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Abstract—Codon bias, the usage patterns of synonymous
codons for encoding a protein sequence as nucleotides, is a
biological phenomenon that is not well understood. Current
methods that measure and model the codon bias of an organism
exist for usage in codon optimization. In synthetic biology, codon
optimization is a task the involves selecting the appropriate
codons to reverse translate a protein sequence into a nucleotide
sequence to maximize expression in a vector. These features
include codon adaptation index (CAI) [1], individual codon usage
(ICU), hidden stop codons (HSC) [2] and codon context (CC) [3].
While explicitly modeling these features has helped us to engineer
high synthesis yield proteins, it is unclear what other biological
features should be taken into account during codon selection
for protein synthesis maximization. In this article, we present a
method for modeling global codon bias through deep language
models that is more robust than current methods by providing
more contextual information and long-range dependencies to be
considered during codon selection.
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I. INTRODUCTION

Codon bias is the usage pattern of different synonymous
codons, different codons that encode the same amino acids,
in an organism. Studies have observed that differences exist
in frequencies of synonymous codon usage across different
organisms [4], [5], [6]. The genome hypothesis of codon bias
is that different organisms have a distinct codon bias from
other organisms [5]. The codon bias for a given organism is
complex still as even within the same genome codon usage
varies amongst genes [7], [5].

Codon bias influences many aspects of biology: RNA sec-
ondary structure [8], gene expression [9], speed of translation
elongation and protein folding [10]. Thus, codon bias is an
important phenomenon to understand. It influences such fields
as synthetic biology where engineering is applied to biology.
A protein of interest is usually presented as an amino acid
sequence. The protein must be reverse-translated (backtrans-
lated), converted from an amino acid sequence to a nucleotide
sequence. The backtranslated sequence is then injected into a
biological vector (e.g. Escherchica coli) to express the protein.
Engineers seek to use codons that correspond to the amino
acids of the protein of interest that maximize the expression
of the protein to reduce production time and to use smaller
culture volumes. A biologically unviable protein may result
if the nucleotide sequence for a protein is transcribed into an
RNA transcript that degrades prematurely, does not fold in
the correct manner to confer correct function or is expressed

in small quantities. Welch et al. found that proper selection
of codons can result in 100-fold differences in expression of
genes in E. coli [11].

The cause of codon bias is unclear. Hershberg and Petrov
discuss that that there are two general classes of explanations
of codon bias: selectionist and mutational [12]. The selectionist
explanation states that codons are selected to maintain effi-
ciency and/or accuracy of protein expression. This explanation
is supported by the correspondence of preferred codons, fre-
quently used codons, and tRNAs that occur more abundantly
within an organism [13], [14]. The mutational explanation
states that codon bias exists because mutational patterns are
nonrandom.

A. Measuring Codon Bias

Many algorithms model codon bias with respect to different
facets of biology. Some algorithms attempt to mimic the
codon usage found throughout all, or a subset of, genes in
an organism. Usually, a subset of genes is selected because
they are genes that are highly-expressed. Welch et al. found
that simply mimicking the host’s codon usage does not always
yield the highest expression [11]. Methods used to calculate
codon usage to mimic host codon usage are very simple. We
propose a method of modeling codon usage for a particular
organism that is much more robust than current methods. These
methods may be used in the continued development of codon
optimization software packages and may show that mimicking
host codon usage is sufficient so long as the model used for
mimicking is sufficiently robust.

Several methods exist to empirically calculate analyze
codon bias in different organisms. These measures can then
be used to inform codon selection for proteins where the
optimized nucleotide sequence is unknown. Frequencies for
each set of synonymous codons can easily be calculated given
the coding sequence (CDS) for a genome. Using the most
frequently occurring codon of a set of synonymous codons
can then be used to backtranslate amino acid sequences. This,
however, is too simplistic. Not all proteins in an organism
are highly expressed. Simply counting codon usage amongst
all proteins allows for lowly-expressed proteins to influence
codon selection for proteins we want to be highly-expressed.
Additional studies also report that the choice of high-frequency
codons contributes less than other factors when evaluating
translational efficiency [15], [16], [17], [18].

