11-1-1996

Phylogenetic Analysis and Taxonomic Revision of the Perdita Subgenera Macrotera, Macroteropsis, Macroterella and Cockerellula (Hymenoptera: Andrenidae)

Bryan N. Danforth
Cornell University

Follow this and additional works at: https://digitalcommons.usu.edu/bee_lab_da

Part of the Entomology Commons

Recommended Citation
Phylogenetic Analysis and Taxonomic Revision of the *Perdita* Subgenera *Macrotera, Macroteropsis, Macroterella* and *Cockerellula* (Hymenoptera: Andrenidae)

BRYAN N. DANFORTH

TABLE OF CONTENTS

Abstract.. 635
Introduction .. 638
Materials, Methods and Terminology .. 638
Phylogenetic Relationships among the *Perdita* Subgenera .. 639
 Species Chosen for Preliminary Analysis ... 639
 Data Matrix ... 640
 Character Descriptions ... 640
 Phylogenetic Analysis ... 648
 Monophyly of *Perdita* ... 649
 Relationships among the *Perdita* Subgenera ... 649
 Placement of the Subgenus *Xenomacrotera* .. 654
Phylogenetic Relationships among Species in the *Macrotera* Group of Subgenera 654
 Data Matrix ... 654
 Character Descriptions ... 654
 Phylogenetic Analysis ... 654
 Tree Topology and Relationships among Species .. 658
 Classification .. 660
 Diagnosis of the *Macrotera* Group of Subgenera ... 660
 Key to the Species of the *Macrotera* Group ... 661
 Species Diagnoses .. 663
 Subgenus *Macroterella*, 663; Subgenus *Macrotera*, 669; Subgenus *Macroteropsis*, 669; Subgenus *Cockerellula*, 678; Subgenus *Heteroperdita*, 691

Acknowledgments ... 691
Literature Cited .. 691

ABSTRACT

This paper presents a preliminary phylogenetic analysis of the 21 *Perdita* subgenera based on internal and external morphological characters. Based on this analysis, the genus *Perdita* is clearly monophyletic. The analysis yielded 6 equally parsimonious trees; a central polytomy, involving 7 groups, is the greatest source of ambiguity. These results provide the basis for a species-level phylogenetic analysis of the monophyletic group of 31 species included in the subgenera *Macrotera, Macroteropsis, Cockerellula*, and *Macroterella*. This group (referred to as the *Macrotera* group of subgenera) forms the sister group to the remaining species in the genus. Phylogenetic analysis resulted in 4 equally parsimonious trees. The greatest source of ambiguity involves the relationships among the basal species in the clade. Classificatory changes in the limits of these subgenera are made as a consequence of the species-level analysis.

1 Contribution number 3183 from the Snow Entomological Division, Natural History Museum, University of Kansas, Lawrence.

2 Present address: Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY 14853
Plate I. Small-headed male of *Perdita portalis*.
Plate II. Large-headed male of *Perdita portalis*.
INTRODUCTION

The genus *Perdita* contains numerous species of small to minute bees which are most abundant in the arid southwestern U.S. and northern Mexico but range across the United States, northward to southern Canada and as far south as Guatemala. The genus was first described by Smith in 1853 based on specimens of *Perdita halictoides* in the British Museum. Since then over 500 species have been described, the vast majority of them by P.H. Timberlake (1953-1980). Since Timberlake’s revisions little work has been done on the genus and especially lacking is a phylogenetic analysis of this large genus of bees. The present work is meant as a first step in the phylogenetic analysis of the group. First, a phylogenetic hypothesis for the *Perdita* subgenera is proposed based on an investigation of representative species from all 21 subgenera. The preliminary analysis reveals the existence of a basal lineage of four subgenera (*Macrotera, Macroteropsis, Cockerellula* and *Macroterella*; herein called the *Macrotera* group). The second part of this study focuses on the evolutionary relationships among the 31 included species. This work is meant to complement recent work on the behavior and morphology of several species of *Perdita* (Danforth, 1989b; Danforth, 1991a,b; Neff & Danforth, 1992, Danforth & Neff, 1992; Norden, et al., 1992).

MATERIALS, METHODS AND TERMINOLOGY

Many external morphological features were used in this study and some of these characters were easily visible in pinned specimens. However, internal morphological structures and characters of the mouthparts and terminal metasomal segments could only be seen in cleared, disarticulated specimens. Specimens were cleared in a weak solution of potassium hydroxide for one to two days and then repeatedly rinsed in distilled water. Cleared specimens were then stored in glycerol in plastic, 24-well tissue culture dishes. In order to see some characters in naturally pale or overly cleared sclerites it was necessary to stain the cuticle with a dilute solution of acid fuchsin.

The morphological terminology used follows that of Michener (1944), and other authors (Eickwort, 1969; Brooks, 1988). Terms used to describe surface sculpturing follow Harris (1979). Unlike Michener (1944), but as in his recent works, I have called the sternum and tergum of the first metasomal segment (homologous to the second abdominal segment) tergum 1 (abbreviated T1) and sternum 1 (abbreviated S1), respectively. The following metasomal sclerites are numbered sequentially thereafter (Fig. 1a). Terga (Fig. 1b,d) possess paired muscle attachment sites, termed apodemes, graduli, extending nearly the width of the tergum, and laterally, the paired spiracles (Fig. 1d). Sterna possess apodemes also, but, in *Perdita*, lack graduli (Fig. 1c).

In males there are seven visible terga and eight sternae, although S8 is occasionally retracted (Fig. 1a). T8 is visible only as a weakly sclerotized structure bearing apical setae on the internal surface of T7. S8 can be divided into a region proximal of the apodermal arms, the disc, and a region distal to the apodemes, the apex (Fig. 1e). S7 and S8 are highly variable in shape and are important characters for species identification.

In females there are 6 visible terga and sternae. S6 is highly variable and often useful for identifying females to species (Fig. 1f).

Fig. 1. Morphology of the metasoma in *P. texana*: (a) lateral view of male metasoma showing numbering of terga and sterna, (b) dorsal view of male second sternum, (c) ventral view of male second tergum, (d) dorsal and lateral views of male sixth tergum, (e) ventral view of male S7 and S8, (f) ventral view female S6, (g) dorsal view female T6, showing pygidial plate.
The sixth tergum in females bears the pygidial plate (Fig. 1g). The sting in *Perdita* is very weakly developed and was not studied in detail. Anteriorly the female S6 bears apodemal arms, like the preceding sterna. On the inner surface of the sterna, connecting the apodemal arms is a thickened bar of cuticle termed the antecosta (Michener, 1944). On S6 the antecosta often is separated from the anterior margin of the sterna, and can show variability between species in its shape and path. Apically, S6 often bears a thickened pad of cuticle on its internal surface, termed here the reflexed cuticle, which is highly variable in shape. In most species the reflexed cuticle is fused to the outer layer of cuticle forming a central transparent area (Fig. 1f).

The male genitalia are highly variable among species of *Perdita*. The genital capsule consists of large gonocoxites, which in some species, give rise apically to gonostyli. Ventrally one sees the paired, clasper-like volsellae. Each volsella consists of a larger, ventral cupis which arises from the basiscula and the smaller, dorsal digitus (Snodgrass, 1941). In *Perdita* the cupis bears few to many papillae on its upper surface and the digitus usually has a few papillae also. Within the genital capsule is the elongate aedeagus, or penis, consisting of lateral sclerotized penis valves which, in some species, are fused into a single tube-like structure, or in others, remain separate lateral sclerites of the aedeagus. The apodemal arms of the aedeagus are variable in shape, from elongate and straight to dorsally reflexed. The aedeagus sometimes contains useful characters and for this reason I have illustrated the aedeagus and genital capsule separately.

Analyses of the data matrices were performed using the computer program Hennig86, version 1.5 (Farris, 1988; but see also Fitzhugh, 1989; and Platnick, 1990).

PHYLOGENETIC RELATIONSHIPS AMONG THE *PERDITA* SUBGENERA

SPECIES CHOSEN FOR PRELIMINARY ANALYSIS

The species used for the preliminary analysis of the higher level relationships within the genus were selected based on Timberlake's (1954-1980) concepts of the subgenera (Table 1). At least one species was studied in detail from each of the 21 subgenera and, in some cases, more species were examined in order to evaluate the monophyly of each subgenus. The species studied in detail are listed below according to subgenus. Effort was made to examine the type species of each subgenus, but in some cases type species were poorly represented in collections and therefore could not be studied in detail. Type species which could not be examined are included in parentheses below.

ALLOMACROTERA Timb. — *P. steppanomerae* Timb. (type species); **ALLOPERDITA** Vierreck — *P. mitchelli* Timb. (P. novangliae Vierreck, type species); **CALLOMACROTERA** Timb. — *Perdita maritima* Timberlake (type species); **COCKERELLIA** Ashm. — *P. albipennis* albipennis Cress., *P. albipennis heliophila* Ckll., *P. baileyae* Ckll., *P. beata beata* Ckll., *P. bequaerti* indianaensis Ckll., *P. coreopsis* coreopsis Ckll., *P. tana* Timb., *P. lepachidis lepachidis* Ckll., *P. lingualis* Ckll., *P. obscuripennis* Timb., *P. perlachra perlachra* Ckll., *P. purpurascens* Timb., *P. scopata* Timb., *P. triscutata* Timb., *P. utahensis* Timb., *P. verbesinae* Ckll. (P. hyalina Cress., type species); **COCKEREULLA** Timb. — *P. laticauda* Timb., *P. nubila* Timb., *P. pratti* Timb., *P. nigrella* Timb. (Perdita mortuaria (Cress.), *P. bicolor* (Smith) (type species); **MACROTEROPSIS** Timb. — *P. mcolor* Ckll., *P. nigrella* Timb. (Perdita mortuaria (Cress.), *P. bicolor* (Smith) (type species); **HESPEROPERDITA** Timb. — *Perdita ruficuda ruficuda* Ckll. (type species); **HETEROPERDITA** Timb. — *P. lamarina* Timb., *P. belula* Timb., *P. denudata* Timb., *P. rhodogastra* Timb. (type species); **P. scutellaris** Timb., *P. sexfasciata* Timb., *P. trifasciata* Timb., *P. wasebaueri* Timb.; **HEXAPERDITA** Timb. — *P. astera* Timb., *P. bishopii planorun Timb.*, *P. boltoniae christina Timb.*, *P. callicerata* Timb., *P. cambarella platyura* Ckll., *P. cara* Timb., *P. foveata foveata* Timb., *P. georgica* Timb., *P. heterothecae* Ckll., *P. ignota ignota* Ckll. (type species), *P. nubila* Timb., *P. pratti* Ckll., *P. xanthithemae* Ckll.; **MACROTERA** F. Smith — *P. texana* (Cress.), *P. bicolor* (Smith) (type species); **MACROTERELLIA** Timb. — *P. mcolor* Ckll., *P. nigrella* Timb. (Perdita mortuaria (Cress.), *P. bicolor* (Smith) (type species); **MACROTEROPSIS** Ashmead — *P. latior* Ckll. (type species); **PENTAPERDITA** Ckll. & Porter — *P. albivittata* Ckll. (type species), *P. amena* Timb., *P. bradleyana* Timb., *P. chrysotha chrysotha* Ckll., *P. cohaerens* Timb., *P. melanochora* Ckll., *P. nigricircis* Timb.; **PENTITHELIA** Ckll. — *P. minima* Timb., *P. elatahnes* Ckll., *P. larreae* Ckll. (type species); **PROCOKERELLIA** Timb. — *P. albonota* Timb. (type species); **PSEUDOMACROTERA** Timb. — *P. turgicaps* Timb. (type species); **PYGOPERDITA** Timb. — *P. californica*

Table 1. List of Perdita subgenera and species groups based on Timberlake (1954-1980) and subsequent work, and numbers of valid species names (subspecies not counted).

