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ABSTRACT

An Eulerian approach to fluid flow provides an efficient,
stable paradigm for realistic fluid simulation. However,
its reliance on a fixed-resolution grid is not ideal for
simulations that exhibit both large and small-scale fluid
phenomena. A coarse grid can efficiently capture large-
scale effects like ocean waves, but lacks the resolution
needed for small-scale phenomena like droplets. On the
other hand, a fine grid can capture these small-scale ef-
fects, but is inefficient for large-scale phenomena. Mag-
netic fluid, or ferrofluid, illustrates this problem with
its very fine detail centered about a magnet and lack of
detail elsewhere. Our new fluid simulation technique
builds upon previous octree-based methods by simulat-
ing on a custom linear octree-based grid structure. A
linear octree is stored contiguously in memory rather
than as a recursive set of pointers. This use of mem-
ory improves the cache coherency issues inherent in
previous octree methods. By localizing high-resolution
regions we can allow the simulation of small-scale phe-
nomena, while at the same time maintaining efficiency
in coarse grid regions. We believe our new simulation
technique will provide a framework for simulating fer-
rofluids which have not been simulated in a physically-
based manner from a computer graphics perspective as
of yet.
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1 INTRODUCTION

Realistic visual fluid simulation research is increas-
ingly important as high-performace physical simula-
tion work becomes more prevalent in a variety of fields
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including animation, video games, science, and engi-
neering. Over the past few decades, computer graph-
ics research has had great success in creating convinc-
ing fluid phenomena including ocean waves, smoke
plumes, water splashing into containers, etc. By tak-
ing a physically-based approach, the burden on artists
needing to hand-animate complex fluid behavior has
been alleviated. Additionally, by providing controllable
parameters, modern fluid simulation techniques pro-
vide artists some control over simulations. However,
because physically-based fluid simulation is computa-
tionally intensive, efficient algorithms and data struc-
tures are crucial to support the ever-increasing demand
for new types of simulations. Depending on the art
direction of a simulation, the simulator’s configura-
tion details can vary widely. For example, simulating
large-scale ocean waves at the resolution needed to
accurately resolve tiny droplets would be very ineffi-
cient, and attempting to simulate droplets with a very
coarse resolution would not have the necessary accu-
racy. This is a problem when a fluid simulation must
simultaneously capture large and small-scale phenom-
ena. A particularly interesting fluid that illustrates this
problem is ferrofluid.

Ferrofluid, which was invented in 1963 by NASA’s
Steve Papell [18], is a liquid that carries suspended fer-
romagnetic nanoparticles which allow it to become
strongly magnetized in the presence of a magnetic field.
When magnetized, ferrofluid exhibits an interesting
spiking pattern centered about the magnet. This spik-
ing phenomenon is shown in figure 1. These spikes are
a result of the balance between the forces due to gravity,
surface tension, and the magnetic field. Although there
have been recent attempts at visually simulating fer-
rofluid, there is currently no efficient physcially-based
solution that captures all of its features. Because of
its many applications, which range from loudspeaker
cooling to drug targeting, an efficient physically-based
simulation system would provide a versatile, low-cost



means of testing for ongoing research efforts in a vari-
ety of fields.
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Figure 1: Ferrofluid exhibits an interesting spik-
ing behavior when in the presence of a magnetic
field.

While ferrofluid reacts and attracts to the magnet at a
macro level, it only exhibits highly detailed spikes very
close to the magnet. As the magnet gets closer to the
ferrofluid, the spikes become smaller and more frequent.
Thus there is a large disparity between the level of
detail needed in a ferrofluid simulation; a low resolution
is adequate for the macro features, but a very high
resolution is needed to accurately compute the spikes.
Our new linear octree grid structure caters to these
types of simulations by allowing varying resolutions
based on the specific simulation requirements.

To numerically solve the Naviér Stokes equations
and realistically simulate fluid flow there are two pri-
mary approaches: Eulerian and Lagrangian simulation.
An Eulerian approach uses a three-dimensional grid
that tracks the properties of the fluid like velocity and
pressure at fixed locations that do not move. The fluid
flows through the grid in an Eulerian simulation. On the
other hand, a Lagrangian simulation tracks particles or
quantities of fluid as they move and interact with one
another. The fluid properties are attached to the mov-
ing particles without the use of a grid. Our approach is
primarily Eulerian due to its use of space discretization
on a grid.

