for easy visualization. The spe-
cific details of this process, as well as a description of
all the setting options, is found in the sections here-
after.

AeroCAT has been developed using a Linux oper-
ating system and, as such, the following descriptions
will be have only been tested using Linux. That be-
ing said, it is not expected that there be major issues
trying to run AeroCAT on other operating systems.

II.A. Installation and Input Files

The installation AeroCAT is performed in two stages.
First OpenFOAM must be installed by following the
instructions on its website. 2 The next step is to
run the shell script “Compile.sh”, which compiles the
FORTRAN files needed for GridX and the post pro-
cessing subroutines, creates the needed executables,
and sets the necessary permissions for the Python
scripts. The installation is then complete. 3

AeroCAT should be installed in a location eas-
ily accessible to the user and run in a terminal with
the OpenFOAM system variables set [1]. As it runs,
AeroCAT creates a folder in the installation direc-
tory containing the mesh, configure files, and results
of each project. OpenFOAM requires certain system
variables to be set before runtime, and thus AeroCAT
cannot be run without those variables.

When running AeroCAT, the user is first asked
whether there is an existing input file to be used. If
the user has an input file to use, it is specified. On the
other hand, AeroCAT will walk the user through the
creation of an input file that is then saved and can be
reused or edited for future projects. An example of
an AeroCAT input file is included in the Appendix.

AeroCAT uses a .json format for its input file so
while the order of the elements is not important, in
general all elements should be included in the input
file to avoid runtime errors. The name of the in-
put file (exluding the .json extension) becomes the

2As of 21 April 2017: www.openfoam.com/download
3To generate plots while running GridX as a stand alone

program, PlotMTV must be installed as well.

project name off which all other files and folders are
named. For example, if the input file were named
“Test1.json”, AeroCAT would create (or write over)
a folder named “Test1”, and, subsequently, save the
OpenFOAM simulation files for an angle of attack α
in a folder named “Test1_α”.

The specific elements of the AeroCAT input file
will be described in more detail in their corresponding
sections further down.

II.B. Mesh Generator

The mesh generator used by AeroCAT, GridX, was
developed by Professor Warren Phillips and Nick Al-
ley during Nick’s PhD work here at Utah State. It is
useful due to the range of airfoils and finite wings it is
capable of generating, as well as the user’s ability to
adjust the cell spacing. The original version of GridX
did not have compatibility with OpenFOAM, so part
of the development of AeroCAT was the addition of
functions that will produce the appropriate mesh and
case files to run an OpenFOAM simulation.

II.B.1. Stand-Alone Walk-Through

Using AeroCAT, GridX is run automatically from the
main AeroCAT script. However, the following is a
description of GridX being run as a stand-alone pro-
gram. This will be of use to the reader, as it will
demonstrate what is happening in the background of
AeroCAT and provide insight as to how to modify
the mesh settings in a more advanced way.

GridX is initiated by running the executable “In-
ner.out” in a directory that contains a GridX input
file,“*.iGridX”. GridX asks for the name of the input
file, without extension, and then reads that file, cre-
ates an airfoil based on the settings read in, calculates
the trailing edge streamline, and then displays the
“MENU”. This menu shows all the settings that are
currently active in GridX, including: output file for-
mats, flight state information, airfoil and wing data,
and grid properties. These options can be modified
by the user by entering the code displayed next to the
option and then following the instructions displayed
in the terminal.

Once all the options are set as desired, the code
“gg” is entered to begin the grid generation. GridX
starts by creating splines of the airfoil, trailing edge
streamline, and outer boundary. These splines will be
used by the generator as boundary points to smooth
the mesh algebraically or by an elliptic partial differ-
ential equation. This smoothing ensures that the of
a cell gradually grows or shrinks as it transitions to
the next cell. In the case of a 3D simulation, GridX
starts at the symmetry plane, which corresponds to
the root airfoil of the wing, and generates that pla-

2 of 17

Utah NASA Space Grant Consortium 2017

nar grid. For the 2D case, this is the end of the grid
generation. In both the 3D and 2D cases at this time
GridX asks the user if he or she would like to view a
plot of the mesh, first of the boundary layer grid and
then of the transition and full planar grids.

GridX then generates and connects planar grids
span-wise along the z direction. These grids are par-
allel (or at least very close) to one another until the
endcap of the wing is reached. Sweep and dihedral
in the wing is handled by a translation of these par-
allel grids in either the y or x directions. Once the
endcap is reached, the planar grids begin to fold in
half about the leading and trailing edge streamlines
of the tip airfoil. The final planar grid is folded com-
pletely in half such that the points that make up the
top and bottom halves are identical. The duplicated
points along this plane are consolidated during the
writing of the OpenFOAM mesh files.

A similar duplication of points occurs for the points
that lay along of the trailing edge streamlines behind
the wing. Here, in the “C” type grid that is the de-
fault in AeroCAT, the cells directly above and below
the trailing edge streamline share a face that would
normally be an external boundary face but, because
of the folded nature of the C-grid, has become inter-
nal. This C-grid style of mesh has been visualized in
Figure 1.

Figure 1. Visualization of a “C-grid” mesh generated by
GridX, showing the wing, endcap, and symmetry plane.

Having generated the points of the mesh, GridX
begins writing the output files specified by the GridX
input file or in the “Menu”. Depending on the input
file settings, GridX may ask if the user would like to
generate additional output files. After all output files
have been generated, GridX displays the grid size in
terms of points in the i, j, and k directions, and the
total number of points before any point consolidation.
Finally, before the program ends, the user has one last
opportunity to plot the finalized mesh.

II.B.2. Description of AeroCAT Input File Options
for GridX

As mentioned previously, the AeroCAT input file con-
tains only a portion of the input settings available in
GridX’s input file (examples of each can be found in
the Appendix). The AeroCAT input file options that
correspond to the GridX portion of the program are:

• “AR” , Aspect Ratio of the 3D wing (3D grids
with a symmetry plane result in half of a full
wing of aspect ratio “AR”).

• “Chord” , length of the root airfoil chord, in
meters.

• “Dihedral” , angle of dihedral in degrees (a pos-
itive value results in dihedral, whereas a nega-
tive value results in anhedral).

• “flap_yn” , a “y” or “n” character denoting whether
a flap deflection is to be generated (2D meshes
only).

• “flap_deg” , degrees of flap deflection (if flap_yn
is “y”). A positive value indicates downward de-
flection.

• “flap_hinge” , location of the flap’s point of
rotation (1 = Upper Surface; 2 = Lower Sur-
face; 3 = Center)

• “flap_len” , length of the flap as a fraction of
the chord length (‘Flap-Length’/’Chord-Length’).

• “joukowski_yn” , a “y” or “n” character denot-
ing whether a Joukowski airfoil is to be gener-
ated (if “n”, a NACA series airfoil is generated.
See “NACA”).

• “jk_thick” , maximum thickness of a Joukowski
airfoil as a fraction of the chord length (‘Max-
Thickness’/’Chord-Length’).

• “jk_lift” , the target coefficient of lift of a Joukowski
airfoil at α = 0◦.

• “Mesh_density” , keywords “fine”, “medium”,
or “coarse” that specify the density of the mesh.
Where a “fine” mesh is initially generated, then
every other internal node is removed for a “medium”
mesh, and again every other internal node is re-
moved for a “coarse” mesh, as specified.