<table>
<thead>
<tr>
<th>Perdita subgenus</th>
<th>no. species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allomacrotera</td>
<td>2</td>
</tr>
<tr>
<td>Alloperdita</td>
<td>7</td>
</tr>
<tr>
<td>Callomacrotera</td>
<td>2</td>
</tr>
<tr>
<td>Cockerellia</td>
<td>25</td>
</tr>
<tr>
<td>Cockereulla</td>
<td>9 (13)</td>
</tr>
<tr>
<td>Epimacrotera</td>
<td>21</td>
</tr>
<tr>
<td>Glossoperdita</td>
<td>5</td>
</tr>
<tr>
<td>Hesperoperdita</td>
<td>2</td>
</tr>
<tr>
<td>Heteroperdita</td>
<td>13 (14)</td>
</tr>
<tr>
<td>Hexaperdita</td>
<td>26</td>
</tr>
<tr>
<td>Macrotera</td>
<td>5 (6)</td>
</tr>
<tr>
<td>Macrotropis</td>
<td>12 (6)</td>
</tr>
<tr>
<td>Pentaperdita</td>
<td>15</td>
</tr>
<tr>
<td>Perdita</td>
<td></td>
</tr>
<tr>
<td>Halictoides Group</td>
<td>12</td>
</tr>
<tr>
<td>Octomaculata Group</td>
<td>111</td>
</tr>
<tr>
<td>Sphaerolaece Group</td>
<td>191</td>
</tr>
<tr>
<td>Ventralis Group</td>
<td>66</td>
</tr>
<tr>
<td>Zonalis Group</td>
<td>53</td>
</tr>
<tr>
<td>Valida Group</td>
<td>1</td>
</tr>
<tr>
<td>Unplaced species</td>
<td>14</td>
</tr>
<tr>
<td>Perditiella</td>
<td>5</td>
</tr>
<tr>
<td>Procockerellia</td>
<td>4</td>
</tr>
<tr>
<td>Pseudomacrotera</td>
<td>1</td>
</tr>
<tr>
<td>Pygoperdita</td>
<td>40</td>
</tr>
<tr>
<td>Xeromacrotera</td>
<td>1</td>
</tr>
<tr>
<td>Xerophasma</td>
<td>2</td>
</tr>
</tbody>
</table>

Total species 653 (651)
The subgenus *PERDITA* contains over half the species in the genus (Table 1). Representative species of each of Timberlake's five "groups" of *Perdita* s. str. were included in the detailed study: ZONALIS group — *P. zonalis* Cress.; HALICTOIDES group — *P. halictoides* Smith; OCTOMACULATA group — *P. octomaculata* (Say); VENTRALIS group — *P. ventralis* Ckll.; SPHAERALCEAE group — *P. sphaeralceae* nota Ckll. & Tompkins.

Character polarity was determined using the outgroup criterion (Lundberg, 1972; Watrous & Wheeler, 1981; and Maddison et al., 1984). Outgroup taxa were chosen based on Ruz's phylogeny of the panurigine genera (Fig. 2; Ruz, 1991), and included the following species: Calliopsini — *Calliopsis* (Calliopsis) andreniformis Smith, *C. (Calliopsina) coloradensis* Crawford, *C. (Verbenopsis) nebrascensis* Crawford, *C. (Nomadopsis) lawseyi* Rozen, *C. (N.) scutellaris* (Fowler); Callusium, *Callusium mandibulare* Friese, *Callusium flaviventre* (Friese); Acmaetopoeum, *Acmaetopoeum prinis* (Hohnberg), *Arbyssocle flava* Moore, *Spinobellus reventris* Toro; Melitturginii — *Melitturga clavigeris* Latreille; Panurgini — *Panurgus occidentalis* Crawford, *Epimethea kuznetzovi* Ckll.; Protaedrenini — *Piezonarsus alibarsus* (Cress.), *Heterosurus illinoensis* (Cress.).

Specimens for the subgeneric analysis came primarily from the Snow Entomological Museum, University of Kansas, but specimens were borrowed from other North American institutions listed in Acknowledgements.

DATA MATRIX

The data matrix used in this analysis is shown in Table 2. The codings for the ancestral taxon are based on consideration of all the panurigine outgroups listed. When the character states varied among outgroups, the most parsimonious hypothesis for the primitive condition in *Perdita* was chosen based on the rationale described in Watrous & Wheeler (1981). Terminal taxa included all the *Perdita* subgenera. The subgenus *Glossoperdita* was divided into two groups, the majority of *Glossoperdita* and *P. (Glossoperdita) huardi*, because *P. huardi* is distinct from the remainder of the subgenus *Glossoperdita* in several characters. Similarly, *Cockerellia* was broken up into the majority of *Cockerellia* species and *P. (Cockerellia) baileyae*, because *P. baileyae* lacks some of the derived characters present in the remainder of *Cockerellia*. The two groups of *Pygoperdita*, the Californica and the Interrupta groups, were treated separately, in order to test the monophyly of the subgenus.

When the plesiomorphic state of a character could be unambiguously determined based on outgroup comparison, the state was coded 0. For those characters that could not be polarized the ancestral character state was coded as unknown (? in the data matrix). Among in-group taxa, characters for which the states are not known, or which are variable within a taxon, are coded as unknown. Comments are given along with the character descriptions indicating how polarity decisions were made.

CHARACTER DESCRIPTIONS

1. **Female paraglossa slender basally but broadening apically to form broad, brush-like apex** (Fig. 3a-c); (I) paraglossa slender and acutely pointed to moderately broad and parallel-sided (Fig. 3d).

Table 2. Data Matrix for characters of *Perdita* subgenera and species groups.

<table>
<thead>
<tr>
<th>Character numbers</th>
<th>00000000011111111111222222222333</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12345678901234567890123456789012</td>
</tr>
<tr>
<td>ANCESTROR</td>
<td>0000000000000000000000000000000000</td>
</tr>
<tr>
<td>ALLOPERDITA</td>
<td>101111000022011000000001001121212</td>
</tr>
<tr>
<td>CALLOMACROTERA</td>
<td>100112210221201202120120100011212</td>
</tr>
<tr>
<td>COCKERELLIA</td>
<td>10011221202221021100110011212</td>
</tr>
<tr>
<td>COCKERER BAILEYEA</td>
<td>100112212122101210110011212</td>
</tr>
<tr>
<td>ALLOMACROTERA</td>
<td>10111221202221021100110011212</td>
</tr>
<tr>
<td>COCKERELLULU</td>
<td>00000000011111111111222222222333</td>
</tr>
<tr>
<td>EPIMACROTERA</td>
<td>100110101010100010101101110111212</td>
</tr>
<tr>
<td>GLOSSOPERDITA</td>
<td>100000101010102001001101111212</td>
</tr>
<tr>
<td>P. HURDI</td>
<td>10011010101010101010110011212</td>
</tr>
<tr>
<td>HESPEROPERDITA</td>
<td>10011110010000000000110110111212</td>
</tr>
<tr>
<td>HETEROPERDITA</td>
<td>10011111010000000000110110111212</td>
</tr>
<tr>
<td>HEXAPERDITA</td>
<td>10?112221212120201001110111212</td>
</tr>
<tr>
<td>MACROTERA</td>
<td>0000000001000000000010011101100</td>
</tr>
<tr>
<td>MACROTERELLA</td>
<td>0000000001000000000010011101100</td>
</tr>
<tr>
<td>MACROTEROPS</td>
<td>0000000001000000000010011101100</td>
</tr>
<tr>
<td>PENTAPERDITA</td>
<td>11011221202220120100110011212</td>
</tr>
<tr>
<td>PERDITA</td>
<td>1201100101010112000000110110111212</td>
</tr>
<tr>
<td>HALICTOIDES GR.</td>
<td>10001111010010110010001101111212</td>
</tr>
<tr>
<td>OCTOMACULATA GR.</td>
<td>100011111010010110010001101111212</td>
</tr>
<tr>
<td>SPHAERALCEAE GR.</td>
<td>100111111010010110010001101111212</td>
</tr>
<tr>
<td>VENTRALIS GR.</td>
<td>101110000022010010000110110111212</td>
</tr>
<tr>
<td>ZONALIS GR.</td>
<td>100111111010010110010001101111212</td>
</tr>
<tr>
<td>PERDITELLA</td>
<td>1001100101010010001010011011111</td>
</tr>
<tr>
<td>PROCOCKERELLIA</td>
<td>110112212221210110100111011212</td>
</tr>
<tr>
<td>PSEUDOMACROTERA</td>
<td>0000011100000000000020101100110101011</td>
</tr>
<tr>
<td>PYGOPERDITA</td>
<td>100012001010000000110100110110111212</td>
</tr>
<tr>
<td>CALIFORNIA GR.</td>
<td>100012001010000000110100110110111212</td>
</tr>
<tr>
<td>INTERRUPTA GR.</td>
<td>100012001010000000110100110110111212</td>
</tr>
<tr>
<td>XEROPHASMA</td>
<td>0001110000110000000110101111212</td>
</tr>
<tr>
<td>XEROMACROTERA</td>
<td>100011111010010010010011011111212</td>
</tr>
</tbody>
</table>
Both character states occur within *Perdita*, as well as within the outgroups studied (e.g., 1(1) in *Callioneichium mandibulare* and *Pterosaurus albifasciatus*; 1(0) in *Calliope andreniformis* and *Parnassius occidentalis*). Therefore, based on outgroup morphology, it is unclear what the primitive state is for *Perdita*. However, broad paraglossae appear to be related to the application of a cell lining in species of *Perdita* studied to date. Because a cell lining is plesiomorphic for the genus, based on outgroup comparison, I assume that the broad paraglossae are also primitive for *Perdita*. Although coded 1(1) in the data matrix, *P. sphæralaece* and *P. sputumone* (Ventralis group) show slight broadening of the paraglossae.

2(0) Female maxillary palpus with 6 segments (Fig. 4b, c); (1) with 5 segments (Fig. 4d); (2) with 3 segments (Fig. 4e).

All outgroup taxa studied have six-segmented maxillary palp.

3(0) Acute male genital projection lacking; (1) acute male genital projection present (Fig. 5b), at least in some specimens.

Male genital projections are lacking in all outgroups studied and therefore 3(0) is considered plesiomorphic for *Perdita*.

4(0) Male second medial cell present (Fig. 6d); (1) male second medial cell lacking, i.e., veins Cu1 and m-cu spectral (Figs. 6c, e).

In all outgroups studied and many species of *Perdita*, the veins delimiting the male second medial cell are clearly visible in transmitted light, being well sclerotized (tubular or nebulous veins in

Fig. 3. Dorsal views of labia: (a) *P. (Cockerellula) azteca*, (b) *P. (Macroteropsis) echinocacti*, (c) *P. (Macrotera) bicolor*, (d) *P. (Cockerellia) albidipennis*. Scale bar = 1.0 mm.

Fig. 4a. Lateral view of intact mouthparts of *Perdita texana*. **Fig. 4b-e.** Lateral views of maxillae, showing variation in the number of maxillary palpal segments: (b) *Parnassius occidentalis*, (c) *Perdita (Cockerellula) azteca*, (d) *P. (Procockellera) albonotata*, (e) *P. (Perdita) helvontoides*. Scale bar = 0.5 mm.
the terminology of Mason, 1986). In some species of *Perdita*, however, veins Cu1a and 2m-cu are invisible in transmitted light (spectral, in Mason's terminology) and therefore the second medial cell is lacking. All female *Perdita* possess a complete second medial cell.

5(0) Pre-episternal groove absent or present but not extending to scrobe (Figs. 7b); (1) Pre-episternal groove plus scrobal groove together forming C-shaped sulcus extending from upper edge of mesepisternum (below the forewing articulation) to scrobe (Fig. 7a).

Primitively, bees appear to possess two grooves on the mesepisternum. For example, in most Colletidae and Halictidae (excluding Nomiinae) there is a conspicuous pre-episternal groove extending downward from the upper margin of the mesepister-
PHYLOGENY AND TAXONOMY OF *PERDITA*

643

Fig. 8. Lateral views of thoraces. (a) *Lasioglossum zephyrum* (Halictidae), (b) *Pterosarus albitarsus*, (c) *Perdita texana*, (d) *Perdita albipennis*. Scale bar = 1.0 mm.

num, immediately below the forewing base (Fig. 8a). In most Colletidae this groove is very long and can reach the underside of the mesepisternum. Extending posteriorly from the pre-episternal groove and usually ending at the scrobe is the scrobal groove (Michener, 1944). Most outgroups possess only the extreme upper portion of the episternal groove and no trace of the scrobal groove (e.g., *Arhysosageflava*, *Pterosarus albitarsus*, Fig. 8b), while some others show no sign of either groove (e.g., *some Calliopsis*). In *Perdita* some species, like the outgroups, show no sign of a scrobal or pre-episternal groove (Fig. 8c). In the vast majority of *Perdita* species, however, there is a discrete groove extending from the upper margin of the episternum to the scrobe (e.g., *Perdita albipennis*, Fig. 8d). This groove appears to consist of both a pre-episternal groove (dorsally) and a scrobal groove (immediately anterior to the scrobe). Ruz referred to the entire groove as simply the pre-episternal groove. Because this state was not seen in any panurgine outgroups (except *Acamptopoeum*) it is considered derived for *Perdita*, in spite of the fact that similar grooves extending to the scrobe are present in many, more distantly related bees (e.g., some Apidae).

6(0) Male S7 with posterior margin straight or with weak emargination (Fig. 9a,b); (1) posterior margin moderately emarginate (depth of emargination equal to length of sclerite at midline) (Fig. 9c,d); (2) posterior margin deeply emarginate such that depth of emargination much greater than length of sclerite at midline (Fig. 9e,f); (3) emargination of S7 extreme, such that S7 appearing as two lateral, quadrate plates connected by thin bar of cuticle (Fig. 9g,h).

Some outgroups studied (those species in the Calliopsini and Melitturgini) have the male S7 highly modified in comparison to the anterior sternum and in comparison to those of *Perdita*, and therefore provide little information on character polarity within *Perdita*. Species in the Anthemurgini and Panurgini, however, have state 6(0), and this character state is considered plesiomorphic for *Perdita*.