With a traditional fixed uniform grid the user must
specify the resolution of the grid before simulating.
Because increasing resolution has a large impact on the

simulation time, the lowest possible resolution that still
achieves the desired effect will ideally be specified. As
previously mentioned, if the simulation requires both
large and small details, a grid with fixed resolution will
be either inefficient or inaccurate. Our approach allows
regions of the Eulerian simulation grid to be subdivided
based on the simulation requirements with the use of
an octree based-structure. Our approach also alleviates
the cache coherency issues inherent in previous octree-
based methods by storing the octree linearly in memory
rather than as a pointer-based tree structure.

2 PREVIOUS WORK

Modern fluid dynamics from a computer graphics per-
spective began in 1996 when Foster and Metaxas pre-
sented a comprehensive Eulerian fluid simulator [5].
Their work was mainly based on an earlier computa-
tional physics paper [6]. Jos Stam improved upon this
work while attempting to create a production fluid sim-
ulator [17]. Rather than relying on explicit Eulerian
schemes which required small timesteps and suffered
from instability, Stam developed a method that made
the simulation unconditionally stable for the first time.
This was done by adding a Lagrangian technique now
commonly known as the backward particle trace. These
seminal papers revolutionized visual fluid simulation by
efficiently approximating the Naviér Stokes equations
and allowed for a wide range of fluid effects without
the need for specific logic.

Previous approaches to free-surface tracking were
mostly done with either marker particles or with height-
field techniques. While these approaches provided a
general approximation of liquid surfaces, they suffered
from mass dissipation. Foster and Fedkiw presented
a method that used level sets to accurately track the
fluid surface while avoiding mass dissipation [4]. This
level set method approach was improved by Enright,
Marschner, and Fedkiw by using particles on both sides
of the free surface to perform a thickening step [3].
This improvement shifted the liquid rendering para-
digm from a volumetric approach to a surface based
approach which allowed for more convincing ray trac-
ing techniques to be used.

Lagrangian approaches to fluid simulation are also in-
sightful as our simulation approach has Lagrangian ele-
ments. Smoothed-particle hydrodynamics (SPH), which
was initially introduced by Desbrun and Gascuel [2]



and then adapted for efficient computer graphics simu-
lations by Muller, Charypar, and Gross [11], is a com-
monly used Lagrangian method. The simulation tech-
nique we use in this work is a hybrid Eulerian-Lagrangian
technique based on the Fluid-Implicit Particle method
(FLIP) originally developed by Brackbill [1] and adapted
for computer graphics by Zhu and Bridson [22]. FLIP
provides the benefits of performing computation on a
fixed grid, but by storing and advecting the velocity
field on particles rather than the grid, numerical aver-
aging is reduced and the resulting simulations exhibit
less unintentional viscosity.

Any fluid simulation technique that uses a grid has
the potential to benefit from improvements to the de-
sign of the grid. This is obvious in pure Eulerian ap-
proaches, but also applies to a variety of hybrid tech-
niques including FLIP. Additionally, many modern fluid
simulators use multiple grids for ancillary computations
like fluid surface remeshing [21], or surface tension
computation [20]. Our research builds upon a number
of previous adaptive grid techniques which will now
be described.

Losasso, Gibou, and Fedkiw presented an alternative
to uniform grids by performing fluid simulation on an
adaptive octree grid [10]. They built upon a previous
octree method [14] by extending it to use unrestricted
octrees and adding support for free-surface computa-
tion. They were able to reformulate the pressure solve
and maintain a symmetric positive definite discretiza-
tion. However, this approach is known to suffer from in-
stability due to oscillatory spurious velocities at coarse-
to-fine interfaces within the octree. This instability was
improved by Olshanskii, Terekhov, and Vassilevski with
the use of a low-pass filter [13]. Our approach is based
on an earlier octree-based approach which used a less
efficient, but more stable hierarchical pressure solve
[16]. Octrees provided improved efficiency for large-
scale simulations with varying levels of detail. However,
due to the fragmented memory layout of a tree struc-
ture in addition to the overhead of complicated pointer
logic, these improvements were limited.

There has been little work done from a computer
graphics perspective on simulating magnetic phenom-
ena. In 2012 Thomaszewski presented a system for sim-
ulating magnetic rigid bodies [19]. Recently, magnetic
fluids were simulated from a visual perspective using
procedural approaches [7, 8]. However, as far as we

are aware, no physically-based method has been devel-
oped to accurately simulate ferrofluid in the computer
graphics community.