• “Mesh_dim” , dimension of the mesh (“2”-D
or “3”-D).

• “NACA” , specification of a four digit NACA
series airfoil (XXXX).

3 of 17

Utah NASA Space Grant Consortium 2017

• “Semi_span” , length of the 3D wing from cen-
terline to tip along the z axis, in meters.

• “Sweep” , angle of sweep in degrees (a positive
value results in a swept back wing, whereas a
negative value results in a wing with forward
sweep).

• “TR” , Taper Ratio between the length of the
root chord length and the tip chord length (”Tip-
Chord”/“Root-Chord”).

• “Washout” , angle of washout in degrees (a pos-
itive value results in a tip with lower α than the
root, whereas a negative value results in a tip
with a higher α).

• “chord_bl3ff” , distance between the bound-
ary layer cells and the outer boundary, in num-
ber of chord lengths.

• “node_airfoil” , number of nodes on the airfoil
surface.

• “node_behind” , number of nodes located along
the trailing edge streamline behind the wing.

• “node_bl2ff” , number of nodes located be-
tween the boundary layer and outer boundary
above, below, and in front of the wing.

• “node_boundary” , number of nodes in the
boundary layer.

• “node_endcap” , number of span-wise nodes
on each half of the endcap (“node_endcap” on
top, and “node_endcap” on bottom).

• “thickness1_bl” , thickness of the first bound-
ary layer cell, as a fraction of the root chord
length (measured perpendicular to the wing/air-
foil surface).

The settings “AoA_max” and “AoA_min” in the
AeroCAT input file dictate the range of angle of at-
tack, in degrees, for which simulations will be run, so
they also indirectly correspond to GridX input val-
ues.

There are many other settings and ways to cus-
tomize a mesh using GridX, but all of the most nec-
essary settings are available through the AeroCAT
input file. If there is an occasion that calls for the
modification of settings not found in that file (e.g. if
cells are crossing and the right and left hand influ-
ence parameters need adjusting), the user may man-
ually modify the default values found in the “Aero-
CAT_Main.py” script.

II.C. OpenFOAM

As was done for GridX above, this section will be a
discussion of OpenFOAM as a stand-alone program.
OpenFOAM runs its simulations based of various files
found in subdirectories of the main “case” directory,
as shown in Figure 2. These files are to be discussed
in the following sections in the context of their use
in AeroCAT. In these descriptions, the headers of
each file are not mentioned, but they are included
in the example files found in the Appendix. More
information can be found in the OpenFOAM users
manual [1].

Running OpenFOAM is simple once it is prop-
erly installed and the input files have been created
(see below). In a terminal with the OpenFOAM sys-
tem variables set, navigate to the “case” directory and
run the command “simpleFoam” (or whichever solver
you choose). Alternatively, from any directory in a
terminal, the command “simpleFoam -case <path-to-
case-directory>” may be run.

Figure 2. The file structure of an OpenFOAM case [1].

II.C.1. System Subdirectory

This directory includes all the information about the
solvers, tolerances, and parameters dealing with the
execution of the case. The following is a description
of the settings used in the cases run by AeroCAT
(i.e. steady, incompressible, and inviscid). Examples
of these files are found in the Appendix, but for a
complete description of all parameter and solver op-
tions, search OpenFOAM’s User Guide [1].

The “controlDict” file stores the information about
start and stop time, output file frequency and format-
ting, and post-processing functions to be run during

4 of 17

Utah NASA Space Grant Consortium 2017

execution. The following is a list of the needed en-
tries for this file and a brief description of each. An
example “controlDict” file is located in the Appendix.

• “application” , the name of the solver to be
used for the case. “simpleFoam” will be used
for AeroCAT.

• “startFrom” , the time (or pseudo-time in steady
flows) at which the solver should begin. The de-
fault is “startTime” (described below), though
“firstTime” and “lastTime” are options. These
two options are based on the time subdirecto-
ries found in the main “case” directory. “first-
Time” begins the simulation from the informa-
tion in the earliest time subdirectory, whereas
“lastTime” starts the solver with the data in the
last time subdirectory. Thus, to restart a solver
from where it left off, the “lastTime” option is
selected.

• “startTime” , the time at which the solver should
begin if the “startFrom startTime” option is se-
lected. The default for this field is “0”.

• “stopAt” , the time at which the solver should
end. The option used by AeroCAT here is “end-
Time”. For more options see the User Guide [1].

• “endTime” , the time at which the solver should
end when the option “stopAt stopTime” is se-
lected.

• “deltaT” , the time step (or pseudo-time step)
of the simulation.

• “writeControl” , the units assigned to “writeIn-
terval” (described below), controlling the fre-
quency at which data is written. The default
is “timeStep”, which sets the units to number
of time steps (as defined by “deltaT”). Other
options include “runTime”, for units of seconds
of simulated time, “cpuTime”, for units of sec-
onds of CPU time, and “clockTime”, for units
of seconds of real time.

• “writeInterval” , the frequency at which data
is written to a new time subdirectory through-
out the simulation. It has units that are defined
by “writeControl”.

• “purgeWrite” , the number of time subdirecto-
ries to remain in the “case” directory, excluding
the starting time subdirectory. For example, if
“purgeWrite” is equal to five, OpenFOAM will
cyclically delete the oldest time subdirectory
throughout the course of the simulation, main-
taining the five most recent (and the initial)
subdirectories. The default for “purgeWrite” is
zero, meaning all time subdirectories are kept.

• “writeFormat” , the specification of “ascii” or
“binary” format for the output files.

• “writePrecision” , the number of significant
figures used in the data files.

• “writeCompression” , the “on” or “off” speci-
fication of whether the files are compressed to
a “.zip” folder when written.

• “timeFormat” , the format for naming the time
subdirectories. The options include: “fixed”
(x.xxxxxx), “scientific” (x.xxxxxxexx), or “gen-
eral” which changes between “fixed” and “gen-
eral” depending on the scientific exponent of the
time value and the value specified by “timePre-
cision”.

• “timePrecision” , the maximum number of dig-
its after the decimal point in time subdirectory
names.

• “runTimeModifiable” , the switch that, if
“true”, tells OpenFOAM to re-read the input
files at the beginning of each time-step, allow-
ing for in-simulation modification of parameters
and values.

After the above entries, there is an optional “func-
tions” directory. In the example found in the Ap-
pendix there are two entries, “#includeFunc resid-
uals” and “#includeFunc forceCoeffsIncompressible”.
These entries are run-time functions that calculate
and output residual and force (lift, drag, and mo-
ment) coefficients, respectively, during the simula-
tion. The result is a new subdirectory, “postProcess-
ing”, in the “case” directory that contains a data file
for each function storing the progression of the de-
sired values throughout the course of the simulation.
There are many additional functions that may be in-
cluded here, and the reader can find a list of these in
OpenFOAM’s User Guide [1].

The “fvSchemes” file houses the definitions for
the numerical schemes to be used to calculate each
part of the underlying equations. An example of this
file may be found in the Appendix. Again, there are
many options for each of these entries, but those dis-
played here are the ones that have been found to work
best for “simpleFoam” in the applications of Aero-
CAT.