7(0) Male S8 elongate and slender except for apodemal arms and with anterior end at most slightly expanded laterally (Fig. 9a,c,d,e); (1) apex expanded laterally and obtuse, and anterior end of disc expanded laterally or forked (Figs. 133-139, 141-153; Timberlake, 1954) (Fig. 9b); (2) disc of S8 expanded laterally and deeply forked anteriorly (Figs. 154-172; Timberlake, 1954) (Fig. 9f-h).

Fig. 7. Lateral views of thoraces [SEM]. (a) *P. (Macroteropsis) portaltis* [scrobal groove present], (b) *P. (Perdita) octomaculata* [no groove].
Fig. 9. Male S7 and S8, ventral views. (a) Perdita (Macrotera) texana, (b) P. (Epimacrotera) euphorbae, (c) P. (Perdita) sphaeralcea, (d) P. (Perdita) octoraculata, (e) P. (Perdita) zonalis, (f) P. (Hexaperdita) bishoppi, (g) P. (Cockerellia) coreopsidis, (h) P. (Procockerellia) albonotata. Scale bar = 0.5 mm, except where indicated.

The male S8 can be divided into a region anterior to the apodemes (disc) and a region posterior to the apodemes (apex), which is usually exposed at the apex of the male metasoma. Because the near outgroups of *Perdita* (Calliopsini and Meliturgini) have the male S8 unlike those seen in *Perdita*, I used the Panurgini and Andreninae to polarize this character.

8(0) Antecosta of female S6 unmodified (Fig. 10c,d); (1) antecosta of female S6 with faint, sclerotized ridge on internal surface extending posteriad from bend of antecosta (Fig. 10e,f).

Character state 8(1) can only be seen in disarticulated sixth sterna under transmitted light. The paired ridges are visible as faint lines extending posterolaterally from the angles on the antecosta at the junction of the apodemal arm and the disc of the sternum. This faint ridge is absent in all outgroups studied.

9(0) Lateral margin of female S5 straight (Fig. 10a); (1) lateral margin of S5 with small emargination (Fig. 10b).

The emargination is lacking in all outgroups studied and in some *Perdita*. Therefore, 9(0) is considered plesiomorphic for *Perdita*.

10(0) Outer groove of mandible as in most bees, a narrow groove apically but basally broadening to form the outer interspace (Fig. 11a) (terminology based on Michener & Fraser, 1978); (1) outer groove of mandible remaining discrete basally and extending diagonally across mandible to acetabulum, forming discrete outer mandibular sulcus in both sexes (Fig. 11b).

The discrete outer mandibular sulcus is absent in all outgroups studied. This character is apparently related to the dispersal of mandibular gland product because the mandibular gland opens at the base of this sulcus, near the mandibular acetabulum.

11(0) Lateral surfaces of male pronotum unmodified (Figs. 12a, 13a); (1) internal lateral surface of male pronotum with paired
Fig. 11. Mandibles, lateral view [SEM]: (a) *P. octomaculata* (male) [showing lack of sulcus], (b) *P. texana* (male) [showing sulcus present].

dorso-lateral carinae (Fig. 12b); (2) lateral surface of male pronotum with deep groove visible externally (carina may be continuous dorsally with groove) (Figs. 13b,c).

Like the corresponding female pronotal character (character 21), this character is best seen in cleared specimens. The character states are similar to those of character 21, but because the taxonomic distribution of the two characters differs they are not redundant. For example, although the presence of a deep groove in female pronota is found in only one subgenus (*Callomacrotera*), deeply grooved male pronota are found in at least four subgenera. All outgroups studied had 11(0).

12(0) Scopal hairs arising from flattened outer surface of tibia simple; (1) branched; (2) finely crinkled and unbranched.

In many species the hairs on the outer edges of the tibia are minutely branched but this character relates only to the setae on the flattened central portion. All outgroups examined had simple scopal hairs. Finely crinkled scopal hairs occur in some species within *Pterosarus* and *Pseudopanurgus*, and appear in these genera, as in *Perdita*, to be associated with carrying pollen of Asteraceae (J. Neff, pers. comm.).

13(0) Male hind basitibial plate present and well defined; (1) weak (rim, though complete, weakly distinguished from surrounding area); (2) absent (rim delineating plate incomplete).

All outgroups possess well-developed basitibial plates.

14(0) Female hind basitibial plate present and well defined; (1) absent.

15(0) Male tarsal claw pattern 2-2-2; (1) 2-2-1.

A "2" indicates a bifid claw and "1" indicates a simple claw. All outgroups have bifid tarsal claws, both in males and females (Character 16).

16(0) Female tarsal claw pattern 2-2-2; (1) 2-1-1; (2) 1-1-1.

17(0) Upper margin of male mandible lacking medial dilation; (1) upper margin with single acute projection originating at base (as
Fig. 13. Male pronota, lateral and dorsal views: (a) *P. (Macrotera) texana*, (b) *P. (Procockerellia) albonotata*, (c) *P. (Cockerellia) coreopsidis*. Anterior is to the left. Scale bar = 1.0 mm.

In most species of *Perdita*, and all outgroups studied, the male T7 differs from the previous terga in that the lateral edges are wrapped more ventrally, giving it a more tubular shape. There is a very weakly defined pygidial plate in some species, and there are usually stout, finely branched setae apically. In contrast, species in the subgenus *Pygoperdita* possess conspicuous single or paired ventrally-directed lamellae along the distal margin. Timberlake (1956:275) distinguished two groups within the subgenus *Pygoperdita* (Californica and Interrupta groups) based on this character, but the distinction between the two groups is weak. Based on outgroup comparison, 20(0) is plesiomorphic for *Perdita*. (See Timberlake, 1956:337-367 for illustrations of male T7 in *Pygoperdita*.)

21(0) Female pronotum lacking internal dorso-lateral carinae and grooves; (1) acute, lamellate internal dorso-lateral carinae present; (2) deep, dorso-lateral impression present.

In cleared pronota of *P. laticauda* one can see distinct internal carinae continuous dorsally with the dorsal internal carina. The lateral carinae end at about 1/4 to 1/3 the height of the pronotum in lateral view (21[1]). In some species (*P. maritima*) the internal carina is lacking, but at roughly the same position one sees a deep inpocketing of the cuticle to form an interior projection (21[2]). The similarity in the positions of the deep impression and of the lateral carina lead me to believe they are homologous. Finally, in other species there is no indication of a carina or deep impression (e.g., *P. texana*; 21[0]). At first glance *P. turgicope* apparently lacks the internal carina; however, on close inspection one can see a minute carina. All outgroups studied possess 21(0).

22(0) Antero-dorsal rim of male pronotum unmodified (Fig. 13a); (1) antero-dorsal rim of male pronotum with small transverse projection or collar (Fig. 13b,c).

In lateral view, the male pronotum of some species (e.g., *P. mitchelli*, *P. maritima*, *P. zonalis*) has a prominent dorsal projection or bump at the leading edge of the pronotum (just behind the head). This projection is formed as a result of a deep transverse sulcus passing very near the anterior rim of the pronotum. When the transverse sulcus passes across the pronotum roughly at the midpoint of the pronotum, no prominent projection is formed anterior to the sulcus. The trait is especially pronounced in males, but a similar character is found in female pronota. All outgroups studied lack the projection.

23(0) Antero-medial angle of the prosternal apophysis in females prominent, acute and located more dorsally; (1) inconspicuous, obtuse and located more ventrally.

In lateral view of the female prosternum, one sees two sets of paired processes projecting anteriorly from the dorsal, anterior corner of the sternal apophysis. The postero-dorsal angle of each propleuron articulates with the prosternum at a broad, depressed area, set off from the rest of the prosternal apophysis by a low carina, between these two processes. Michener (1944) called these processes the antero-medial angle of the apophysis (the more ventral process) and the antero-dorsal angle of the apophysis. In most species of *Perdita* (e.g., *P. lacteipennis* and *P. halictoides*), the antero-medial angle is prominent, acutely pointed and located close to the antero-dorsal angle. However, in the subgenus *Pseudomacrotera* the antero-medial angle is much less prominent, obtuse and is located more ventrally, as in some outgroups (e.g., *Acamptopoecum primitii* and *Meliturga clavicornis*). Both states of this character are present in the outgroups so it is impossible to polarize this character.
in lateral view. All outgroups studied, except Acamptopoeum prini, have the tentorial bridge dorsal to the proboscidial roof, with the two separated by a thin lamella (25(0)).

26(0) Occipital region in male unmodified; (1) occipital region with paired arcuate carinae on either side of occipital foramen (pre-occipital carinae) (Fig. 5c).

In dorsal view of the occipital region of the head one sees two sharp carinae on either side of the occipital foramen in the males of some species (e.g., P. (Hexaperditia) bishopi). Most species of Perditia and all outgroups studied lack such carinae.

27(0) Second submarginal cell lacking (two submarginal cells; Fig. 6c, d); (1) small, triangular, intercalary second submarginal cell present (three submarginal cells; Fig. 6e).

In five species of the subgenus Alloperditia and in all species of Xerophasma, a small second submarginal cell is present. In all other species of Perditia there are only two submarginal cells. Based on their shape and position, it is likely that the two submarginal cells present in most species of Perditia are homologous to the first and third submarginal cells in those species possessing three submarginal cells. Because all outgroups, except Melitturga clavicornis, lack the second submarginal cell, it is most likely a derived state within Perditia. Timberlake (1956:271-273), however, considered the possession of three submarginal cells primitive for Perditia. For bees as a whole three submarginal cells is certainly plesiomorphic, but the second submarginal cell of many bees and the small triangular cell seen in a few Perditia species are probably not homologous.

28(0) In females, graduli present, in some form, on S2-S5 (Fig. 15a); (1) graduli entirely lacking on S2-S5 (Fig. 15b).

All species of Perditia studied lack graduli on S2-S5. Because all pantidine outgroups studied have either medial, paired lateral, or complete (continuous medial and lateral portions) graduli, the lack of sternal graduli is considered a synapomorphy of Perditia.

29(0) Broad pale membranous line on antero-lateral corner of female T5 absent or present but not reaching the spiracle (Fig. 16a); (1) slender pale membranous line reaching, or nearly reaching, spiracle (Fig. 16b, c).

In all species of Perditia the female T5 in lateral view has narrow transparent membranous lines extending from the antero-lateral corners, just beneath the apodemes, posteriorly to the spiracles. Homologous pale regions are present in other terga but are most easily seen in T5. These pale regions are membranous and allow the lateral portions of the terga to move with respect to the dorsal part, possibly allowing dorso-ventral expansion and contraction of the metasoma. Since these membranous areas are small and do not reach the spiracle in any of the outgroup taxa studied, their presence is considered a synapomorphy of Perditia.

30(0) Pale membranous line on female T1 narrow and passing beneath spiracle; (1) line broad, enclosing spiracle; (2) line absent or present but not reaching spiracle.

In all outgroup taxa studied there are paired transparent membranous lines extending backwards from the antero-lateral corners of T1, passing beneath the spiracle and ending somewhat posterior of each spiracle. This state has been found in only one species of Perditia, P. burgessi, and is considered primitive for Perditia.

31(0) Pale membranous line on antero-lateral corners of male T6
Fig. 15. Female sternum 2-5. (a) Pterosarus albitarsus, (b) Perdita (Callomacrotera) maritima.

absent (Fig. 16d, c); (1) pale membranous line reaching, or nearly reaching, spiracle (Fig. 16f).

Because the outgroup taxa studied lack the membranous line, 31(0) is considered primitive.

32(0) Posterior margin of female S1 straight or very slightly emarginate medially (Fig. 17a); (1) margin deeply but gradually and obtusely emarginate (Fig. 17b); (2) margin deeply and acutely emarginate medially (Fig. 17c).

All outgroups lack a pronounced medial emargination and therefore 32(0) is considered primitive.

PHYLOGENETIC ANALYSIS

The data matrix was analyzed two ways. In the initial analysis, all of Timberlake’s subgenera were included except for the monotypic Xeromacrotera (P. cephalotes), which is only known from the male. The placement of P. cephalotes is discussed in a second analysis, presented below. In the analyses, all characters were treated as unordered (non-additive) except for multistate characters 2, 6, 13 and 32, for which the character states could be logically connected by a linear sequence (e.g., character 2: maxillary palpi 6-segmented -> 5-segmented -> 3-segmented).

In the first analysis the m*, bb* options of Hennig86 resulted in 12 equally parsimonious trees of length 84 and con-

Fig. 16. Lateral views of female T5 and male T6. Female T5: (a) Pterosarus albitarsus, (b) Perdita (Cockerellula) anthracina, (c) P. (Cockerellia) albipennis. Male T6: (d) Pterosarus albitarsus, (e) Perdita latior, (f) P. (Glossoperdita) pelargoides. Scale bars = 0.5 mm.