Another method would be to choose only codons that
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correspond to tRNAs that are abundant in the host organism.
Intuitively, this method seems appropriate because it would
allow for the rapid translation of a protein. Studies have found,
however, that there are circumstances in which translation
should slow down. This may be the case because during trans-
lation the protein is folding and by slowing down translation
the correct structures are able to form. If translation occurs too
quickly, the protein may not fold in the correct manner.

While other methods exist for determining the correct
codon usage for backtranslation (Fo¢ [19], RCA [20]) the
Codon Adaptation Index (CAI) [1], according to Graf et al.
[21], is the most widely accepted index for codon usage
determination in backtranslation. Welch et al. finds, however,
that CAI usage is a poor predictor of gene expression levels
[11].

DNAWorks is a tool used in synthetic gene engineering
for backtranslating amino acid sequences given a target vector
for gene expression [22]. It is designed to take an amino acid
sequence as input and a table that specifies the usage frequency
of each codon in a particular organism. DNAWorks’ method
for optimizing the codons in the nucleotide sequences relies
on choosing amongst a set of synonymous codons the most
frequently observed codon as annotated in the input table.
Post-processing can modify the sequence further to reduce
unwanted structures (hairpins, etc.) from forming during PCR.
Their main method, however, of modeling the codon bias of
a particular organism is limited as it is represented solely as a
table of synonymous codon usage frequencies and contradicts
what is now known about codon bias.

Another application that exists is GeneGPS by ATUM.
GeneGPS is based on the work done by Welch et al. [11] where
they found that, in E. coli, that the expression levels of proteins
were most strongly dependent on codons with corresponding
tRNAs that are highly charged during amino acid starvation
and not the most commonly used codons in highly-expressed
E. coli proteins. Codon selection for high expression should
maintain high levels of charged tRNAs and minimize levels
of uncharged tRNAs. The results from Welch et al. show that
mimicking the host’s codon bias or using high CAI does not
result in optimal expression levels.

More robust and expressive models of codon bias are nec-
essary to generate high synthesis yield nucleotide sequences.
We present a method for modeling the codon bias of an
organism by using a bi-directional recurrent neural network
(BRNN) with either long short-term memory (LSTM) or gated
recurrent unit (GRU) memory cells [23], [24], [25].

This method seeks to capture the global codon bias of
an organism in a much richer manner than CAI and similar
methods. CAI computes a frequency matrix of codon usage.
This simplistic representation does not account for complex
phenomena that we are aware of such as the preferences of
infrequent codons when translation should be slowed or sped
up during translation. The method that we have developed is
much richer by allowing it to select codons based on contextual
information instead of relying solely on a single amino acid
and an overall matrix of codon usage for an organism. By using
the known nucleotide sequence of existing proteins, our model
learns which codon to use while considering the entirety of
the protein sequence. Using contextual information allows our
model to learn when to use certain codons as selection may
differ when forming different types of protein structures or
how the nucleotide sequence will influence mRNA secondary
structure formation. This contextual information gives a much
richer model of codon bias for an organism.

II. METHODS
A. Datasets

We trained base models using the 159 different Escherchica
coli strains. These data were gathered from NCBI using the
Entrez API through BioPython [26] which allows for easy au-
tomated querying and retrievel of both CDS and corresponding
amino acid sequences. The model was then fine-tuned for 4
of the E. coli strains and for the bacterias Staphylococcus
aureus and Yersinia enterocolitica (see Table III for strain
NCBI accessions).

B. Deep Language Model

To model the codon bias of a specific organism we use
a method that has been used in Natural Language Processing
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Fig. 2. Histogram of protein sizes used from the 159 pooled E. coli genomes.
Most proteins used fall under 1,000 amino acids in length with the longest
protein 6,926 amino acids and the shortest with 15 amino acids.