The “default” entry in each category is the setting
used if nothing is set explicitly below it. In these
schemes, “Gauss” refers to finite volume discretiza-
tion of Gaussian integration. This discretization re-
quires values be interpolated from the cell centers to
the cell faces [1]. In the schemes used here, “linear”

5 of 17

Utah NASA Space Grant Consortium 2017

interpolation, or central differencing, is used almost
exclusively.

• “ddtSchemes” , the calculation of derivatives
with respect to time. Because this is a steady
simulation, “steadyState” is used and time
derivatives are set to zero.

• “gradSchemes” , the calculation of the gradi-
ent, “∇”. “Gauss linear” is the default used here.

• “divSchemes” , the calculation of the diver-
gence, “∇·”. “Gauss linear” is the default, but
“bounded Gauss linearUpwind grad(U)” is spec-
ified for the “div(phi,U)” term (∇ · (φU) =
∇ · (ρUU)).
In this scheme, the “bounded” refers to the treat-
ment of the ∇ ·U term the material derivative.
For incompressible flows, this term equals zero
at convergence, but may not equal zero before
convergence is reached. So, the “bounded” term
in this scheme solves for the∇·U term through-
out the simulation.
This scheme also uses “linearUpwind grad(U)”
instead of “linear”. The “linearUpwind” term
calls for a weighted interpolation scheme that
favors upwind values. The “linearUpwind” op-
tion requires that the discretization of the ve-
locity gradient be specified, so the “grad(U)”
term is referencing the discretization scheme for
the velocity specified under “gradSchemes”. (In
this case it takes on the “default” “gradSchemes”
value.) [1]

• “laplacianSchemes” , the calculation of the
Laplacian, “∇2”. “Gauss linear corrected” is
used for this scheme. Here, the “corrected” term
is a “snGradScheme” scheme and will be de-
scribed below.

• “interpolationSchemes” , the calculation of
values at a cell face through interpolation of
cell-centered values. The “linear” interpolation
scheme is used.

• “snGradSchemes” , the calculation of the gra-
dient, ∇, normal to a cell face. Here a “cor-
rected” scheme is used. This scheme adds a cor-
rection that takes into account any non-ortho-
gonality of the cells in the mesh.

The “fvSolution” file specifies the solver type for
each variable, as well as the error tolerances, number
of corrector steps, and relaxation factors. An example
of a “fvSolution” file is found in the Appendix, and
a complete list of solvers and settings may again be
found in the OpenFOAM User Guide [1].

The first dictionary of this file, “solvers”, specifies
the linear solver to be used to solve each discretized
equation—in this case, “U” and “p”—as well as the
absolute and relative tolerances of the solvers. Ae-
roCAT uses the preconditioned conjugate gradient,
“PCG”, solver with a diagonal incomplete Cholesky,
“DIC”, preconditioner for the pressure, and a precon-
ditioned bi-conjugate gradient, “PBiCG”, solver with
a diagonal incomplete LU, “DILU”, preconditioner for
the velocity. Two different solvers are used because of
the symmetric and asymmetric nature of the pressure
and velocity matrices, respectively.

For all solvers, “tolerance” specifies the absolute
tolerance that the solver should use as an exit condi-
tion, and “relTol” dictates a relative tolerance based
on the residual of the value when it first enters the
solver. In the example file in the Appendix, the “rel-
Tol” values have been set to zero, meaning that the
linear solvers for pressure and velocity will only exit
once the absolute tolerance is achieved, and not be-
cause of a significant relative decrease. There is also a
term, “nSweeps”, that specifies the minimum amount
of runs through a solver that should occur each time
the solver is called. The example file has this term
set to “2” for the velocity solver, and it is not defined
for the pressure solver.

After the “solvers” section, the settings of the SIM-
PLE (or other) algorithm are specified and the “re-
laxationFactors” are set. The SIMPLE algorithm for
incompressible flow requires “pRefCell” and “pRef-
Value” to define the location and value of the ref-
erence pressure. Because of the mesh structure of
AeroCAT, the zeroth cell is along an outer bound-
ary and thus is used as the location of the reference
pressure. And, because it is only the change in pres-
sure that is of interest, the reference value for the
pressure is set to zero. The “residualControl” subsec-
tion is where the final convergence criteria is defined.
There must be a value defined for “p” and “U” that
defines when the simulation has converged.

The SIMPLE algorithm may be adjusted to as-
sist convergence. One way is by turning on the “con-
sistent” switch (as seen in the example file), which
changes the algorithm to use the SIMPLEC pressure-
velocity coupling method. There is also an option to
run additional corrections steps on the SIMPLE al-
gorithm to adjust for any non-orthogonality in the
cells, specified by “nNonOrthogonalCorrentors”. Fi-
nally, the “relaxationFactors” section of this file allows
the user to set the the weighting that the SIMPLE
algorithm puts on each new iteration versus the pre-
vious iteration. The syntax for setting these values is
seen in the example file.

Finally, the system subdirectory has the “force-

6 of 17

Utah NASA Space Grant Consortium 2017

CoeffsIncompressible” file (not shown in Figure 2)
that contains the definitions of the lift and drag di-
rections, the patches over which the forces should be
calculated, and the reference values. As a note, some
of the functions, like “residuals” mentioned above,
do not require any additional information. But oth-
ers, like “forceCoeffsIncompressible”, require that ad-
ditional information be stored in the files similar to
this one in the “system” subdirectory. An example of
the “forceCoeffsIncompressible” file is located in the
Appendix.

II.C.2. Constant Subdirectory

The “constant” subdirectory contains a subdirectory,
“polyMesh”, with the files defining the mesh, and pa-
rameter files describing the flow. For the “simple-
Foam” solver, the files “transportProperties” and “tur-
bulenceProperties” are required.

The file “transportProperties” contains the single
line after its header:

nu [0 2 -1 0 0 0 0] 1e-6;

Where “nu” is the kinematic viscosity, ν, the brack-
eted values describe the units of ν in base units (i.e.
m2 · s−1), and the final number is the value of ν.
Because AeroCAT is not meant to model turbulent
flow, the file “turbulenceProperties” is simple as well,
containing only two lines after the header:

transportModel Newtonian;
simulationType laminar;

There are examples of both of these files in the Ap-
pendix to provide an example of the header sections.

The “polyMesh” subdirectory contains five files
that define the mesh: “points”, “faces”, “owner”, “neigh-
bour”, and “boundary”. The Appendix contains an
example of each of these files for a mesh that, for
simplicity, has only one polyhedral cell (Figure 7).
Of course, a more comprehensive description of the
mesh format may be found in the User Guide [1].

OpenFOAM meshes are unique in the fact that
they do not require a prescribed cell shape. Each
cell is described by an arbitrary number of faces that
are each defined from an arbitrary number of points.
Each face is part of two cells (or a boundary), and
thus the cells are strung together through the defini-
tion of which cell is the “owner” of a face and which
is the “neighbour” (or “boundary”). All of this infor-
mation is contained in the files mentioned above and
described below.

The “points” file begins, after the header, with
an integer announcing the number of points in the
mesh. This is followed by a list of x, y, z coordinate
values enclosed in parenthesis. OpenFOAM assigns

numbered IDs to these points based on the order they
are found in this file, beginning with “0”.