Fig. 17. Female S1. (a) P. (Cockerellula) laticauda, (b) P. (Epi- macrotera) euphorbeae, (c) P. (Perdita) zonalis. Scale bar = 0.25 mm.
Fig. 18. Consensus tree of 6 equally parsimonious trees for subgeneric analysis. The subgenus Perdita includes the Halictoides, Octomaculata, Sphaeralceae, Ventralis and Zonalis groups.

Monophyly of Perdita. The monophyly of the genus is supported by three unique and un-reversed characters (Fig. 20): the presence of an internal median cephalic lamella, not known to occur in any other bees (24[1]; Fig. 14); the lack of sternal graduli in females (28[1]); and (3) the presence of a pale membranous line extending to the spiracle on the lateral edges of the female S6 (29[1]).

Based on Luisa Ruz’s phylogeny of the Panurginae (Ruz, 1991), the monophyly of Perdita is supported by three additional unique and unreversed characters: (1) the male sixth sternum is three or more times broader than long (90[1]), whereas in the remainder of the panurgines S6 is at most only slightly broader than long (Fig. 21a), (2) the marginal cell is shorter than the distance from its apex to the wing tip (46[2]) and (3) the first valvifer is elongate rather than triangular (129[1]), as it is in the other panurgines. The first of these characters is variable within Perdita. While some species show a very slender male S6 (Fig. 21a,c,d), others (e.g., P. echinocacti, Fig. 21b) have a male S6 which is only twice as broad as long. Therefore, this character cannot be considered a synapomorphy of the genus. The marginal cell character holds for all species I studied. I did not investigate the third character so I cannot reject it as a synapomorphy of Perdita.

Relationships among the Perdita Subgenera. The monophyly of the subgenera Macrotera, Macroteropsis, Macroterella, and Cockerellula (herein called the Macrotera group) is supported by two characters (Fig. 20). Character 10(1), the presence of a discrete sulcus on the outer surface of the mandibles of both males and females, is a unique and unreversed synapomorphy of these four subgenera. Character 30(1) also supports the Macrotera group but arose convergently in the Sphaeralceae group of Perdita sensu stricto as well. The Macrotera group appears to form the sister group to a monophyletic group including all the remaining subgenera (Pseudomacrotera, plus all the taxa to its right; Fig. 20). The species-level phylogenetic relationships of the Macrotera group will be presented below.

Interestingly, the placement of the Macrotera group at the base of the tree is consistent with the existence of ple-
siomorphic behavioral characters in the species which have been studied so far. The placement of larval fecal material on the rear wall of the cell in *P. (Macrotera) texana* (Neff & Danforth, 1991), *P. (Macrotera) pipiyolin* (Rozen & Michener, pers. comm.), *P. (Macroteropsis) portalis* (Danforth, 1991a) and *P. (Macroterella) mellea* (Rozen, pers. comm.) is similar to the placement of fecal material in the non-*Perdita* Panurginae (Rozen, 1967). However, in species of the more derived *Perdita* that have been studied (e.g., the subgenera *Perdita* and *Cockerellia*), feces are placed on the venter of the larva (Rozen, 1967; Danforth, 1989b). Similarly, the presence of a hydrophobic lining on the inner surface of the cell is shared by *P. texana*, *P. bullocki*, *P. (Macroteropsis) latior* (Danforth, pers. obs.), *P. portalis* and *P. mellea*, as well as the non-*Perdita* panurgines (Rozen, 1989).

The monophyly of the group *Pseudomacrotera* plus all the groups to its right, is supported by three characters: the presence of a c-shaped pre-episternal groove extending from the forewing base to the scrobe (5[1]), the presence of internal dorso-lateral carinae in the female pronotum (21[1])

![Fig. 19 a-f. Six equally parsimonious resolutions of the consensus tree shown in Fig. 18.](image-url)
and the presence of a pale, membranous line which reaches the spiracle on the male T6 (31[1]), although this last character is reversed in the group Heteroperdita + P. hurdi + Epimacrotera.

The group including the subgenus Pygoperdita and the subgenera to its right in Fig. 20 is also well supported by unique features. This group I refer to below as the "higher Perdita." Character 1(1), the possession of slender, acutely pointed female paraglossae, is present in all of the higher Perdita, except the subgenus Xerophasma. Although the outgroups were variable for this character, the derived state for Perdita appears to be 1(1). It is likely that the broad, brushlike paraglossae (1[0]), seen in the subgenera belonging to the Macrotera group, are used in the application of the hydrophobic coating to the cell wall. I have seen female P. portalis construct cells in observation nests and in the final
stages the walls of the cell were brushed with the paraglossae, apparently in the application of the hydrophobic cell coating (Danforth, 1991a).

Other characters which support the monophyly of the "higher Perdita" are 30(2), 9(1), the small emarginations on the lateral margins of the female S5, and 11(1), the carinae on the internal surface of the male pronotum, although the latter two characters had low consistency (ci = 25 and 50, respectively).

The subgenus Pygoperdita is clearly monophyletic based on the present analysis. In all species the seventh tergum in the male (character 20) has either paired, ventrally-directed lamellate lobes (in the Califomica group) or a single, ventrally-directed bifid lobe (in the Interrupta group). Because these two states intergrade (making placement of some species difficult for Timberlake [1954]), and because there are no similar structures in other members of Perdita, these two conditions are considered homologous and synapomorphic for the subgenus Pygoperdita. The monophyly of this subgenus is further supported by the deeply divided male S7 (6[2]). Although a similarly divided S7 occurs elsewhere in the tree (uniting the Zonalis group and the subgenera to its right in Fig. 20), numerous characters support the hypothesis that these states have arisen independently.

The subgenera Hesperoperdita, Epimacrotera, Heteroperdita and one species previously placed in the subgenus Glossoperdita, P. hurdi, form a monophyletic group united by the uniquely shaped male S8 (7[1]). It is clear from this analysis that P. hurdi does not belong with members of Glossoperdita. The shape of the male S8 (7[1]) and the lack of the male second medial cell (4[1]) place P. hurdi as the sister group to Heteroperdita. Although this group of three subgenera plus P. hurdi appears to be monophyletic, the subgenera included in it are not all necessarily monophyletic.

According to Timberlake (1954:377), Epimacrotera is "similar and closely allied to Glossoperdita." Timberlake later stated that "it is now becoming evident that Glossoperdita and Epimacrotera may intergrade more or less completely" (1960:129). I have found no synapomorphies for Epimacrotera. A possible synapomorphy mentioned by Timberlake (1954:377) is the presence of upturned hairs along the lower margin of the scopula, but I was unable to see such hairs. Females of P. diversa have a very unusual hind basitibial protubrance, which does not appear to be homologous to the basitibial plate in other species. This character may prove useful for resolving the relationships within this subgenus.

Hesperoperdita is apparently a monophyletic subgenus. P. rufoforma possesses an unusual tarsal claw pattern in the female, with a very small basal tooth on the mid and hind tarsal claws, making them appear simple, and a larger basal tooth on the fore-tarsal claws, giving them a bifid appearance (16[1]). According to the phylogenetic analysis, the weakly defined basitibial plate in Hesperoperdita (13[1]) is also a synapomorphy of the subgenus, but this character had rather low consistency (ci = 20).

There is little doubt that the subgenus Heteroperdita is monophyletic. Synapomorphies of the group are the following: (1) postero-ventrally directed setae on either side of the proboscidial fossa in females, (2) yellow maculation on male metanotum and/or propodeum, and (3) white, closely appressed hairs over the head and mesosoma.

The greatest source of ambiguity in this analysis involves the polytomy in Fig. 18 that includes the Halictoides, Octomaculata and Sphaeracoelae groups, Perditella, Glossoperdita, the monophyletic group of Xerophasma + (Alloperdita + Ventralis group) and the monophyletic group including the Zonalis group and the subgenera to its right. The monophyly of this entire group is supported by the acutely emarginate posterior edge of the female S1 (32[2]; Fig. 17c). Figures 19a-f show the six equally parsimonious resolutions of the polytomy. I prefer the tree shown in Fig. 19a as the most likely resolution because the characters whose homologies I am most confident of (6 and 8) have the highest consistency indices in this resolution (ci = 42 and 100, respectively). Intuitively, I believe that the Sphaeracoelae and Octomaculata groups are closely related to the monophyletic group of Zonalis and the groups to its left. The fact that there are several resolutions of this polytomy indicates real uncertainty about the relationships among these groups, and a need for more characters at these nodes.

Based on the characters included in this study, Glossoperdita is clearly polyphyletic, with at least one species, P. hurdi, belonging elsewhere, as discussed above. Timberlake originally considered this group distinct because of the elongate glossae; many species visit flowers in the Polemoniaceae. As mentioned above, he later conceded (1960:129) that the distinction between Glossoperdita and Epimacrotera, based primarily on glossa length, was weak. P. hurdi differs from other members of Glossoperdita studied in lacking a second medial cell in the male, in lacking a pollex on the male mandible and in having a short galeal comb (P. [G.] pelargoides lacks...
a galeal comb). *P. hurdi* is larger than other members of *Glossoperdita*. Synapomorphies of *Glossoperdita*, excluding *P. hurdi*, are a distinctive pattern of metasomal maculation in males (a central yellow bar and two lateral yellow spots along the posterior margin of each tergum) and a rectangular head longer than wide.

The Halictoides group of *Perdita* sensu stricto is united by the greatly reduced maxillary palpi (2(2]), and, in this analysis, by the reduced male basitibial plates (13(2]).

The subgenus *Xerophasma*, which contains two highly apomorphic, nocturnal species, is clearly monophyletic. Both species are very large, entirely pale and have enlarged compound eyes and ocelli (Fig. 5d).

Alloperdita is united by three characters; however, none provides very convincing evidence that this subgenus is monophyletic. Characters 6(1) and 13(1) have arisen elsewhere in the tree. Character 27(1), the presence of a small, triangular, intercalary submarginal cell (Fig. 6e), may have arisen independently in *Alloperdita* and *Xerophasma* (Fig. 20) or, equally parsimoniously, may have arisen once in the common ancestor of *Xerophasma*, *Alloperdita* and the Ventralis group, and then reversed to the plesiomorphic state in the Ventralis group. This character is variable within some species and even in some individuals, with one wing showing three submarginal cells and the other just two. The elongate, stout antennae of males is the strongest synapomorphy of *Alloperdita*.

Alloperdita and the Ventralis group are united by two characters: 3(1), the presence of male genal projections and 11(2), deep, acute grooves in the lateral surfaces of the male pronota. The latter character is also found in the monophyletic group including *Hexaperdita* plus all the groups to its right.

The subgenus *Perditella* is apparently polyphyletic. At least two species (*P. larreae* and *P. cladotothrix*) possess characters which are shared by members of the *Cockerellia* group: deep impressions in the lateral surfaces of the male pronotum and male occipital carinae. The characters used by Cockerell and Timberlake to recognize this group were small size, enlarged stigma, small, triangular second submarginal cell and shortened marginal cell (Timberlake, 1956:267). All the wing venational characters are highly correlated with body size and therefore may be poor indicators of phylogenetic relationship (Danforth, 1989a). For the purposes of this preliminary phylogenetic analysis, I used *P. minima* as a representative species.

The monophyletic group of the Zonalis group plus the 6 subgenera to its right in Fig. 20 is supported by the deeply emarginate male S7 (6[2]). The group of subgenera including *Hexaperdita, Callomacrotera, Pentaperdita, Allomacrotera, Procockerellia* and *Cockerellia* clearly form a monophyletic group which I will refer to below as the *Cockerellia* group. Characters supporting this group include male S7 morphology (7[2]), male pronotal morphology (11[2]), scopal hair structure (12[1]) and the female tarsal claw pattern (16[2]). The relationships among the members of the *Cockerellia* group are well supported; the characters in this portion of the tree have high consistency and in all previous analyses of these data, this group showed virtually the same pattern of relationships.

The hypothetical transformation series shown in Fig. 20 for character 2 deserves some explanation. According to the present analysis, reduction in the number of maxillary palpal segments is considered a synapomorphy of the group including *Pentaperdita, Allomacrotera, Procockerellia* and *Cockerellia*, with a reversal to the 6-segmented condition in *Cockerellia*. Although such a reversal seems unlikely, the alternative hypothesis, that reduced maxillary palpi is a synapomorphy of *Pentaperdita, Procockerellia* and *Allomacrotera*, is incongruent with characters 6(3) and 15(1), which unite *Procockerellia* and *Cockerellia*. Analysis of the data matrix with character 2 treated as unordered resulted in the same pattern of relationships.

While the *Cockerellia* group of subgenera is clearly a monophyletic group, the subgenera which make up this group are not necessarily themselves monophyletic. For example, no unique and unreversed characters were found to support the monophyly of the subgenus *Hexaperdita*. *Hexaperdita* is united by the possession of an occipital carina in males (26[1]; Fig. 5c), although this character has arisen in *Cockerellia* as well. A character of many, though not all, species of *Hexaperdita* is the possession of a carina at the posterior margin of the male mandible, near the base. This carina was not seen in members of any other subgenera or outgroups.