TABLE 1. SEQUENCE LENGTH FILTERING. THE DATASET SIZES AFTER
SEQUENCE LENGTH FILTERING HAS BEEN APPLIED

Se Train/

Len H Validaie | ot

100 83531 | 20853

250 || 278690 | 69673

500 || si6151 | 129038

1000 || 586227 | 146557

that uses deep neural networks for natural language translation
and for language modeling. We treat amino acid sequences as
a source language and the corresponding codon sequences as
the target language. A base model is trained using an aggregate
of amino acid sequences from many different organisms and
is later fine-tuned for a specific organism. This process is
analogous to processes used in object recognition in computer
vision, style transfer and other deep learning applications.

Neural machine translation (NMT) is a method used for
natural language translation that uses neural networks [27],
[28]. The translation task is to take a sentence in one language
as input and output the sentence in another language. Neural
machine translation relied on an encoder/decoder scheme to
solve the task. The input sentence is encoded using a neural
network, the encoder into a vector representation of float
values. A separate neural network, the decoder, then takes the
encoded values as its input and outputs a sentence in the target
language.

C. Network Architecture

Our basic neural network architecture is a BRNN trained
with amino acid sequences as inputs and the known codons as
target outputs (see Figure 1). This architecture was extended
to increase codon prediction accuracy. LSTM or GRU cells
are specified at run-time by the user for use in the BRNN.
Each separate amino acid in the input sequence is regarded as
a time-step in the overall sequence by the network. Our model
architecture differs from those used in NMT where NMT does
a complete encoding of the input and then passes that complete
encoding to the decoder. This results in outputs that can have
lengths that are independent of the input (as can be the case in
natural language translation). For the amino acid detranslation
problem, we know that there will be as many codons as there

Fig. 3. Heat map of erroneous codon substitutions by the sequence length
100, no dropout model. The x-axis represents the correct codon and the y-axis
represents the codon incorrectly substituted for by the model.

are input amino acids. Thus, we built our network to produce
an output at every time-step instead of encoding the entire
sequence first.

In order to help the network to output only codons that
encode the correct amino acid, we have two output targets
for the network: correct amino acid and correct codon. Using
the correct amino acid as one of the targets should help the
network where an incorrect codon is selected at least it encodes
the correct amino acid.

D. Fine-Tuning

After training the base model, we then fine-tuned models
for a specific strains. Fine-tuning involves taking the base
model and continuing training using a more specific dataset
[29]. Different variations of fine-tuning exist. To fine-tune our
implementation, we freeze the weights in the recurrent layers
and leave the last neural network layer weights unfrozen during
the additional training. This results in the final fully-connected
layer being modified and the recurrent layers remaining the
same as the base model during fine-tuning.

Fine-tuning can also be accomplished by replacing the last
layer of the network and completely retraining the last layer
while the other layer weights remain frozen. This may be
beneficial if the sequences used for fine-tuning vary greatly
from the original dataset used to train the network. This still
leverages the learned features from the network but allows it
to learn final codon selection in a manner much more specific
to the specified sequences.

Fine-tuning allows us to build networks that are specific to
a particular species or even for a specific strain of a bacteria.
We perform fine-tuning instead of re-training a new network
to reduce training time. The base model is trained with all data



TABLE II.

MODEL PARAMETERS AND TESTING ACCURACY. NOTE THAT THE TRAINING ACCURACY IS USUALLY LOWER THAN THE VALIDATION

ACCURACY WHEN DROPOUT IS USED BECAUSE A PORTION OF THE NETWORK IS UNUSED DURING TRAINING WHILE THE FULL NETWORK IS USED ON THE
VALIDATION DATASET WHILE.

