ORS Responsive Systems
Architecture Design and Indicated Directions for the 1st Spacecraft and Payload Missions

Kirk D. Stewart, Ph.D, PE
PO Box 44, Niwot, CO
ORS Program and Spacecraft Goals

- Provide Standards for
 - the rapid execution of appropriate military space missions
 - defined capabilities for selected missions
 - further small satellite production and use
 - LEO and 3-4 hour HEO mission orbits
 - Ground support via AFSCN and tactical ground stations
 - 80/20 capabilities for use with a variety of missions

- Typical Bus Provides
 - Falcon or Minotaur launch of 400kg satellite
 - 175 kg payload
 - 200 w OAP (700 w peak)
 - 168-300 meters/sec \(\dot{V} \)
 - 1/60\(^\circ\) attitude knowledge
 - 1/20\(^\circ\) attitude control
 - GPS (90 m [3s])
 - 2 kbps up; 2 Mbps down
 - Future capability of high rate tactical downlinks
So What’s the Problem?

• Use of network of GROUND Stations puts critical constraints on contacts to satellites

• The LEO missions would be *greatly* enhanced by more timely (responsive) contact capabilities for command and control and data retrieval:
 – Load tasking only minutes before tactical area
 – Get data back immediately for analysis and theater use
For Responsive Theater Support, Provide Full Time Contact

• Provide a communications relay capability
• Single ring (plane) of satellites in equatorial orbit
• Sufficient orbit altitude to minimize number
• Use ORS standards and buses!
 – A great pathfinder and example for program
 – Centralize operations, tasking, and analysis
 – Responsive Space training and execution practice
 – Huge savings ($) over ground network build
Major Parts of This Concept

• Architecture of an ORS Communications Support Satellite System (OCS³)
• Coverage of LEO orbiting ORS satellites
• Ring orbit altitude trades (No. of satellites)
• Launch capabilities within ORS standards
OCS³ Overall Architecture

• Single ring of equatorial orbiting satellites
• Communications flow in 1 direction around ring (i.e., forward transmit and aft receive)
• Up/Down link to Master US ground station
 – Multiple missions operations centers (like AFSCN)
 – Virtual payload POCC connections
 – Field tasking and data back to theater via existing milsatcoms
 – Extra analytical support available
• Same Satellite up/down links to world-wide LEO satellites
• Space satellites in orbit with some overlap of ground coverage
• Simple ORS standards style buses
OCS3 Is Good 1st ORS Bus Mission

- Use ORS standards bus structure and capabilities
- Potential small, compact payload
- Nadir up/down link payload antenna
- +/- X communications relay antennas
- +/- Y S/A deployments and drive axes
- Single axis solar array (like geo-synch birds) and simple EPS
- Propulsion for initial orbit and station holding
- Orbit and attitude make thermal design easy
- Mass available for potential > 1 yr life design
Altitude and Ground Coverage

- Altitude required for full ring for “N” satellites
- Earth Coverage around equator overlaps due to “fat Earth” used for LOS clearances above horizon
- Tips of overlap “football” define minimum full-time coverage latitude (typically +/- 11 deg for +100 km fat Earth)
Highest Latitude Coverage

- Satellite altitude is basic determinant of maximum coverage latitude
- Favors high altitudes and lower numbers of satellites
- Altitude limited by LV capability and there are concerns for radiation exposure at higher altitudes
Over-populating Basic-N Ring

- Added satellites at same altitude
- Increases overlap “footballs”
- Extends minimum full-time latitude coverage
- Much over-populating is of little value

(1 extra is helpful, but may be of more value as a reliability enhancement)
OCS3 Can Use ORS Launchers

- ORS identified LVs appear feasible for OCS\(^3\) emplacement
- Lower altitudes easier to launch
- OCS\(^3\) may be higher propulsion/lower payload mass version of ORS standards bus, but within the defined ORS parameters!
Recommended Basic-N--OCS3 Orbital System Configuration

- Altitudes for rings of less than 4 get into serious radiation regions
- Rings of 4 or more appear to be within ORS Launch Vehicles capabilities
- Rings of 5 or more suffer degraded high latitude coverage
- Rings of 5 or more increase costs

A RING OF 4 WITH 5$^\text{th}$ FOR SPARE OR HIGHER MINIMUM FULL-TIME LATITUDE COVERAGE
Conclusion

- An OCS3 provides better mission responsiveness for LEO birds
- ORS standards and approaches are appropriate for this mission
- Cost savings on world-wide ground support for ORS LEO missions is huge and will pay for OCS3
- Training and readiness for ORS operational activities is enhanced
- A basic-N ring of 4 satellites with 5th spare fits the ORS bus and payload block buy objectives
- Concept accommodates Consolidated ORS (CORS) participants

OCS3 SHOULD BE THE FIRST ORS MISSION!