One species, *P. cara*, lacked both preoccipital carinae and deep grooves in the lateral surfaces of the male pronotum. *P. cara* is also very small in comparison to other species of *Hexaperdita*. Placement of *P. cara* remains unclear, but it most likely belongs elsewhere in the genus.

The subgenus *Callomacrotera*, containing only two described species, is clearly monophyletic. Synapomorphies include the acute basal tooth on the inner surface of the female mandible, the large, robust body form, and the depressions on the dorso-lateral corners of the male pronotum (21[2]). Both species also have a highly modified male clypeus. In *P. maritima* the male clypeus is densely clothed with erect setae. In *P. acapulcosa* the male clypeus is depressed and with an apical fringe of long setae overhanging the labrum.

Timberlake referred to the reduced number of maxillary palpi and the bifid metatarsal claws as features uniting *Pentaperdita* (Timberlake, 1954:404). In the present analysis the tarsal claw character is considered plesiomorphic (15(0)], and reduction in the number of maxillary palpal segments is considered a synapomorphy of the group including *Pentaperdita, Allomacrotera, Procockerellia* and *Cockerellia*, with a reversal to the 6-segmented condition in *Cockerellia*. I was unable to find any convincing synapomorphies of *Pentaperdita*.

Although the members of *Cockerellia* are a seemingly homogeneous group, there were few obvious synapomorphies uniting them. In Fig. 20, although three characters appear as synapomorphies of *Cockerellia*, 2(0), 9(0) and 26(1), two are reversals to the plesiomorphic state and one occurs elsewhere on the tree (26[1] has arisen independently in
Hexaperdita as well). One potential synapomorphy of Cock­
ereilla, not included in the analysis, can be seen in the shape
of the male genital capsule in lateral view. In all species stud­
ied (excluding P. baileyae) there are paired, acutely pointed
projections on the ventro-medial surfaces of the apices of the
gonocoxites (see Figs. 75-90 in Timberlake, 1954).

Because only one species of Procockerellia was studied, it
is impossible to comment on the monophyly of the group.
However, a possible synapomorphy is the deeply divided male
sixth sternum with paired apical protuberances clothed in
elongate setae (Fig. 21d). Prococherellia and Cochereilla are
united by the shape of the male S7 (6[3]) and the unique
male tarsal claw pattern (15[1]).

It is clear from this analysis that the subgenus Perdita, rep­
resented in Figs. 18-20 by the Halictoides, Ventralis, Sphaer­
aliceae, Octomaculata and Zonalis groups, is not monophyletic.
Although some of the species groups within Perdita s. str. (e.g., Halictoides and Octomaculata groups) are likely to be monophyletic, the subgenus as a whole is
made paraphyletic by the Cockerellia group.

Placement of the Subgenus Xeromacrotera. The placement
of the subgenus Xeromacrotera is problematic because this
subgenus is known only from the males of P. cephalotes. There­
fore, many of the characters are unknown for this subgenus,
and, in the initial analysis, it was left out. Based on overall
appearance and size, P. cephalotes appears closely related to
Prococherellia and/or Allomacrotera. However, P. cephalotes lacks
the derived tarsal claw pattern which unites Cockerellia and
Prococherellia (15[1]) and lacks the reduced number of max­
illary palpal segments shown by Pentaperdita, Prococherellia
(5-segmented) and Allomacrotera (3-segmented). Timberlake
considered this species to be closely related to Pentaperdita
because "the maxillary palp tend to be five jointed" (1954:412).
The one male whose mouthparts I dissected clearly has 6-segmented maxillary palp.
In order to make a preliminary hypothesis of the rela­
tionships between Xeromacrotera and the other Perdita sub­
genera, I included Xeromacrotera in a second analysis of the
subgeneric data matrix (Table 2). In this analysis characters
were treated as in the first analysis. Using the n*, bb* options of Hennig86 I found 60 trees of length 79, and a
consistency index of 56, as in the original analysis. The same
resolutions of the polytomies involving Glossoperdita, the Hal­
ictoides group, Perditiella, etc. were found, and the trees produced by the two analyses are identical except for the
relationships within the Cockerellia group. There were 5
equally parsimonious placements of Xeromacrotera (Fig. 22a­
e). The consensus tree of these five equally parsimonious
resolutions is shown in Fig. 22f.

Based on the analysis, Xeromacrotera clearly belongs to
the monophyletic Cockerellia group, which is united by male
characters 7(2) and 11(2) and female characters 12(1) and
16(2). The placement of Xeromacrotera at the base of this
group is essentially determined by three characters. Char­
acters 7(2) and 11(2) place Xeromacrotera within the mono­
phyletic Cockerellia group and the possession of six-segmented
maxillary palpi requires that this species be allied to the basal
members of the clade (Callomacrotera and Hexaperdita),
which retain the pleiomorphic, six-segmented condition.

The variable placement of Xeromacrotera within the Cock­
erellia group is due more to lack of data than to conflicting
characters. This is indicated by the fact that of the seven
characters responsible for altering the topology of the trees
shown in Fig. 22 (characters 9, 12, 16, 18, 21, 25) all are un­
known for P. cephalotes.

PHYLOGENETIC RELATIONSHIPS AMONG SPECIES
IN THE MACROTERA GROUP OF SUBGENERA

Having established the monophyly and the position of the four subgenera Macrotera, Macroteropsis, Cockerellula and
Macrotera, I present a phylogeny of the 31 species in these
four subgenera. A revised classification is presented, based
on this phylogeny, along with a key to species and diagnoses
of species and subgenera.

Table 3 lists the species included in this study, based on
Timberlake's classification, and a revised classification,
based on results presented below.

DATA MATRIX

The data matrix for this analysis is shown in Table 4. The first three taxa are outgroups. "Panurginae" refers to
the non-Perdita Panurginae used as outgroups in the sub­
genic phylogeny. A second outgroup taxon, "Perdita," rep­
resents the members of Perdita which belong to the "higher
Perdita" discussed above. Finally, P. (Pseudomacrotera) turgicops
was included as an outgroup, because, although this species
does not belong to the groups here treated, it is clearly near
the base of the Perdita phylogeny, and is useful for charac­
ter polarization.

The remaining 27 taxa listed in Table 4 are members of the
ingroup. Although there are a total of 31 species in this
group (see species diagnoses), 4 species are known only from
female specimens, and hence could not be included in the
phylogenetic analysis because of lack of data. It was nev­
ertheless possible to place them within the classification based
on female characters.

As in the subgeneric data matrix, pleiomorphic charac­
ter states are all coded 0. For those characters which could
not be polarized based on outgroup comparison, the an­
cestral character state was coded as unknown (? in the data
matrix). P. seminigra is known only from the holotype male,
so female characters are missing for this species.

CHARACTER DESCRIPTIONS

(0) Female paraglossae slender basally but broadening apically to
form broad, brush-like apex; (1) paraglossae slender and acutely
pointed to moderately broad and parallel-sided.

This character was used in the subgeneric analysis (character
1).

2(0) Outer groove of mandible as in most bees, a narrow groove
apically but basally broadening to form the outer interspace; (1)
outer groove of mandible remains discrete basally and extends di-
agonally across mandible to acetabulum, forming discrete outer mandibular sulcus (present in both sexes).

This character was used in the subgeneric analysis (character 10).

3(0) Pre-episternal groove present and not extending to scrobe or absent; (1) Pre-episternal groove plus scrobal groove together forming c-shaped sulcus extending from upper edge of the mesepisternum (below the forewing articulation) to scrobe.

This character was used in the subgeneric analysis (character 5).

4(0) Maxillary palpus relatively long; distal segments (segments 3 to end) subequal to, or slightly shorter than, proximal segments and all segments distinct (Fig. 27); (1) Maxillary palpus relatively short due to greatly foreshortened distal segments (Fig. 36a,b).

All non-Perditia outgroups possess state 4(0). Within Perditia some groups (e.g. Pentaperditia, Procockerellia and the Halictoides group of Perditia sensu strictu) have reduced maxillary palpi, but the distal-most segments are not conspicuously foreshortened relative to the basal segments.

5(0) In females, maxillary palpus 6-segmented (Fig. 27, 36a,c,d);
Furthermore, the apex of the first segment of the labial palpus in groups appear to be distantly related to the species (Fig. 36b). All outgroups possess state 5(0). However, other species of *Perdita* in which the second segment arises subapically is acutely pointed while in *C. mandibulare* it is blunt and quadrate apically. This observation suggests that the subapical placement seen in *Perdita* and *C. mandibulare* are not homologous.

7(0) First labial palpal segment longer than (usually two or more times as long as) remaining segments combined (Figs. 27b,d); (1) first labial palpal segment roughly equal to or shorter than remaining segments combined (Figs. 27c,d). All non-*Perdita* outgroups studied except *Panurginus occidentalis* and *Heterosarus illinoensis* have character 7(0), which is considered plesiomorphic for *Perdita*.

8(0) Sclerotized rods on sides of aedeagus lacking setae; (1) small patches of stout setae on lateral surfaces of aedeagal sclerotization (penis valves) (Fig. 37d, 38e, 39c). All outgroups possess 8(0). It is often necessary to pull the aedeagus out of the genital capsule to see this character.

9(0) Male T7 lacking discrete pygidial area apically (Figs. 32c, 33c, 34c); (1) male T7 with raised pygidial area apically, separated from surrounding cuticle by parallel, acute carinae (as in *P. echinocacti*; Fig. 38c); (2) triangular pygidial area apically (as in *P. bicolor*).

Because this character was variable both in the non-*Perdita* and *Perdita* outgroups it was treated as unpolarized.

<table>
<thead>
<tr>
<th>Table 3. Classification of the basal clade of Perdita.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timberlake (1954-1980)</td>
</tr>
<tr>
<td>Macrotera</td>
</tr>
<tr>
<td>Smith</td>
</tr>
<tr>
<td>bicolor Smith (type sp.)</td>
</tr>
<tr>
<td>crassa Timb.</td>
</tr>
<tr>
<td>texana texana (Cresson)</td>
</tr>
<tr>
<td>texana abusa Timb.</td>
</tr>
<tr>
<td>secunda Ckll.</td>
</tr>
<tr>
<td>sinaloana Timb.</td>
</tr>
<tr>
<td>Macroteropsis</td>
</tr>
<tr>
<td>Ckll.</td>
</tr>
<tr>
<td>anthracina Timb.</td>
</tr>
<tr>
<td>arcuata arcuata Fox</td>
</tr>
<tr>
<td>arcuata dinogathia Ckll.</td>
</tr>
<tr>
<td>atrelia Timb.</td>
</tr>
<tr>
<td>echinocacti Timb.</td>
</tr>
<tr>
<td>haplura Ckll.</td>
</tr>
<tr>
<td>latior Ckll. (type sp.)</td>
</tr>
<tr>
<td>magniceps Timb.</td>
</tr>
<tr>
<td>parkeri Timb.</td>
</tr>
<tr>
<td>peninsularis Timb.</td>
</tr>
<tr>
<td>portalis Timb.</td>
</tr>
<tr>
<td>robertsi Timb.</td>
</tr>
<tr>
<td>tepicensis Timb.</td>
</tr>
<tr>
<td>Cockerellula</td>
</tr>
<tr>
<td>Strand</td>
</tr>
<tr>
<td>astea Timb.</td>
</tr>
<tr>
<td>bidenticauda Timb.</td>
</tr>
<tr>
<td>knului Timb.</td>
</tr>
<tr>
<td>laticauda Timb.</td>
</tr>
<tr>
<td>lobata Timb.</td>
</tr>
<tr>
<td>opuntiae Ckll. (type sp.)</td>
</tr>
<tr>
<td>quadridentata Timb.</td>
</tr>
<tr>
<td>rubida Timb.</td>
</tr>
<tr>
<td>seminigra Timb.</td>
</tr>
<tr>
<td>Macroterella</td>
</tr>
<tr>
<td>Timb.</td>
</tr>
<tr>
<td>carinata Timb.</td>
</tr>
<tr>
<td>mortuaria Timb. (type sp.)</td>
</tr>
<tr>
<td>mellea Timb.</td>
</tr>
<tr>
<td>nigrella Timb.</td>
</tr>
<tr>
<td>opacella Timb.</td>
</tr>
<tr>
<td>tristella Timb.</td>
</tr>
<tr>
<td>timototata Timb.</td>
</tr>
<tr>
<td>solitaria Ckll.</td>
</tr>
<tr>
<td>This paper</td>
</tr>
<tr>
<td>Macrotera</td>
</tr>
<tr>
<td>bicolor (type sp.)</td>
</tr>
<tr>
<td>crassa</td>
</tr>
<tr>
<td>texana (=seculina, abusa)</td>
</tr>
<tr>
<td>sinaloana</td>
</tr>
<tr>
<td>pittyolin Snelling & Danforth</td>
</tr>
<tr>
<td>nahua Snelling & Danforth</td>
</tr>
</tbody>
</table>

(1) maxillary palpus with less than 6 segments; as few as 3 in some species (Fig. 36b).