The “faces” file also begins with an integer de-
scribing the number of entries in the file. It is then
followed by a list of cell face descriptions that begin
with an integer telling the number of points used in
the face description followed by the list of the point
IDs that form the face. The order of the points is
important, they must be ordered such that the face
normal vector is pointing out of the cell—from the
cell with the lower numbered ID, the “owner”, into
the cell with the higher ID number, the “neighbour”.
The normal is defined using the Right Hand Rule,
such that if one were to be looking at the face from
inside the owner cell, the points would be listed in
the clockwise direction.

As mentioned above, the “owner” file contains a
list of the owner cells. As with the other files in this
subdirectory, this list begins by stating the number
of entries within. This number should be the same
as the number of faces that is declared in the “faces”
file. Below that, the owner cell IDs are listed in the
order that corresponds to the order of the faces in the
“faces” file. In the example in the Appendix, there
is only one cell, cell “0”, and thus it owns all seven
faces. So, the example “owner” file has a “7” followed
by a list of seven “0”s. As with the points, the cell
numbering begins with zero.

The “neighbour” file is similar to the “owner”
file. It announces the number of entries, and then it
contains the list of neighbour cells listed in the order
corresponding to the order of the faces in the “faces”
file. There is a subtle difference with the “neighbour”
file, however. For faces that form a boundary, there
is no neighbour cell, only an owner, so for these faces
the “neighbour” file may contain either a “-1”, or no
entry at all. For the latter option, all boundary faces
should be listed last in the “faces” file. Thus, while the
“faces” and “owner” files would have the same num-
ber of entries, the “neighbour” file would contain that
number minus the number of boundary faces. The
practice of listing all the boundary faces last is com-
mon due to the way that boundaries are described
in OpenFOAM, as is described in the following para-
graph.

The “boundary” file contains the definitions of
all the boundaries in the mesh. Below the header, the
number of boundaries is stated followed by the list of
boundary descriptions. Each boundary description
begins with a name to identify the boundary, followed
by the “type” of boundary, the number of faces that
form that boundary (“nFaces”), and the ID of the face
in the “faces” file where the list of that boundary’s
faces begins (“startFace”). It is necessary to list the
boundary faces in the “faces” file such that all faces

7 of 17

Utah NASA Space Grant Consortium 2017

of a boundary are together. OpenFOAM recognizes
a boundary by beginning at the face with ID “start-
Face” and counts “nFaces” down the “faces” list. This
is why it is common to include all boundary faces at
the end of the “faces” file.

The “boundary” file is not where boundary condi-
tions are declared, but rather where boundary types
are assigned. The airfoil or wing boundary is a “wall”
type, meaning it should be treated as a solid wall.
Both the front and back outer boundaries are “patch”
type boundaries, meaning they are flow inlets or out-
lets. For three-dimensional simulation, the symmetry
plane is declared a “symmetyPlane” type. In order to
run a two-dimensional simulation in OpenFOAM, it
is necessary to extrude the two-dimensional mesh to a
thickness of one cell and assign the original plane and
the new parallel plane to the “empty” type. Open-
FOAM will then treat the simulation as a flow in two
dimensions. Other boundary types not used by Ae-
roCAT include “cyclic”, for repeated geometries, and
“wedge”, for axi-symmetric flows [1].

As stated above, one of the goals of AeroCAT is
the calculation of the locus of aerodynamic centers
along the span of a wing. To achieve this, the ring
of boundary faces at each span-wise location along
the wing is defined as a separate boundary. This
allows each ring to be specified individually by the
function “forceCoeffsIncompressible”, providing span-
wise force distributions on the wing. This method of
boundary definition can be seen in Figure 3.

Figure 3. A view from above of a rectangular 3D wing
defined with each span-wise ring of boundary faces as a
separate boundary. Each shade of gray represents a differ-
ent boundary patch with the endcap on the left and the
root on the right.

II.C.3. Time Subdirectories

The time subdirectories hold the start flow and bound-
ary condition information for a case. They also store
the data output by OpenFOAM throughout the sim-
ulation. For the cases run by AeroCAT, the initial
conditions are saved in the “0” time directory, and the
output results are stored in directories whose name
corresponds to the time/iteration for which the data
was calculated. For laminar “simpleFoam”, the Open-
FOAM solver used by AeroCAT, the files “p” and “U”
need to be found in the “0” subdirectory.

The “U” and “p” files found in the “0” subdirectory
initialize the velocity and pressure of the flow and

assign conditions to each boundary. Following the
header, the file begins with a “dimensions” descrip-
tion, which for velocity is “[0 1 -1 0 0 0 0]” (m1 · s−1)
and for pressure is “[0 2 -2 0 0 0 0]” (m2 · s−2). This
is followed by the term “internalField”, which is the
description of what the flow inside the domain should
initialize as. To improve convergence for the steady
flow studied by AeroCAT, the entire internal flow is
initialized to the freestream velocity and to reference
pressure. This is done by the term “uniform” followed
by the x, y, z coordinate values of the desired velocity
vector or by the scalar reference pressure value.

To set the boundary conditions in the “bound-
aryField” entry, a list of the boundary names, de-
fined in the “boundary” file, is given with a “type”
for each. In the AeroCAT implementation, the front
and back boundaries are set to “freestream” for the
velocity and “freestreamPressure” for the pressure.
These two boundary conditions calculate the flux of
the flow through the boundary and, if the flow is into
the domain, the boundary holds a fixed velocity and
pressure, but, if the flow is exiting the domain, the
boundary enforces a zero-gradient condition for both
velocity and pressure. For two-dimensional flow, Ae-
roCAT sets the “type” for the airfoil to a “slip” con-
dition to more accurately model inviscid flow and it
sets the sides to an “empty” type, as discussed above.
For three-dimensional flow, the wing and endcap are
again set as “slip” boundaries and the symmetry plane
is of type “symmetry”. Examples of both the “U” and
“p” files are located in the Appendix.

II.C.4. Description of AeroCAT Input File Options
for OpenFOAM

The AeroCAT input file options that correspond to
the OpenFOAM portion of the program are:

• “Convergence” , the value to be used in the
“residualControl” section of the “fvSolution” file.
It is the convergence criteria for the solver.

• “Sol_freq” , the value to be used for the “writeIn-
terval” term in the “controlDict” file.

• “Velocity” , the magnitude of the freestream
velocity, in meters per second.

As with GridX, “AoA_max” and “AoA_min” in
the AeroCAT input file dictate the range of angle
of attack for which simulations will be run, so they
indirectly correspond to OpenFOAM input values.

II.D. Post-Processing

With the mesh generated and the simulation run, Ae-
roCAT executes several post-processing routines to

8 of 17

Utah NASA Space Grant Consortium 2017

calculate the aerodynamic center of an airfoil—or lo-
cus of aerodynamic centers along a wing—and gen-
erate plots of the results. AeroCAT first reads the
post-processing data files that result from the func-
tions “residuals” and “forceCoeffsIncompressible”, de-
scribed previously. It compiles all this data into sev-
eral condensed files that then are used for the aero-
dynamic center calculations.