3 METHODOLOGY

At a high level, our fluid simulation technique in its
current state consists of the following two steps:

(1) Grid configuration
e The user defines the simulation parameters,
the global resolution of the linear octree,
and subdivides any regions that require ad-
ditional detail.
(2) Simulation
e Our simulation method closely follows the
previously mentioned octree methods. Specif-
ically, we use a hierarchical pressure solve.

3.1 Linear Octree Structure

We now describe the data structure our approach relies
on as it is the primary contribution of this paper. An
octree data structure, first described in [9], is an efficient
partitioning of a three-dimensional space. It is defined
by recursively subdiving each cell into eight octants.
Starting with the root node, each node has a pointer
to each of its eight children down to the leaf nodes,
which do not point to any nodes. Each cell is subdivided
as far as desired based on the required detail. A two-
dimensional cross section of this is shown in figure
2.

Figure 2: A two-dimensional cross section of an
octree.

Our simulation method uses a custom linear octree.
A linear octree shares the same interface as a traditional
octree, but it is stored in a single contiguous chunk of
memory rather than being a recursive set of pointers.



This is done by predefining the minimum and maxi-
mum cell size and then fully building out the structure
sequentially in memory using those sizes. This has the
disadvantage of always maximizing memory usage, but
it allows the size of the tree to remain constant and be
stored contiguously. The primary advantage of this lin-
ear structure is that the cache coherency issues inherent
in previous octree simulators are alleviated. Rather than
needing to deallocate and allocate memory at each time
step as with a traditional octree, our method works by
simply setting parameters on the cells which indicate
their respective sizes. While this will use more memory,
it allows us to improve accuracy and speed which is the
focus of our work.

The implementation details of our linear octree grid
structure will now be described. To alleviate the need
to use floating point numbers for the sizes of the cells
in the octree, the minimum cell size is always set to
one. The maximum cell size is then any power of two.
Figure 3 shows how the linear octree grid is stored in
memory as well as the order in which iteration takes
place.
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Figure 3: A two-dimensional example of our lin-
ear octree structure. The labels show the linear
array indices. This ordering simplifies iterating
over the grid. In this two-dimensional case the
minimum cell width is 1 and the maximum is 4.
The size of cells 0, 32, and 128 would be 4, 1, and
2 respectively.

Each cell stores its size s, a vector u representing
each component of velocity, a list of pressure values, a
signed distance value ¢, and the indices of each of its
eight neighbors in the grid. The size determines how
the cell will be treated as if it were part of a traditional

octree. A cell with size 0 indicates it is part of a larger,
less subdivided cell. Each of the x, y, and z components
of the velocity vector are stored at the minimal cell
face centers as with traditional Marker-and-Cell (MAC)
grids. A list of pressure values is used rather than a
single pressure value because we solve for pressure
hierarchically. This will be described in greater detail
in the next section. The signed distance value ¢, stored
at the cell corner, indicates the distance to the fluid
surface. Finally, each cell stores the indices of each of
its neighbors to make neighbor lookups easier. Figure
4 illustrates the data contained in each cell.
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Figure 4: Sample cells in our linear octree struc-
ture. The grid is shown in two dimensions for
clarity. Shown below the diagram is data from cell
0, 1, and 4. In the neighbors list n, -1 values indi-
cate no neighbor in that direction. Cell 1 is size 0
and so it is effectively ignored until cell 0 is sub-
divided. The dotted line indicates that there are
additional cells stored in memory which are ig-
nored because their size is 0.

Our custom implementation of the linear octree pro-
vides the interface necessary to utilize previous octree
simulation algorithms, but with the caching benefits
of a traditional uniform grid. It also reduces the over-
head in traversing up and down a tree structure to find
neighbors because they are easily computed due to the
predictable memory arrangement.



3.2 Simulation

Our simulation technique draws upon the previously
mentioned hierarchical pressure solve [16], but adapts
it to free-surface fluids like water using the level set
techniques presented in the more recent octree fluid
simulation paper [10].

Fluid dynamics are governed by the Naviér Stokes
equations. For computer graphics we use the incom-
pressible version of these equations because for fluids
like water, compressibility is visually negligible. These
equations are as follows:

V-u=0 (1)

% =—(u-V)u-— %Vp +yV*u+F (2)

Equation 1 is the incompressiblity term. That is, the
amount of fluid moving into and out of a volume must
be the same.