All non-*Perdita* outgroups possess state 5(0). However, other groups within *Perdita* show palpal segment reduction. Because these groups appear to be distantly related to the *Macrotera* group, palpal reduction is thought to be convergent and the primitive state for *Perdita* is coded 5(0).

6(0) Second labial palpal segment arising apically on first (Figs. 36c,d); (1) second labial palpal segment arising subapically on first (Fig. 36a,b).

Character 6(0) is present in all outgroups except *Callonychium mandibulare*, and is therefore considered plesiomorphic for *Perdita*. Furthermore, the apex of the first segment of the labial palpus in

<table>
<thead>
<tr>
<th>Table 4. Data Matrix for characters of species in the Macrotera group.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Character numbers</td>
</tr>
<tr>
<td>0100000000000001111111111122222223333</td>
</tr>
<tr>
<td>PANURGINAE</td>
</tr>
<tr>
<td>PERDITA</td>
</tr>
<tr>
<td>PSEUDOMACR.</td>
</tr>
<tr>
<td>AZTECA</td>
</tr>
<tr>
<td>BIDENTICAUDA</td>
</tr>
<tr>
<td>KNULLI</td>
</tr>
<tr>
<td>LATICAUDA</td>
</tr>
<tr>
<td>LOBATA</td>
</tr>
<tr>
<td>OPUNTIAE</td>
</tr>
<tr>
<td>PARKERI</td>
</tr>
<tr>
<td>BICOLOR</td>
</tr>
<tr>
<td>CRASSA</td>
</tr>
<tr>
<td>TEXANA</td>
</tr>
<tr>
<td>PIPITYOLIN</td>
</tr>
<tr>
<td>NAHUA</td>
</tr>
<tr>
<td>CARINATA</td>
</tr>
<tr>
<td>MELLEA</td>
</tr>
<tr>
<td>MORTUARIA</td>
</tr>
<tr>
<td>NIGRELLA</td>
</tr>
<tr>
<td>OPACELLA</td>
</tr>
<tr>
<td>SOLITARIA</td>
</tr>
<tr>
<td>ARCUATA</td>
</tr>
<tr>
<td>ECHINOCACTI</td>
</tr>
<tr>
<td>HAPLURA</td>
</tr>
<tr>
<td>LATIOR</td>
</tr>
<tr>
<td>MAGNICEPS</td>
</tr>
<tr>
<td>PORTALIS</td>
</tr>
<tr>
<td>TRISTELLA</td>
</tr>
<tr>
<td>RUBIDA</td>
</tr>
<tr>
<td>SEMINIGRA</td>
</tr>
</tbody>
</table>

Character state 9(0) is variable both in the non-*Perdita* and *Perdita* clades. Its polarity is uncertain.
10(0) Male S1 unmodified (Fig. 60a, b); (1) male S1 with apical margin produced into pucker-like lobe (Fig. 61a).

All outgroups had unmodified male S1.

11(0) Glossa not more than twice length of prementum, in some cases less than length of prementum (Figs. 27a-c); (1) glossa two or more, usually three, times length of prementum (Fig. 27d).

Glossa length was measured from the glossal sclerite to the tip of the glossa, and prementum length was measured from the base, at the junction with the postmentum, to the point of attachment of the labial palpi (Fig. 27d). Although the derived state is found in the subgenus Glossoperdita, all other outgroups studied have state 0, which is therefore considered the plesiomorphic condition of the Macrotera group.

12(0) Female S6 with lateral margin unmodified (Fig. 46b, 48a, 49a); (1) female S6 with posteriad directed process from latero-apical corner (Fig. 47a, 51a, 52a).

The unmodified state was present in all outgroups. *P. portalis* may represent an intermediate condition but has been coded 12(0).

13(0) Apical portion of male S8 (portion beyond lateral apodema arms) about equal in width to the basal portion (as in Fig. 48c); (1) apical portion of male S8 much broader than basal portion, S8 appearing spade-shaped, apodema arms indistinct (Fig. 42e, 44d); (2) apical portion of S8 broad and protruberant ventrally (Fig. 116-117; Timberlake, 1954).

Because the overall morphology of the male S8 is highly variable among outgroup taxa I was unable to polarize this character. However, 13(2) is clearly an autapomorphy of *Perdita* sensu stricto.

14(0) Distinct latero-apical projection on gonocoxite lacking; (1) latero-apical projection present on gonocoxite (as in Figs. 46f, 47f, 48f, 49f, 51g).

Although variously shaped latero-apical gonocoxal projections are present on some other members of the ingroup (e.g., *P. mellea*, Fig. 28f; *P. turgiceps*), also in many of the outgroups, the state seen in those taxa coded 14(1) appears not to be homologous to the state seen in any outgroup taxa.

15(0) Anterior margin T7 concave or straight in dorsal view (Fig. 28e, 29e); (1) anterior margin T7 convex in dorsal view (Figs. 46e, 47d, 52c).

All outgroups possess the concave or straight condition.

16(0) Forewing length less than or equal to 4.5 mm; (1) forewing length greater than 5.5 mm, usually around 5.0 mm.

The polarity of this character is not known because of variability in the outgroups.

17(0) Hind tibia of males with erect, fine setae, not conspicuously branched or thick; (1) hind tibia of males with stout, erect, moss-like setae on outer surface.

All outgroups possess state 17(0). Timberlake (1954) used this character in the key to subgenera.

18(0) Male face with yellow maculation; (1) male face lacking yellow maculation, though the mandibles may be covered.

All non-*Perdita* outgroups studied have yellow on the faces of males, so the absence of yellow coloration is considered derived.

19(0) Female mandible with pre-apical pollex; (1) female mandible simple, lacking pollex.

All non-*Perdita* outgroups possess simple female mandibles, while in *Perdita* the state is variable.

20(0) Female mesonotum with conspicuous, erect, finely-branched setae; (1) female mesonotum with widely scattered, very short, recumbent setae visible only under high magnification (> 60x).

All outgroups possess at least some elongate mesonotal setae.

21(0) Male facial fovea small depression lined with fine setae, as in most andrenids; (1) male facial fovea large, slightly protruding, with glandular tissue visible beneath cuticle (Fig. 42b).

Facial foveae in bees and sphecid wasps have been shown to be glandular structures based on histological sections (Duffield et al. 1984; Heselhaus 1922; Nedel 1960; Schöntzer & Schuberth 1995; Schuberth & Schöntzer 1999), but the function of these glands is unknown. All outgroups studied had small inconspicuous male facial foveae, similar to those of females. In *P. portalis* and *P. haplura*, however, the facial foveae are large and convex, with glandular tissue visible through the cuticle. In dissections of male *P. portalis* these structures were pale cream color and were sandwiched between the outer cuticle and an inner layer of thin cuticle.

22(0) Apical margin of male clypeus, where labrum attaches, concave or straight (Fig. 28b, 29b); (1) male clypeus overhanging labrum slightly and acutely pointed apically, especially in the larger-headed specimens (Fig. 42b).

All non-*Perdita* outgroups lack the acutely pointed clypeus. Almost all other species of *Perdita* investigated have a concave clypeal margin but in some species of *Perdita* sensu stricto the clypeus is acutely pointed. Nevertheless, 22(0) is considered plesiomorphic for the Macrotera group.

23(0) Volsellar cuspus variable in shape but always small and not extending beyond apex of paramere; (1) cuspus enlarged, laterally compressed and extending beyond apex of paramere (Fig. 51g, 52d).

All outgroups possess state 0.

24(0) Lateral surfaces of female propodeum with scattered, finely branched setae; (1) two patches of dense, short, finely branched setae on lateral surfaces of female propodeum; setae packed so densely as to obscure the cuticle below.

All outgroups possess state 0.

25(0) Male T6 with fine, erect, scattered setae; (1) male T6 with single subapical line of few erect, stout, finely branched setae (Fig. 38c, 51c).

Timberlake referred to these as "moss-like" setae (1954:352). All outgroups possess state 25(0).

26(0) Male T7, as in most bees, with lateral margins not meeting ventrally (Figs. 37c, 38d); (1) male T7 forming tube due to reflexed lateral margins, which almost touch ventrally (Fig. 32c, 33c, 34c).

All outgroups possess state 0.

27(0) Lateral graduli of male T2 and T3 lacking; (1) lateral graduli present on T2 and/or T3 in males (Fig. 1a, b).

Tergal graduli extend completely across the male T2 and T3, ending at the lateral margins of the terga, in most species of *Perdita*. However, in some species (e.g., *P. texana*), near the lateral edges of the terga the graduli turn posteriorly and run parallel to the long axis of the body. These lateral portions of the graduli are referred to as the lateral graduli. In the non-*Perdita* outgroups studied this character varied, with most Calliopini possessing lateral graduli and the Melitturgini, Panurgini and Protandrenini lacking lateral graduli. I have coded this character as variable (?) for the non-*Perdita* outgroups and (0) for the *Perdita* outgroups.
28(0) Male S2 and S3 unmodified (Fig. 61a); (1) male S2 and S3 with broad, obtuse protuberances along posterior margins, strongest in S3 (Fig. 62a); (2) male S2 with quadrate protuberance which projects over surface of S3 (Fig. 62b); (3) male S3 with discrete, rectangular patch of stout setae (Fig. 62c); (4) S2 with paired diverging ridges along posterior margin.

All outgroups possess unmodified male second and third sterna.

29(0) Penis valves variable, but not connected dorsally by slender bars of cuticle; (1) penis valves connected dorsally by slender cuticular bars (Fig. 46f, 48f, 49d).

All outgroups have state (0).

30(0) Apical margin of male T7 variable in shape; (1) apical margin of male T7 dorso-ventrally flattened, forming a broad horizontal shelf with widely separated, acute corners (Fig. 51e, 52c).

All outgroups possess state (0).

31(0) Penis valves parallel; (1) penis valves divergent (Fig. 54f, 55d, 56b, 57f).

All outgroups possess state (0).

32(0) Volsella highly variable in shape, but not as in alternative state; (1) volsella chelate, as in a crab claw, with apex of cuspis acute and strongly recurved.

The volsellae are highly variable in shape among species of Perdita. P. nahua and P. pipiyolin are unique in possessing a stout, acutely pointed and apically recurrent cuspis.

33(0) Apical margin of male T7 variable in shape; (1) apical margin of male T7 produced at corners into elongate acute prongs, separated by deep emargination (Figs. 55c, 56c,d).

All outgroups possess state (0).

PHYLOGENETIC ANALYSIS

The m*, bb* options of Hennig86 resulted in four equally parsimonious trees of length 46 and consistency index = 82 for the 33 characters and 29 taxa listed in Table 4. Characters were all treated as unordered. The Hennig86 ie (implicit enumeration) command resulted in the same 4 trees. Figure 23 shows the consensus tree, Fig. 24a-d show the 4 equally parsimonious resolutions, and Fig. 25 shows the characters mapped onto the preferred tree. Fig. 26 shows the preferred tree and the limits of the four subgenera.

TREE TOPOLOGY AND RELATIONSHIPS AMONG SPECIES.

The monophyly of the Macrotera group of subgenera is supported in the present analysis. Both characters 2(1) and...
Fig. 24. Four equally parsimonious resolutions of basal polytomy in the consensus tree (Fig. 23).

17(1) unite all four subgenera, excluding the remainder of Perdita (Fig. 25).

The primary source of ambiguity in this analysis involves the relationships among the basal species, the members of Timberlake’s subgenus Macroterella excluding P. solitaria, which clearly belongs elsewhere (see below). In two of the four resolutions, Macroterella (P. mellea, P. opacella, P. carinata, P. mortuaria, P. tristella and P. nigrella) appears monophyletic (Fig. 24b,d), while in two others the group is potentially paraphyletic (Fig. 24a,c). The ambiguity arises from the incongruity of characters 7 and 19. I prefer the resolution in which the ci of character 19 is maximized (ci=100, Fig. 24a,d), at the expense of character 7. The tree shown in Fig. 24a seems the most likely, indicating the possibility that P. mellea does not belong to a monophyletic Macroterella.

On a more positive note, the monophyly of P. carinata, P. opacella and P. mortuaria is well supported by characters 20(1) and 26(1), and the placement of P. tristella as the sister group to these three species is supported by character 15(1), although this character arises in parallel higher up in the tree (Fig. 25). This group of four species all have very similar genital capsules (Figs. 31f, 32d, 33d, 34d).

The monophyly of the subgenera Macrotera, Macroteropsis and Cockerellula is supported by 27(1), the presence of conspicuous lateral graduli on male T2 and T3.

The monophyly of the subgenus Macrotera is supported by the elongate glossa (11[1]), large body size, as measured by forewing length (16[1]), and the distinctly shaped male pygidial plate (9[2]). Although the relationships within this group are not fully resolved, the sister group relationships between P. crassa and P. texana, and P. pipiyolin and P. nahua are clear.