II.D.1. Calculation of the Aerodynamic Center

The aerodynamic center of an airfoil, or wing, is the
point, or locus of points, at which the pitching mo-
ment remains constant with small variations of α.
The location of this point is valuable in aircraft stabil-
ity analysis. The general equations used to calculate
the aerodynamic center of an airfoil are [3]:

x̄ac =
CA,αCm,α,α − Cm,αCA,α,α
CN,αCA,α,α − CA,αCN,α,α

· cref (1)

ȳac =
CN,αCm,α,α − Cm,αCN,α,α
CN,αCA,α,α − CA,αCN,α,α

· cref (2)

Cm,ac · cref = Cmcref + x̄acCN − ȳacCA (3)

The equations (1), (2), and (3) are functions of
the axial and normal force coefficients, the coefficient
of moment about the leading edge, and their deriva-
tives with respect to α. Because of this, AeroCAT
sets “liftDir” and “dragDir” in the “forceCoeffsIncom-
pressible” file to the normal and axial directions of
the wing, (0, 1, 0) and (1, 0, 0) respectively, instead
of the true lift and drag directions.

After running simulations through a range of α,
AeroCAT calculates the necessary derivatives and cal-
culates the x and y coordinates of the aerodynamic
center for each angle of attack, α. Current research
in the USU AeroLab is focused on the development of
analytical equations that more accurately describe a
lifting surface’s lift and drag coefficients as a function
of α [4]. Pending the conclusion of that research, Ae-
roCAT will perform a Least-Squares Regression with
the data points gathered from OpenFOAM, calculat-
ing coefficients that will fit the equations developed
by the AeroLab to those data points. These fit equa-
tions will then be differentiated to obtain the first and
second derivatives needed in Equations (1), (2), and
(3).

Having completed the computations, plots are gen-
erated and data output files are created to provide a
summary of the AeroCAT project. This summary in-
cludes plots of the lift, drag, and moment coefficients
as a function of angle of attack, the x and y coor-
dinates of the aerodynamic center for each angle of
attack and for each span-wise cross-section, and the
value of the residuals for each OpenFOAM case as a

function of iteration (or pseudo time). The plotted
data is also compiled and written to results data files
for further review and processing by the user.

II.D.2. Description of AeroCAT Input File Options
for Post-Processing

The AeroCAT input file options that correspond to
the post-processing portion of the program are:

• “Aero_Center_yn” , a “y” or “n” character
denoting whether aerodynamic center calcula-
tions should be executed.

• “AoA_max” , the maximum angle of attack to
be simulated, in degrees.

• “AoA_min” , the minimum angle of attack to
be simulated, in degrees. 4

The post-processing subroutines also utilize the
input file options that describe the airfoil and wing
geometry (e.g. “NACA”, “Sweep”, “Chord”, etc.) to
draw outlines of the wing or airfoil on certain plots.

III. Validation

Using the GridX and OpenFOAM settings de-
scribed in the previous sections, cases were run to
determine the validity of the AeroCAT simulations
for steady, incompressible, inviscid flow. A two-di-
mensional Joukowski airfoil was chosen as the base
of comparison since it has an analytical solution for
inviscid flow.

The first test was to verify that the lift, drag, and
moment coefficients grid resolve to the correct val-
ues. To confirm this, cases where run at three angles
of attack, each with a “course”, “medium”, and “fine”
mesh. Because of the systematic removal of nodes to
coarsen the mesh, a Richardson Extrapolation predic-
tion was able to be calculated at each angle of attack
as well [2]. In Figures 4, 5, and 6, it can be seen
that OpenFOAM produces results that converge to
the analytical solutions of the lift, drag, and moment
coefficients as the grid refines. Thus, through proper
selection of the mesh settings in GridX, appropriate
results will be produced by OpenFOAM.

The next test on AeroCAT was to compare it’s
results to those of the commercial CFD package Star
CCM+. OpenFOAM does not have an explicitly in-
viscid solver for incompressible flow, so inviscid flow
needs to be simulated by manually adjusting the ap-
propriate settings. First, from testing, it has been
found that a Reynolds number of one million is the
upper limit for which OpenFOAM will converge to

4AeroCAT is set to run simulations from “AoA_min” to
“AoA_max” using a step size of one degree.

9 of 17

Utah NASA Space Grant Consortium 2017

Figure 4. Two-dimensional grid refinement convergence of the lift coefficient at 0◦, 4◦, and 10◦ angle of attack, using
OpenFOAM.

Figure 5. Two-dimensional grid refinement convergence of the drag coefficient at 0◦, 4◦, and 10◦ angle of attack, using
OpenFOAM. Here the analytical solution is equal to zero, and thus it can be thought of as the horizontal axis.

10 of 17

Utah NASA Space Grant Consortium 2017

Figure 6. Two-dimensional grid refinement convergence of the moment coefficient about the leading edge at 0◦, 4◦, and
10◦ angle of attack, using OpenFOAM.

a steady-state answer for the aerodynamic flow Ae-
roCAT simulates. Since a truly inviscid flow has a
Reynolds number of infinity, this upper limit is main-
tained for the simulations. In addition, a “slip” con-
dition is applied on the airfoil or wing, and “laminar”
is specified as the “simulationType”. The comparison
of results with Star CCM+—which does has an ex-
plicit inviscid flow solver—was, then, a way to ensure
that these settings were sufficient in approximating
the inviscid flow AeroCAT was designed to model.

Table 1 shows the results of four methods used to
calculate the lift and drag coefficients of a Joukowski
airfoil at ten degrees angle of attack. Ten degrees
angle of attack was used as the basis of comparison
because viscous effects have a more obvious affect on
the flow at higher angles, as opposed to angles closer
to zero. The same “fine” grid was used for both Open-
FOAM and Star CCM+. All results were compared
to the analytical solution for the Joukowski airfoil,
and OpenFOAM proved to accurately predict the lift
and drag coefficients as well, and in fact better, than
Star CCM+.

IV. Conclusion

The USU AeroLab’s Aerodynamic Center Analy-
sis Tool, AeroCAT, utilizes the meshing utility GridX

Table 1. Comparison of Lift and Drag Coefficient Results
for a Joukowski Airfoil (12% thickness and 0.261 target
CL) at α = 10◦.

Method CL(%Error) CD(%Error)
Analytical 1.44916 0

Vortex Panel (+0.25%) (±0.00%)
OpenFOAM (–0.38%) (+0.22%)
Star CCM+ (–1.20%) (+0.41%)

and the CFD toolbox OpenFOAM to simulate steady,
inviscid, incompressible flow over wings and airfoils,
and post-processes the data to calculate the span-wise
locus of aerodynamic centers. The results compiled
by AeroCAT from the OpenFOAM simulations, as
well as the post-processing calculations of the aerody-
namic centers provides the user with access to the in-
formation necessary to better perform stability anal-
ysis and/or validate other analytic or numeric mod-
els. AeroCAT will continue to expand and develop,
branching out to compressible and viscous flows, and
gaining the functionality needed to model more com-
plicated wing designs. (

11 of 17

Utah NASA Space Grant Consortium 2017

V. Appendix

Examples of the files needed, and used by, Aero-
CAT, GridX, and OpenFOAM.