Equation 2 describes the motion of the fluid. The
change in velocity is a result of a number of forces.
First is the velocity convection term, or how the fluid
is moving about itself due to the conservation of mo-
mentum. The pressure gradient is subtracted to model
the fact that fluid always moves from regions of higher
pressure to lower pressure. A viscosity, or internal fric-
tion force is then added, and finally external forces like
gravity or collisions are added.

We will now describe our hierarchical pressure solve.
The key idea is to solve for pressure as if the grid were
uniform at each of the subdivision levels present in the
grid. This way the standard uniform pressure solve al-
gorithm described in the previous works can be used.
First, we iterate over the cells of the grid at the largest
size and when a cell is encountered that is subdivided,
the average of the values stored at the child nodes is
used. With pressure now defined at the lowest resolu-
tion, we proceed to solving at the next smallest size.
The second solve is just another uniform pressure solve,
but with cells that are smaller. Again, if cells are further
subdivided, the average of the child values is used. This
process is repeated until the pressure is solved from the
lowest to the highest resolution. With each solve, the
region of the grid being considered becomes smaller
and smaller, and the time spent solving for pressure is
focused on the regions of the grid that are subdivided
the most.

3.3 Simulating Ferrofluid

To this point we have only discussed simulating tradi-
tional fluid flow. While our system has not matured to
the point where it is able to begin simulating magnetic
fluids, we have a number of promising directions to
pursue.

There are three primary components to the spiking
behavior of ferrofluid: surface tension, the magnetic
force, and gravity. Because our grid can be efficiently
subdivided to an arbitrary resolution, we should be able
to attain enough accuracy to delicately balance these
three forces to achieve the spiking pattern. The resolu-
tion of the grid will be set to dynamically subdivide near
the location of the magnet. This way we can ensure the
highest resolution is used only where it is needed.

Initially we plan to implement surface tension as a
modification to the pressure solve based on the curva-
ture similarly to how it is implemented in the previous
octree approach [10]. The curvature is simply defined
as the laplacian of the signed distance field at the fluid-
surface interface, or zero level set. The issue that may
arise using this method is that even at a very high reso-
lution, level set methods tend to wash away fine details,
and the very fine spiking shape may be difficult to sta-
bly maintain. If this is the case, there are other non-level
set surface tension methods we might try.

Wojtan and Thurey recently developed a triangle-
based free-surface computation technique [20, 21]. Their
technique allows for very fine detail preservation while
simplifying the mesh in areas where detail is not needed.
The surface tension effects achieved by this method are
impressive. This technique relies on the resolution of
ancillary grids that could take advantage of our new
grid structure. Their approach could potentially be a
better fit for the accuracy needed for ferrofluid simula-
tion.

With surface tension accurately modeled, and after
trivially adding in the gravity force, the final step is to
model the magnetic force. We plan to implement the
technique outlined in the magnetic rigid body paper
[19]. This will require adapting their approach to fluids.
Additionally, we plan to look into techniques used by
the computational physics and engineering communi-
ties in simulating ferrofluid [12, 15]



4 CURRENT PROGRESS AND
FUTURE WORK

The implementation of our system is an ongoing effort.
Our initial test case is a simulation of a crown splash.
Crown splashes demonstrate that the simulation can ef-
fectively model surface tension. Figure 5 shows a simple
crown splash in two-dimensions on our grid without
any subdivision added. Once our linear octree grid is
fully implemented, we will recreate this test with vari-
ous levels of subdivision. We will record the runtimes
and memory utilization of our system and compare
them to the same simulation setup on a uniform sim-
ulation grid, and on a traditional pointer-based octree
grid. Initial tests are promising but are inconclusive as
our data structure is not yet complete.

Figure 5: A simple two-dimensional simulation of
a droplet of liquid falling and forming a crown
splash as it hits a resting body of liquid on a uni-
form simulation grid. Crown splashes are a good
test case of surface tension.

With our linear octree grid fully implemented and
tested, we will move onto implementing and testing

the magnetic force techniques described in the previous
section. We may also look into automating or improving
the process of subdividing the grid. It might be useful if
the grid automatically subdivides based on the position
of an object, like a magnet in the case of ferrofluid.
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