Network Architecture Training Validation Testing
RNl #RNN  Embedding Network Baich Erochs Drovot | S¢d | €DS AAS cDs AAS cDs AAS
Type Layers Size Width Size P P Len Acc Acc Acc Acc Acc Acc
LSTM 2 64 512 128 10 0% 100 | 98.63%  100.00% | 97.48%  100.00% | 97.35%  100.00%
LSTM 2 64 512 128 10 0% 250 | 97.60%  100.00% | 96.98%  100.00% | 97.04%  99.99%
LSTM 2 64 512 128 10 0% 500 | 96.78%  100.00% | 96.65%  100.00% | 96.70%  99.99%
LSTM 2 64 512 32 2 0% 1000 | 94.05%  100.00% | 94.47%  100.00% - -
LSTM 2 64 512 128 10 20% 100 | 97.07%  100.00% | 97.31%  100.00% | 97.15%  99.99%
LSTM 2 64 512 128 10 20% 250 | 9402%  100.00% | 95.51%  100.00% | 95.55%  100.00%
LSTM 2 64 512 96 10 20% 500 | 88.65%  100.00% | 93.79%  100.00% | 93.79%  99.99%
LSTM 2 64 512 32 2 20% 1000 | 79.86%  100.00% | 91.08%  100.00% - -
from different species/strains pooled. After the base model is 12 e
trained, we then select a specific species or strain to fine-tune — ek
with resulting in a model that can train quicker by leveraging 10
previous work.
0.8
E. Additional Heuristics "
[%2]
While this approach showed high codon selection accuracy, <206
there were still instances where the model would choose
codons that encoded the wrong amino acid even after the 0.4
addition of the amino acid target function to the network \
(see Section II-C). We correct for this by taking the softmax 0.2 >
probabilities for the codons, mask probabilities for any codon = —
that does not encode the correct amino acid and select from 00 5 4 6 8
the remaining codons the highest probability. Amino acid epoch

accuracy is guaranteed to be perfectly accurate with this post-
processing measure but does not make a significant difference
in overall codon selection accuracy. This is most likely because
the network almost always selects a codon that codes for the
correct amino acid.

This heuristic can be applied to all positions in the pre-
dicted sequence except the start codon. While methionine is
usually the first amino acid, it is not always encoded by
AUG. Alternative start codons may be used and still encode
a methionine. This is due to a special initiator tRNA that is
used during translation [30]. Recently, more alternative start
codons have been discovered [31]. Thus, we leave the network
with the ability to choose any codon as a start codon as it is
unclear which codons are valid start codons as there may be
yet undiscovered start codons.

F. Implementation

Model training was done using NVIDIA K40, Titan X
Maxwell and Titan X Pascal GPUs. Our models were built
using the Keras [32] neural network library. All our models
were developed using Theano [33] as the backend for Keras.
The model can be run using different parameters for the type
of recurrent cell, dropout in the recurrrent cells, the number
of weights for different layers and number of recurrent layers
(see Table II for tested parameters). All models were trained
using the Adam optimizer [34].

III. RESULTS AND DISCUSSION

A. Base Model

The results of training the base model using the pooled
data from 159 E. coli genomes can be seen in Table II. Data

Fig. 4. Loss over epochs for the SEQ LEN 100 dataset. The same loss trend
is observed for all training parameters tested.

was pooled to provide enough data to train the model where a
single strain did not. In total, the pooled dataset consisted of
742,494 sequences. Characteristics of the dataset can be seen
in Figure 2.

A number of different models were trained with different
parameters. Selecting for different maximum sequence lengths
can greatly affect training time as long sequences take longer
to process. We tested different sequence lengths (100, 250,
500 and 1,000) and achieved high accuracy that decreased
as sequence length increased. The testing accuracy of the
sequence length 1,000 models were unavailable due to their
long run-times. Filtering the dataset based on sequence length
resulted in different dataset sizes used for training, validation
and test (see Table I). Although the number of instances
does not grow dramatically bhen filtering sequences of 500
and 1,000 amino acids, the overall amount of data increases
dramatically.