V.A. Example of an AeroCAT .json input file:

{
"Aero_Center_yn " : "y" ,
"AR" : 8 . 0 ,
"AoA_max" : 10 ,
"AoA_min" : −7,
"Chord " : 1 . 0 ,
"Convergence " : −9.0 ,
"Dihedra l " : 0 . 0 ,
" flap_yn " : "n" ,
" f lap_deg " : 10 . 0 ,
" f lap_hinge " : 3 ,
" f lap_len " : 0 . 2 ,
" joukowski_yn " : ' 'y ' ' ,
" jk_thick " : 0 . 12 ,
" j k_ l i f t " : 0 . 26 ,
"Mesh_density " : " f i n e " ,
"Mesh_dim" : 1 ,
"NACA" : 4412 ,
"Semi_span " : 20 ,
" Sol_freq " : 100 ,
"Sweep " : 0 . 0 ,
"TR" : 1 . 0 ,
" Ve loc i ty " : 1 . 0 ,
"Washout " : 0 . 0 ,
" chord_bl2 f f " : 10 ,
" node_a i r f o i l " : 400 ,
"node_behind " : 90 ,
" node_bl2f f " : 90 ,
"node_boundary " : 10 ,
"node_endcap " : 15 ,
" th ickness1_bl " : 5e−05

}

V.B. Example of an GridX .iGridX input file:
Align all character variables with the far right margin

<===Program Defaults===>
n |Output formatted Plot3D grid?
n |Output SU2 grid?
y |Adjust grid sizes to accommodate three-level multigridability?
n |Enable FIDAP output?
n |Output CFL3D input files?
n |Output SU2 configure file?
y |Output OpenFOAM mesh files?
C |2-D Grid Type (O,C)
2 |Grid dimension default (2 or 3)
n |Use 2D grid to generate 3D infinite wing for SU2?
2 |Grid generator default
| 1=> Alley Algebraic.
| 2=> Phillips-Alley Algebraic.
| 3=> Elliptic PDE (Alley base).
| 4=> Elliptic PDE (Phillips-Alley base).
n |Do you want to include a flap deflection?
n |Do you want to see an airfoil plot?
n |Do you want to see the streamlines?
n |Do you want to generate an airfoil template?
n |Do you want to include a coanda port?
n |Do you want to add a Coanda flap?
n |Do you want to add a dual-radius flap?
n |Do you want to add a jet flap?

<===Freestream/Coanda Jet Properties===>
3 |Input/Output units flag (1=English-inches, 2=English-feet, 3=SI-
meters)
10.0 |Altitude (ft, ft, m)

0.0 |Angle of Attack (deg)
0 |Sideslip angle, 3D-full grids only (deg)
0 |Freestream Reynolds Number (enter 0 to specify using velocity)
1.0 |Freestream Velocity (m/s)
1.225 |Density of freestream (kg/m**3)
1.81d-5 |Viscosity of freestream (N*s/m**2)
518.670 |Temperature of freestream (deg R)
159.422 |Gas constant of air (J/kg*deg R)
1.4 |Specific heat ratio for air at freestream temp (gamma)

<===User Defined Inputs===>
<–Reference Length—>
1.000d0 |Airfoil/Mean Chord Length (meters)

<–Airfoil Generator–>
200 |Points on generated airfoil |<-Set this value to a negative
5 |Airfoil selection default |number if airfoil is "specified
| 1=> NACA 4-digit series airfoil |by data" and you wish to use
| 2=> USU 12-digit series airfoil |the data points in the data file
| 3=> Airfoil specified by data |
| 4=> USU DBF2001 series airfoil |
| 5=> Joukowski airfoil |
| 6=> Joukowski cylinder/ellipse |
4412 |Default NACA airfoil
303012-1124.13 |Default USU airofil
NACA65A008.dat |Airfoil data filename (max 40 characters!!!)
0.12 |Default max thickness/chord for Joukowski airfoil/cylinder
0.261 |Default design lift coefficient for Joukowski airfoil
0. |Default percent circular-arc camber for Joukowski ellipse
10.0 |Flap angle (degrees)
0.20 |Flap length (l/c)
3 |Flap hinge location
| 1=> Upper Surface
| 2=> Lower Surface
| 3=> Surface Centered
1 |Close airfoil trailing edge (0=disable, 1=enable)
25 |Distance to offset TE center point when closing open TE (%TE
thickeness)

<—Wing Generator—>
1 |Wing generation flag
| 1=> Specify RA,RT,Sweep,Twist
| 2=> Define wing geometry using data file
8.0 |Wing aspect ratio
1.0 |Wing taper ratio
0.0 |Wing dihedral (degrees)
0.0 |Wing sweep (degrees)
0.0 |Wing total twist-positive washout (degrees)
20 |Number of semi-span nodal points
wing.dat |Wing data filename (max 40 characters!!!)
15 |Number of endcap nodal points (0 for matched spacing)
2 |Endcap type
| 1=> Flat endcap
| 2=> Rounded endcap
| 3=> Specified by data
1 |Grid symmetry
| 1=> Symmetric centerline boundary
| 2=> Full grid

<——Airfoil——->
200 |Points on the airfoil (points>=50)
1.05d0 |Clustering parameter 1<beta<inf. As beta->1, clustering
| will occur near airfoil’s LE and TE (BetaAF)
| Set to negative value to specify LE spacing
0.075 | Leading edge node spacing in % of local chord (dLE)
| Recommend 0.1 or less [used only when BetaAF<0]

<—TE Streamline—->
90 |Number of points on the TE streamline
y |Trailing Edge stagnation streamline generator
| y=> Generated using panel code
| n=> Generated algebraically
1.05d0 |TE streamline node clustering parameter
0.001d0 |Initial step size for TE streamline generator
1.1d0 |TE streamline generator growth factor
1.0000 |Trailing edge stagnation point location (x/c)
| [For Joukowski cylinder/ellipse only]

<—Boundary Layer—>
1 |Nodes within Boundary Layer (JB)
5.d-4 |Thickness of first cell (db/c)
1.25d0 |Growth Factor (BetaBL)
0.001 |Left-hand influence length->distance from node in the neg-

12 of 17

Utah NASA Space Grant Consortium 2017

ative
| i-direction that is used to define the surface normal (dZL/c)
0.001 |Right-hand influence length->distance from node in the pos-
tive
| i-direction that is used to define the surface normal (dZR/c)
|Boundary Layer influence lengths are equal to the jet size (tj/c)
| for O-grids containing Coanda jets (dZL=dZR=tj)
|If boundary layer nodes are crossing, reduce JB,db,or BetaBL,
| or increase dZL and dZR. Increasing dZL and dZR might cause
| boundary-layer cells to become skewed. Reducing dZL and dZR
| will force the boundary to be orthogonal to the surface but
| increases the chance of crossed nodes.
n |Expand trailing boundary layer?
5.0e-3 |Thickness of the j=1 boundary layer cells at i=1 and i=IM
(dEBL)
1.1d0 |Growth factor of the boundary layer cells at i=1 and i=IM
(BetaEBL)
15 |Number of nodes past trailing edge where expansion begins
(EBLs)