The characters uniting the subgenera Macroteropsis and Cockerellula are the shape of the anterior margin of the male T7 (15[1]) and the presence of a subapical band of erect, coarsely-branched setae on the male T6 (25[1]).

The composition of these two subgenera has been changed somewhat as a result of the present analysis. Macroteropsis now refers to a group of 6 species united by characters 4(1), 5(1) and 6(1). Although Timberlake considered reduced maxillary palpi one of the defining characters of Macroteropsis (Timberlake, 1954:356), he included several species which did not show such palpal reductions. Other characters listed as diagnostic of the subgenus are common to other groups or are...
highly variable. He did not mention the maxillary palpal character (6[1]) which I have included.

The monophyletic group united by character 14(1) is an expanded subgenus *Cockerellula*. *P. solitaria* had previously been placed in *Macroterella*, but there is little doubt that it is closely related to *P. opuntiae* and its relatives. Although in the cladogram *Cockerellula* is united by a single male character (14[1]), it was possible to place some species known only from females (e.g., *P. peninsularis, P. anthracina*) with certainty in *Cockerellula* based on female characters included in the analysis (e.g., 12[1]).

CLASSIFICATION

Timberlake's classification of the group and a modified classification, based on the phylogenetic analysis, are shown in Table 3. The subgenus *Macrotera* remains essentially unchanged, except for the addition of two new species and some synonymy. The subgenus *Macroteropsis* has been reduced in size as a result of synonymy (e.g., *P. tepicensis*) and the transfer of some species to *Cockerellula*. *Cockerellula* includes more species than previously.

Timberlake's subgenus *Macroterella* has been changed considerably as a result of this study. *P. pilonotata* clearly belongs to the distantly related subgenus *Heteroperdita*, and, as a result of finding the male of *P. solitaria*, this species has been transferred to *Cockerellula*. Although ambiguity about the relationships among the remaining species of *Macroterella* (*P. mellea, P. nigrella, P. tristella, P. carinata, P. opacella, and P. mortuaria*) persists, there is no convincing reason to split this group up further. Although in some of the resolutions (Fig. 24) *Macroterella* is potentially paraphyletic, in others it is monophyletic. One species, *P. mellea*, is highly autapomorphic (see below) and one could, based on phenetic grounds, place this species in its own subgenus in order to call attention to its autapomorphic features, but at present this seems unnecessary.

DIAGNOSIS OF THE MACROTERRA GROUP OF SUBGENERA

The four subgenera treated below can be recognized by the following characters: (1) mandible with discrete, well impressed sulcus on outer surface running from acetabulum diagonally across base and then along lower, or condylar, mar-
Fig. 26. Preferred tree showing limits of subgenera. See explanation of outgroup taxa in caption to Fig. 23.

Key to the species of the Macroteta Group

1. Large bees (forewing length 4.5 mm or more); glossa 2-3 times length of prementum (Macroteta)
 — see Snelling & Danforth (1992) for a key to species
 — Smaller bees (forewing length 4.0 mm or less); glossa no more than 2 times length of prementum and usually about equal to length of prementum 2

2. Second segment of labial palpus arising subapically on first segment, first segment acutely pointed apically; maxillary palpal segments 3 and beyond greatly shortened and sometimes lacking, such that palpi 4 to 6-segmented; head of female broad, width 1.3 times length (Macrotetopsis) .. 9
 — Second segment of labial palpus arising apically on first segment; maxillary palpus 6-segmented; segments subequal in length; head of female usually rather slender, width 1.1 times length 3

3. Female with extensive yellow maculation on head and mesosoma, metasoma reddish orange; male uniformly reddish orange with yellow maculation on lower part of face; forewing length 1.8-2.3 mm. .. P. mellea
 — Female head and mesosoma primarily black (yellow on mandible, lower part of frons and foreleg in some species); male head and mesosoma primarily black (except for some yellow on the clypeus and supracypeal area); forewing length usually greater than 2.5 mm ... 4

4. Female mandible simple; metasoma black; small bees without conspicuous erect setae; male T6 and T7 lacking mosslike setae; no graduli visible on lateral corners of T2 and T3; S8 not very slender; genital capsule without latero-apical processes (Macroterella, in part) ... 5
 — Female mandible with pollex; metasoma usually reddish; some species with dense patches of setae on lateral surfaces of propodeum; larger bees; males with conspicuous moss-like setae on T7 and in a single row across T6; graduli visible on lateral corners of T2 and T3; S8 long and slender; genital capsule with lateroapical processes (Cockerellula) .. 14

5. Male T7 tubelike, lateral portions almost touch ventrally; female lacking erect setae on mesonotum but
with yellow maculation on anterior surface of fore-tibia .. 6
— Male T7 not tubelike; females with a few erect setae on mesonotum and no yellow maculation on fore-tibia 8

6. Male T7 divided medially by slit flanked by two pestero-laterally directed prongs; female with relatively broad and obscure pygidial plate; metallic tinge on frons and vertex distinctly greenish P. opacella
— Male T7 not divided medially and lacking prongs; female with relatively slender, acutely pointed pygidial plate; metallic tinge on frons and vertex weak and corpory in coloration 7

7. Male T7 with longitudinal carina at apex ... P. carinata
— Male T7 simply tubelike, without apical modifications P. mortuaria

8. Female facial fovea slender and deeply impressed (length 5-6 times width); frons more shiny with less greenish tinge; basitibial plate poorly defined, represented by an acute prong on posterior margin of tibia; female S6 only weakly emarginate apically (depth of emargination less than width); male with yellow restricted to clypeus, with very faint yellow on area of frons just lateral to clypeus, between clypeus and eye; male S1 lacking acute prong along posterior margin; S7 spatulate P. nigrella
— Female facial foveae broader (length 3 times width); frons more tessellate, greenish tinge more evident; female basitibial plate distinctly raised and well defined all around; female S6 deeply emarginate apically (depth of emargination greater than width), male with more extensive yellow maculation, yellow on face below level of antennal sockets; male with median, acute prong arising from the posterior margin of S1; S7 gradually tapering to acute apex P. tristella

9. Maxillary palpi 5- to 6-segmented; wings hyaline with brownish wing veins; facial maculation restricted to below level of antennal sockets in male; aedeagus with small patches of stout setae on each side 10
— Maxillary palpi 4-segmented; wings cloudy whitish with pale brown veins; yellow on face extending up above level of antennal sockets in male, often to vertex, or head entirely orange-ferruginous; aedeagus lacking stout setae 12

10. Male pygidial plate lacking; male mandible simple; S8 of male rather broad apically; clypeus with transverse ridge; female with broad, transparent area on S6 (length 2-3 times width); lateral surfaces of propodeum with erect, white setae P. arcuata
— Male pygidial plate formed by two parallel carinae at apex of T7; male mandible bidentate; S8 of male slender and not expanded apically; clypeus flat; female with more slender transparent area on S6 (length 5-6 times width); lateral surface of propodeum with only a few scattered, white setae 12

11. Male with protuberance at midpoint of S2; female with conspicuous bluish tinge; maxillary palpus distinctly 6-segmented P. echinocacti
— Male without protuberance at midpoint of S2; female with more greenish tinge; maxillary palpus 6-segmented but segment 5 very difficult to distinguish P. latior

12. Male head entirely ferruginous, with yellow maculation below level of antennal sockets; mesosoma and metasoma partly ferruginous; female with dense, closely-appressed white setae over scutum and scutellum; orange-ferruginous maculation over at least lower portion of clypeus, surrounding compound eye and extending medially along vertex to lateral ocellus P. magniceps
— Male head yellow or orange ferruginous up to level of ocelli, becoming dark brown across vertex; genal width subequal to width of compound eye; mesosoma and metasoma mostly dark brown 13

13. Male facial fovea large, pale cream colored and seemingly glandular; T7 rather slender apically (apex 0.2 mm in width) and without conspicuous latero-apical prongs; female eyes weakly convergent below (Fig. 42a); female foretibia with yellow maculation; pygidial plate narrow and acute (Fig. 42d) P. portalis
— Male facial fovea large and black, not noticeably glandular; T7 broader, more obtuse apically (apex 0.55 mm in width) and with two small prongs on either side of broad, convex apical margin; female eyes strongly convergent below (Fig. 44a); female foretibia without yellow maculation; pygidial plate broader and obtuse (Fig. 44c) P. haplura

14. Females .. 15
— Males .. 24

15. Metasoma primarily black or deep brown 16
— Metasoma reddish 19

16. Blue-green metallic tinge to head and mesosoma P. rubida
— Very weak, if any, metallic coloration 17

17. Female robust, with long erect white setae over head and mesosoma; wing veins dark brown; pygidial plate gently rounded and obtuse apically P. anthracina
— Female more slender and with shorter, less conspicuous white setae; wing veins light brown; pygidial plate acutely pointed and slender 18

18. Labial palpal segments 2-4 elongate and slender, equal in combined length to segment 1; S6 not notched apically; forewing length less than 3.0 mm .. P. solitaria
— Labial palpal segments 2-4 shorter, their combined length less than that of segment 1; S6 strongly notched apically; forewing length greater than 3.0 mm P. peninsularis

19. Lateral surface of propodeum with discrete patch of stout white setae, which completely obscures the underlying cuticle 20
— Lateral surface of propodeum with more widely spaced white setae, not forming dense patch; cuticle easily visible through setae .. P. latiusculus, P. bilateriuscula, or P. lobata (males needed for definite identification)

20. Large, robust bees with elevated triangular super-clypeal area extending upward between antennal bases;
mid and hind tibial spurs acutely bent at apex and with long teeth, appearing nearly pectinate; facial fovea elongate and slender (0.41-0.54 mm) P. azteca
— Bees of various sizes but lacking elevated supraclavate area; tibial spurs finely serrate; facial fovea slender, shorter .. 21
21. Anterior face of T1 brownish, rest of metasoma reddish; dorsal, central surface of propodeum with antero-posterior striate converging posteriorly P. parkeri
— Anterior surface of T1 reddish like rest of metasoma; dorsal, central surface of propodeum finely alveolate, no obvious linearity to scupturing 22
22. Yellow maculation on lower part of paracoccal area immediately lateral to clypeus, running just above fronto-clypeal suture from outer subanntenal sulcus to base of mandible P. robertsi
— Face lacking yellow maculation, except for slight yellow on clypeus and mandible 23
23. Large, robust bees (forewing length greater than 3.5 mm) P. opuntiae (or P. seminigra)
— Smaller bees (forewing length less than 3.0 mm) P. knulli
24. S1 of male with median pucker-like fold (Fig. 61a) 25
— S1 of male unmodified (Fig. 60a,b) 28
25. S3 of male with median rectangular patch of short, dense setae (Fig. 61c); apex of T7 dorso-ventrally compressed, forming a broad horizontal, roughly quadrate margin 26
— S3 of male without median patch of setae; T7 variable .. 27
26. Posterior margin of T7 more strongly emarginate medially and lateral corners more pronounced and more strongly bent ventrad (Fig. 52c); papillae on cuspis extend to apex (Fig. 52d) P. lobata
— Posterior margin of T7 less strongly emarginate medially and lateral corners more horizontal (Fig. 51f); papillae on cuspis restricted to basal half (Fig. 51g) P. latiacauda
27. Large, robust bees (forewing length greater than 3.5 mm); mandible simple; bright yellow maculation on mandible, labrum, clypeus and frons below level of antennal sockets; T7 with long, paired, postero-dorsal projections arising subapically P. azteca
— Small bees (forewing length less than 3.0 mm); mandible bidentate; creamy white on mandibles, labrum, clypeus and frons below level of antennal sockets; T7 narrowed apically with two small apical prongs P. knulli
28. Posterior margin of S2 with median quadrate protubercane extending out of plane of other sterna, over surface of S3, and ending in two sharp points 29
— Margin of S2 with slight thickening or bulge but not extending over surface of S3 32
29. Large bees (forewing length greater than 3.5 mm); apical margin of T7 broadly emarginate with two widely separated, acutely pointed prongs 30
— Small bees (forewing length less than 2.6 mm); T7 quadridentate apically, two median processes directed meso-posterior, two horizontal processes directed postero-lateral, P. solitaria
30. Yellow facial maculation extending completely across face below level of antennal sockets (on clypeus, supraclavate and paracoccal areas); prongs of T7 more widely separated (>0.56 mm) and emargination between prongs u-shaped 31
— Yellow to white facial maculation restricted to paracoccal area, no yellow maculation on clypeus; prongs on T7 less widely separated (<0.48 mm), and emargination between prongs v-shaped P. seminigra
31. Mesoscutum shiny with small, widely scattered, but distinct, punctures; head and thorax brownish P. opuntiae
— Mesoscutum dull, infuscate, with barely discernible punctures; head and thorax black P. parkeri
32. S3 with broad, transverse bulge along posterior margin; S2 with similar, but less prominent bulge; facial maculation creamy white, on lower part of face reaching to upper margin of antennal sockets P. bidenticauda
— S2 and S3 unmodified; yellow facial maculation on clypeus, supraclavate and paracoccal areas, extending upward along inner margins of eyes to facial foveae P. rubida

Species Diagnoses

Although Timberlake published complete descriptions of most of the species in this group, I have included diagnoses for each species, listing the most useful characters for species-level recognition. Many of these features were not mentioned by Timberlake. Brief descriptions of the geographic distributions and floral host associations are also given. I have included complete descriptions of species which were not adequately described originally and a description of a newly discovered species from Mexico.