Reported training accuracy is lower than validation accu-
racy for for models using dropout. This is because during
training with dropout, a portion of the network is unused.
This results in lower performance. When calculating validation
accuracy, the entire network is used.

B. Start Codon Selection

While AUG is the predominant start codon, there are
several others that can be used [31]. We analyzed the predicted
start codon for all nucleotide sequences and found that all



sequences were found to use a known start codon; namely:
AUG, GUG, UUG, CUG, AUU, AUC and AUA.

C. Predicting the Wrong Codon

Prediction of the wrong codon occurs more frequently as
sequences become longer. This could be mitigated by a larger
network at the cost of increased training time. The occurrence
of incorrectly selecting codons can be seen in Figure 3. The
axes are sorted lexicographically and, as expected, a strong
band along the diagonal emerges. This is because synonymous
codons often share the first two bases with the third position
in the codon acting as the wobble base pair.

D. Codons that Encode the Wrong Amino Acid

After training, the models will still choose codons that
encode the wrong amino acid. It is unclear why the model
sometimes selects a codon that encodes a different amino acid
than what was originally provided as input. One reason may
be that the network has seen so many examples in the training
set of a particular motif that it has high confidence that another
amino acid is more appropriate. Using the added heuristics (see
Section II-E), the network is able to eliminate the selection
of codons that encode the wrong amino acid and providing
increased overall codon selection accuracy (see Table II).

The impact of these mis-substitutions is also unclear.
Further analysis should be done to see if protein function is
impacted or if changes modify the translation of this gene.

E. Fine-Tuned Models

We fine-tuned our base model on 4 different strains of
E. coli as well as for two other bacterias: Staphylococcus
aureus and Yersinia enterocolitica. Fine-tuning was done by
replacing the CDS and amino acid sequence prediction layers
and completely training them for 10 epochs. Results from fine-
tuning can be seen in Table III.

The results of the fine-tuning show good performance on
the E. coli bacterias and poor performance on the two other
bacterias. The general many-to-one relationship of codons to
amino acids was learned as evidenced by the > 99% amino
acid prediction accuracy but the codon prediction accuracy
can be as low as 59.28% in the case of Y. enterocolitica.
This suggests that the recurrent portion of our network is
tied specifically to E. coli and does not generalize well.
We had hoped that we could create a network that would
generalize well but this behavior can be expected as we trained
exclusively on E. coli data.

During fine-tuning, the network overfits to the specific
strains as can be seen by the high codon prediction accuracies
( 100% for E. coli strains). This could be mitigated by de-
creasing the number of epochs that are run for fine-tuning. The
appropriate number of epochs used in fine-tuning is unknown
especially as the fine-tuning datasets are significantly smaller
than the datasets used to train the base models (see Table III).

Our next goal is to train our network on a variety of
different bacterias. We have selected 17 genera that include
301 bacterial strains. Using this data, we believe that we can
construct a network that is able to model the codon bias of
a variety of different bacteria with minimal fine-tuning by

training on the mixed data and by adding augmenting our
network with additional prediction tasks.

IV. CONCLUSION

Here we have presented a method for representing the
global codon bias of an organism. Previous methods, such as
CALI, have provided a statistical overview of codon usage and
a measure of how much a particular protein deviates from a
reference set of proteins. Often, these approaches are used in
order to backtranslate protein sequences such that the output
nucleotide sequence matches the codon bias of a reference set
of proteins. Methods such as CAI, however, are too coarse
and give a very high-level picture of codon usage that does
not account for protein structures that may be forming.

Our method, leveraging deep language models and trans-
lation techniques used in machine-learning, provides a rich
representation of codon bias by taking looking at local and
long-range contexts to inform codon selection. Using this
method, we can predict the correct nucleotide sequence for
given proteins with high accuracy. While we have only demon-
strated this ability on E. coli, we believe that this approach
can be generalized and applied to other species allowing for
more advanced methods of backtranslation and for alternative
methods for phylogenetic tree reconstruction.
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