<—–Inner Grid/Outer Boundary—–>
90 |Nodes between the outer boundary
| and the boundary layer (JIG)
10 |Number of chord lengths to outer boundary (I_chord)
0. |Angle that outer boundary O-grid joint line is rotated from
|horizontal (degrees)
1.25d0 |Transition growth factor for Phillips-Alley method (Tgf>0)
| Larger values of Tgf will increase the occurrence of folded nodes
| but will cause the grid to be more orthogonal to the surface
| The "transition" region is where the grid changes direction
| from orthogonal to the airfoil surface to a straight line
| toward the outer boundary.
0.001d0 |Clustering parameter 0<beta<inf, as beta->inf
| boundary node clustering will occur near the
| leading edge of the boundary
| NOTE: For Joukowski Cylinders, 1<beta<inf, as beta->1
| boundary node clustering will occur near the ends
| (i=1 and IM) of the boundary (BetaOB)
1 |match_IG=1 will match the first row width of the algebraic
| inner grid to the last row in the boundary layer
1.06 |Clustering parameter 1<beta<inf, as beta->1 algebraic inner
node
| clustering will occur near the airfoil: for match_IG=0 only (Be-
taIG)

<—-Elliptic PDE—->
0.20d0 |Forcing Parameter (FPO>0) as FPO->0 orthogonality is
forced.
0.20d0 |Forcing Parameter (FPC>0) as FPC->0 clustering near
airfoil is forced.
0.1d0 |Relaxation factor (lambda)
0.08d0 |Relaxation factor (wp)
0.08d0 |Relaxation factor (wq)
1.d-3 |Convergance Criteria (total x-y error < conv)
100 |Maximum number of allowable iterations

<—-Output Files—->
jk_0 |Output filename w/o extension (leave blank to use .GEN
filename)
.FDNEUT ==>FIDAP grid output
.p3D ==>Formatted Plot3D grid output
.unf ==>Unformatted Plot3D grid output
.oGridX ==>Name of elliptic-inner-grid file that can be used in
OuterGrid.exe
.inp ==>CFL3D input file

<——CFL3D/SU2/OpenFOAM Inputs——>
5. |Steady CFL Number (Default=5)
-99. |Moment center in X direction,positive back (Set to -99 to
compute at root 1/4-chord) (m)
0. |Moment center in Y direction,positive up (m)
0. |Moment center in Z direction,positive out left wing (m)
-99. |Reference area (Set to -99 to for grid dimensions)
-99. |Lateral reference length (Set to -99 to for grid dimensions)
-99. |Longitudinal reference length (Set to -99 to for grid dimen-
sions)
1000 |Number of fine-grid iterations
1000 |Number of medium-grid iterations
1000 |Number of coarse-grid iterations
1000 |Number of coarsest-grid iterations
fine |SU2/OpenFOAM mesh density (fine, medium, coarse)
-6 |SU2/OpenFOAM residual convergence criteria
10 |Frequency of SU2/OpenFOAM solution files

<——Coanda Jet Grid——>
0.85d0 |Coanda port location from leading edge (x/c)
0.00125d0 |Coanda port thickness (t/c)
0.95 |Airfoil chord length with dual-radius flap
0.4 |Blowing momentum coefficient (Cmu)
518.670 |Jet stagnation temperature (deg R)
20 |Nodes within Jet Layer (JJ)
1.d-5 |Thickness of first cell (dj/c)
0 |Nodes aft of coanda port (0 for auto spacing)
1 |match_J=1 will match the node clustering on the
| airfoil aft of the jet to the clustering in
| front the jet
2.55d0 |Clustering parameter 1<beta<inf, as beta->1
| clustering will occur near the jet and the
| TE: for match_J=0 only (BetaJ)

<——Jet Flap Grid——>
1.d-5 |Thickness of first cell (djf/c)
| NOTE: It is recommended that the thickness of the first
| cell in the boundary layer, "db", and "djf" be equal
100 |Number of nodes along fore-lower airfoil boundary, between
leading edge and upper duct inlet (Iafl)
160 |Number of nodes along mid-lower airfoil boundary, between
upper and lower duct inlets (Iaml)
160 |Number of nodes along aft-lower airfoil boundary, between
traling edge of lower jet flap and lower duct inlet (Iaal)
-20 |Number of nodes along upper surface of airfoil, between lead-
ing edge and trailing edge of upper jet flap (Iatu)
| Set to a negative value to equal the total number of nodes along
the lower surface
15. |Thrust vector angle, positive down (degrees)
0.63042 |Axial location of upper jet flap hinge (xjfu/c)
0.63042 |Axial location of lower jet flap hinge (xjfl/c)
0.00800 |Jet flap airfoil wall thickness (twj/c)
0.07948 |Ejector (exit) nozzle height (tej/c)
0.02323 |Inner nozzle throat height (ttj/c)
0.03843 |Inner nozzle total height, includes inner nozzle wall thick-
ness (tnj/c)
100 |Number of axial nodes within nozzle (Inoz)
40 |Number of radial nodes in the inner nozzle throat (Jint)
20 |Number of radial nodes in the inner nozzle walls (Jinw)
0.01412 |Upper bypass inlet height (tubi/c)
0.01782 |Upper bypass duct height (tubd/c)
100 |Number of axial nodes within the upper bypass duct (Iubd)
40 |Number of radial nodes within the upper bypass duct (Jubd)
0.01225 |Lower bypass inlet height (tlbi/c)
0.01552 |Lower bypass duct height (tlbd/c)
60 |Number of axial nodes within the lower bypass duct (Ilbd)
40 |Number of radial nodes within the lower bypass duct (Jlbd)

<—-OuterGrid Generator—-> (For 3-D Joukowski cylinders only)
40 |Number of chords from airfoil to outer boudary (I_ochord)
16 |Number of additional wake nodes (jadd)
16 |Number of additional radial nodes (kadd)

V.C. Example of “controlDict”

FoamFile
{

ve r s i on 2 . 0 ;
format a s c i i ;
c l a s s d i c t i ona ry ;
l o c a t i o n " system " ;
ob j e c t c on t r o lD i c t ;

}

app l i c a t i on simpleFoam ;

startFrom startTime ;

startTime 0 ;

stopAt endTime ;

endTime 300 ;

13 of 17

Utah NASA Space Grant Consortium 2017

deltaT 0 . 1 ;

wr i t eContro l runTime ;

w r i t e I n t e r v a l 10 ;

purgeWrite 0 ;

writeFormat a s c i i ;

w r i t eP r e c i s i o n 6 ;

writeCompress ion o f f ;

timeFormat gene ra l ;

t imePrec i s i on 6 ;

runTimeModif iable t rue ;

f un c t i on s
{
#includeFunc r e s i d u a l s
#includeFunc f o r c eCoe f f s I n c ompr e s s i b l e
}

V.D. Example of “fvSchemes”

FoamFile
{

ve r s i on 2 . 0 ;
format a s c i i ;
c l a s s d i c t i ona ry ;
l o c a t i o n " system " ;
ob j e c t fvSchemes ;

}

ddtSchemes
{
d e f au l t s t eadyState ;

}

gradSchemes
{
d e f au l t Gauss l i n e a r ;

}

divSchemes
{
d e f au l t Gauss l i n e a r ;
d iv (phi ,U) bounded Gauss l inearUpwind grad (U) ;

}

lap lac ianSchemes
{
d e f au l t Gauss l i n e a r co r r e c t ed ;

}

in te rpo la t i onSchemes
{
d e f au l t l i n e a r ;

}

snGradSchemes
{
d e f au l t c o r r e c t ed ;

}

V.E. Example of “fvSolution”

FoamFile
{

ve r s i on 2 . 0 ;
format a s c i i ;
c l a s s d i c t i ona ry ;
l o c a t i o n " system " ;
ob j e c t f vSo l u t i on ;

}

s o l v e r s
{

p
{

s o l v e r PCG;
p r e cond i t i on e r DIC
to l e r an c e 1e−06;
r e lTo l 0 ;

}

U
{

s o l v e r PBiCG;
p r e cond i t i on e r DILU
nSweeps 2 ;
t o l e r an c e 1e−08;
r e lTo l 0 ;

}

}

SIMPLE
{

nNonOrthogonalCorrectors 0 ;
pRefCel l 0 ;
pRefValue 0 ;

c on s i s t e n t yes ;

r e s i dua lCon t r o l
{

p 1e−6;
U 1e−6;

}
}

r e l axa t i onFac t o r s
{

f i e l d s
{

p 0 . 3 ;
}
equat ions
{

U 0 . 7 ;
}

}

V.F. Example of “forceCoeffsIncompressible”

patches (a i r f o i l) ;

magUInf 1 ;
lRe f 1 ;
Aref . 1 ;

l i f t D i r (0 1 0) ;
dragDir (1 0 0) ;

14 of 17

Utah NASA Space Grant Consortium 2017

CofR (0 0 0) ;
p i tchAxis (0 0 −1);

#inc ludeEtc " ca s eD i c t s / pos tProce s s ing / . . .
f o r c e s / f o r c eCo e f f s . c f g "

V.G. Example of “transportProperties”

FoamFile
{

ve r s i on 2 . 0 ;
format a s c i i ;
c l a s s d i c t i ona ry ;
l o c a t i o n " constant " ;
ob j e c t t r an spo r tP rope r t i e s ;

}

transportModel Newtonian ;

nu [0 2 −1 0 0 0 0] 1e−6;

V.H. Example of “turbulenceProperties”

FoamFile
{

ve r s i on 2 . 0 ;
format a s c i i ;
c l a s s d i c t i ona ry ;
l o c a t i o n " constant " ;
ob j e c t tu rbu l enc ePrope r t i e s ;

}

s imulat ionType laminar ;

V.I. Example of the Files in the “polyMesh”
Subdirectory

Figure 7. A figure of the example single-cell mesh gen-
erated by the files “points”, “faces”, “owner”, “neighbour”,
and “boundary” found in the Appendix.

V.I.1. Example of “points”

FoamFile
{

ve r s i on 2 . 0 ;
format a s c i i ;
c l a s s v e c t o rF i e l d ;
l o c a t i o n " constant /polyMesh " ;

ob j e c t po in t s ;
}

7
(
(1 0 −4)
(0 . 9 0 .01 −4)
(0 . 9 0 .01 −4.01)
(1 −0.01 −4)
(1 −0.01 −4.01)
(0 . 9 0 −4)
(0 . 9 0 −4.01)

)

V.I.2. Example of “faces”

FoamFile
{

ve r s i on 2 . 0 ;
format a s c i i ;
c l a s s f a c eL i s t ;
l o c a t i o n " constant /polyMesh " ;
ob j e c t po in t s ;

}

7
(
3(1 0 2)
3(2 0 4)
3(4 6 2)
4(1 2 6 5)
4(5 6 4 3)
4(1 5 3 0)
3(0 3 4)

)

V.I.3. Example of “owner”

FoamFile
{

ve r s i on 2 . 0 ;
format a s c i i ;
c l a s s l a b e l L i s t ;
l o c a t i o n " constant /polyMesh " ;
ob j e c t po in t s ;

}

7
(

0
0
0
0
0
0
0

)

V.I.4. Example of “neighbour”

FoamFile
{

ve r s i on 2 . 0 ;
format a s c i i ;
c l a s s l a b e l L i s t ;
l o c a t i o n " constant /polyMesh " ;
ob j e c t po in t s ;

15 of 17

Utah NASA Space Grant Consortium 2017

}

7
(

−1
−1
−1
−1
−1
−1
−1

)

V.I.5. Example of “boundary”

FoamFile
{

ve r s i on 2 . 0 ;
format a s c i i ;
c l a s s polyBoundaryMesh ;
l o c a t i o n " constant /polyMesh " ;
ob j e c t po in t s ;

}

6
(

top
{

type empty ;
nFaces 1 ;
s ta r tFace 0 ;

}

r i g h t
{

type wal l ;
nFaces 2 ;
s ta r tFace 1 ;

}

f r on t
{

type patch ;
nFaces 1 ;
s ta r tFace 3 ;

}

bottom
{

type empty ;
nFaces 1 ;
s ta r tFace 4 ;

}

l e f t
{

type symmetryPlane ;
nFaces 1 ;
s ta r tFace 5 ;

}

back
{

type patch ;
nFaces 1 ;
s ta r tFace 6 ;

}
)

V.J. Example of “U” from Time Subdirec-
tory “0”

FoamFile
{

ve r s i on 2 . 0 ;
format a s c i i ;
c l a s s vo lVec to rF i e ld ;
ob j e c t U;

}

dimensions [0 1 −1 0 0 0 0] ;

i n t e r n a l F i e l d uniform (1 0 0) ;

boundaryField
{

back
{

type f r e e s t r eam ;
f rees t reamValue uniform (1 0 0) ;

}

f r on t
{

type f r e e s t r eam ;
f rees t reamValue uniform (1 0 0) ;

}

a i r f o i l
{

type s l i p ;
}

s i d e s
{

type empty ;
}

}

V.K. Example of “p” from Time Subdirec-
tory “0”

FoamFile
{

ve r s i on 2 . 0 ;
format a s c i i ;
c l a s s v o l S c a l a rF i e l d ;
ob j e c t p ;

}

dimensions [0 2 −2 0 0 0 0] ;

i n t e r n a l F i e l d uniform 0 ;

boundaryField
{

back
{

type f r e e s t r eamPre s su r e ;
}

f r on t
{

type f r e e s t r eamPre s su r e ;
}

a i r f o i l

16 of 17

Utah NASA Space Grant Consortium 2017

{
type zeroGradient ;

}

s i d e s
{

type empty ;
}

}

Acknowledgments

The author is extremely grateful to his fellow students
in the USU AeroLab for sharing their knowledge and sug-
gestions.

References

[1] OpenFOAM Ltd. User guide.
http://www.openfoam.com/documentation/user-
guide/, April 2017.

[2] Warren F. Phillips. Minimizing induced drag with
wing twist, computational-fluid-dynamics validation.
Journal of Aircraft, 43(2), March-April 2006.

[3] Warren F. Phillips. Mechanics of Flight. John Wiley
& Sons, Inc., 2nd edition, 2010.

[4] Orrin D. Pope. The aerodynamic center of inviscid
airfoils. In Utah NASA Space Grant Consortium Fel-
lowship Symposium, 2017.

17 of 17

Utah NASA Space Grant Consortium 2017