In the lists of plant records I have given the plant associations according to plant genus, and included specific names, if given, in parentheses. I have also included the numbers of males and females collected on each plant genus, for those specimens with plant records.

Subgenus Macroterella Timberlake

Type species — Perdita mortuaria Timberlake, by original designation.

Diagnosis — Members of this subgenus are some of the smallest species in the Macroterella group. Features which serve to distinguish this subgenus from all other Perdita include: (1) greatly shortened mouthparts, with glossa length usually equal to or less than length of prementum, (2) first labial palpal segment equal in length to remaining segments combined, (3) female mandible simple and acutely pointed (except P. mellea).

PHYLOGENY AND TAXONOMY OF PERDITA 663
shorter than the length of the prementum. The galea and the labial palpi are greatly shortened. The maxillary palpi are six-segmented but also very short.

Like *P. portalis*, males of *P. mellea* are dimorphic (Rozen, pers. comm.). The typical, flight-capable male is described in the diagnosis given above. As there is no published description of the macrocephalic male morph, I present a description of this form below, based on two specimens provided by Dr. Jerome G. Rozen, Jr., AMNH.

Description – MACROCEPHALIC MALE MORPH – Head: (43) greatly expanded compared with flight-capable morph, width 3.2 mm; (44) quadrate, 1.42 times broader than long; head width increases from top to bottom, so that greatest head width is at level of mandibles; (45) clypeus compressed and elongate, ventral projections on either side of labrum enclose labrum as in small-headed male; (46) frons, supraclypeal and paraocular areas shiny with abundant, closely-spaced punctures and fine, white recumbent setae; (47) vertex and entire region above ocelli shiny and without punctuation; (48) gena greatly expanded behind eye (maximum width 0.51 mm); glabrous and impunctate down to level of upper margin of eye; below upper margin of eye surface shiny but with numerous, minute punctures; (49) head coloration more or less as in small-headed male, honey yellow over most of head, with yellow to white maculation on face below level of antennae; (50) head, except impunctate regions, clothed in fine white setae; (51) eyes greatly reduced (0.34 mm in length) in comparison to small-headed male, weakly convex and roughly coplanar with surrounding head capsule; eyes black (in pinned specimens); (52) median and lateral ocelli separated by more than one ocellar width; ocelli greatly reduced in size (1/2 size of ocelli in large-headed male) and hardly convex above level of surrounding cuticle; (53) facial fovea very weak, appearing as faint dimples at about level of upper eye margin; (54) scape light yellow as on lower part of face, pedicel and flagella darker yellow, concolorous with head above level of antennae.

Mouthparts: (55) labrum rectangular and pale yellow; glabrous medially with small, weak punctures and fine white setae laterally; (56) mandible stout, and tapering to an acute apex; no preapical tooth; yellow, with reddish tips; (57) glossa short, 1/5 length of prementum and barely longer than wide; (58) paraglossa slender and acutely pointed, roughly equal to glossa in length; (59) labial palpus 4-segmented, first segment shorter than remaining segments combined; (60) maxillary palpus 5-segmented, first segment very short but all distinct, maxillary palpi extend beyond apex of galea. The mouthparts of large-headed males are similar to those of small-headed males but differ from females in that females have broad, brush-like paraglossae.

Mesosoma: (62) pronotum longer (length = 0.32 mm along midline in dorsal view) and far more robust than in small-headed male; dorsal surface divided by transverse groove and lateral surface rather deeply impressed giving rise to distinct dorsal-lateral lobes of pronotum; pronotal lobes clothed in white setae; (63) mesocutum paler and reduced in size relative to small-headed male; dorsal surface essentially flat (far more convex in small-headed male); surface weakly imbricate with scattered erect white setae; (64) mesocutellum and metanotum in comparison to small-headed male reduced in size and flattened; (65) mesopleuron as in small-headed male, with dense white setae; (66) metapleuron weakly alveolate, lacking setae; (67) propodeum more abruptly declivous than in small-headed male, with same erect white setae separating dorsal and lateral surfaces and similar alveolate sculpturing; (68) intertropical distance 0.51 mm; (69) wings reduced in size;
forewing length 1.56 mm (forewing length usually reaches 2.0 mm in small-headed males); (70) legs concolorous with rest of mesosoma except for apices of femora and bases of tibiae, which are pale yellow; (71) basitibial plate slightly smaller than in small-headed male but well-defined; (72) outer surface of hind tibia with erect, finely branched setae; (73) midtibial spur minutely serrate; (74) hind tibial spurs subequal in length and finely serrate; (75) tarsal claws all bifid.

Metasoma: (76) terga concolorous with mesosoma; metasoma overall broader and more dorso-ventrally flattened than in small-headed male; (77) T1-T6 clothed in minute, unbranched, appressed setae; (78) T6 with more elongate, erect, but unbranched setae; (79) fovea on T2 present but shallow and weakly developed; (80) pygidal plate lacking on T7, but band of long, erect setae present apically; (81) graduli present on T2-T6 but do not extend far enough laterally and posteriorly to be visible in dorsal view; (82) sternum similar in color to terga; (83) S1-S6 similar in color and vesture to terga; (84) sternal graduli only present on S1, lacking on all other sterna; (85) S7 and S8 as in small-headed male (Fig. 28d); (86-89) genital capsule as in small-headed male (Figs. 28f).

Distribution - Desertic parts of San Bernardino, Riverside counties, California; Cochise, Pima, Pinal and Yuma counties, Arizona; Hidalgo Co., New Mexico; Presidio Co., Texas; states of Sonora, Baja California Norte and Baja California Sur, Mexico (Fig. 30). Additional specimens are recorded from Chihuahua, Mexico by the Programa Cooperativo sobre la Apifauna Mexicana (PCAM) (Ayala, et al., 1996), but I have not examined these specimens myself.

Phenology - July through October.

Floral associations - The vast majority of specimens were collected on Euphorbia (polycarpa, polycarpa var. hirtella, albomarginata hirtella) (89 females/32 males) with some specimens on Eriogonum inflatum (2 females/0 males).

Perdita (Macroterella) nigrella Timberlake
(Figs. 27b, 29, 30)

Type material - The holotype male is located in the CAS (Type No. 14631). The holotype and allotype were collected along Artist Drive, West side of Death Valley, Inyo Co., California, April 7, 1939, on Phacelia (E.G. Linsley, coll.).

Diagnosis - Forewing length 2.6 to 3.0 mm. This species, like the following one, can be distinguished from other members of the subgenus by the presence of scattered, erect setae on the scutum of both males and females. Females are mostly black with a slight greenish metallic hue on the head and scutum and yellowish mandibles, becoming fuscous apically. There is no yellow coloration on the foretibia. In females, the facial foveae are slender and the basitibial plate is unusual in that it does not have a clearly defined rim separating it on all sides from the remainder of the tibia. Rather, the basitibial plate forms an acute projection from the ventral surface.

Fig. 28. Perdita mellea. (a) female head, (b) male head, (c), female S6, (d) male S7 and S8, (e) male T7, dorsal and lateral views, (f) male genital capsule (dorsal, ventral and lateral views), aedeagus (dorsal and lateral view). In this figure and the following figures, the scale bar lengths are as follows (unless specified differently on the figure): female S6, 0.25 mm; female T6, 0.5 mm; male T6, 0.5 mm; male S7 and S8, male T7, genital capsules, 0.25 mm.
Perdita (Macroterella) tristella Timberlake
(Figs. 31, 35)

Type material – The holotype male and allotype are in the CAS (Type No. 14741). Both specimens were collected at The Gavi­lan, Riverside Co., California, May 8 and 12, 1950, on Eriogonum fasciculatum, (Timberlake, coll.).

Diagnosis – Forewing length 2.4 - 2.6 mm. Females are all black with scattered erect white setae over the frons, mesoscutum, scutel­lum, pleura, metanotum and lateral surfaces of propodeum. The female head is 1.1 times broader than long, the frons has a blue­green, metallic tinge, and the facial foveae are large and broad, and lined with minute setae. The basitibial plates are very clearly defined on all sides (more so than in any other black Macroterella), triangular, and covered with a few short, recumbent finely branched setae. The female is unique in the shape of S6: the apical mar­gin has a slender slit flanked on either side by erect, finely branched setae. This feature can be seen without dissecting the apical seg­ments. The male is similar to P. nigrella but can be distinguished by the shape of the S7, the genital capsule, and a modified S1: the posterior margin is reflexed medially into an acute protuberance which projects above the plane of S2 (this feature is not consid­ered homologous to the modified S1 seen in some Cockerellula).

Distribution – Cismontane regions of Riverside Co., California (Fig. 35).

Phenology – April through June.

Floral associations – Although collected on Eriastrum virgata (1 female), Calochortus splendens (1 female), and Sphaeralcea ambigua (1 female), Eriogonum (fasciculatum) (1 female/5 males) appears to be the source of pollen, based on inspection of pollen in the scopa of females (Timberlake, 1954:363).

Perdita (Macroterella) carinata Timberlake
(Figs. 32, 35)

Perdita (Macroterella) carinata Timberlake, 1968:9 [description]

Type material – The holotype male and allotype are in the CAS (Type No. 14453). Both specimens were collected at the Boyd Desert Research Center, Deep Canyon, Riverside Co., California, May 10, 1963, on Eschscholtzia (E.I. Schlinger, coll.).

Diagnosis – Forewing length 2.3 - 2.7 mm. Females are pre­dominantly black with yellow on the anterior surface of the fore­tibia and mandibles. The head and thorax are minutely imbricate, giving the surface of the body a tesselate appearance. Males are lighter colored than females; the head is brownish ferruginous to black with yellow on the mandibles, labrum, clypeus and supra­clypeal area. The pronotum is light brown and the rest of the meso­soma darker brown. The metasoma is ferruginous and the male T7 is tubular and bears a distinct median, longitudinal carina on the apical margin.

Distribution – Collected most frequently in the vicinity of Deep Canyon, Riverside county, but also occurs in the arid parts of San Bernardino and Imperial counties, California; Pima, Pinal coun­ties, Arizona; Baja California Sur, Mexico (Fig. 35).

Phenology – April through May; August through October.

Floral associations – Collected most commonly on Eschscholtzia (7 females/12 males) and Euphorbia (hirtella) (6 females/7 males) but also on Ferrocactus (acanthodes) (2 females/3 males), Eriogonum (1 female), Echinocactus (2 males) and Opuntia (1 male).

Perdita carinata and the next two species (P. mortuaria and P. opacella) are similar to each other, sharing the following charac­ters: (1) male T7 tubular, lateral margins nearly touching ventrally, (2) genital capsules similar in shape, (3) scutum and scutellum minutely imbricate, lacking erect setae and seemingly impunctate,
however with a fine recumbent pubescence visible under high magnification, and (4) anterior surfaces of foretibiae and mandibles yellowish in females. Females of these three species are extremely difficult to distinguish without associated males.

Perdita (Macroterella) mortuaria Timberlake (Figs. 33, 35)

Type material - The male holotype and allotype are located in the CAS (Type No. 14617). Both specimens were collected at Furnace Creek, Death Valley, Inyo Co., California, April 23, 1935, on *Eucnide urens* (A.L. Melander, coll.). The male holotype is missing the head.

Diagnosis - Forewing length 2.4-2.7 mm. The female is similar to *P. carinata*, but facial foveae are longer and parallel the eye margin (Timberlake, 1968:7). The male is similar to *P. carinata* in coloration and cuticular sculpturing. However, in *P. mortuaria*, although the male T7 is tubular, it lacks the longitudinal carina at the apex.

Distribution - Desertic and arid montane regions of Riverside, Inyo, Imperial counties, California; Maricopa, Yuma, Mojave, Co-
Fig. 31. *Perdita tristella*. (a) female head, (b) male head, (c), female S6, (d) male S7 and S8, (e) male T7, dorsal and lateral views, (f) male genital capsule (dorsal, ventral and lateral views), aedegus (dorsal and lateral view).

conino, Cochise counties, Arizona; Hidalgo Co., New Mexico; Clark Co., Nevada (Fig. 35).

Phenology - March through June.

Floral associations - Collected most frequently on *Eschscholtzia* (parishii, mexicana, darwinensis, minutiflora) (10 females/6 males), which is seemingly the source of pollen, but also collected on *Prosopis* (4 females/1 male), *Eriogonum* (inflatum, abertianum) (2 females/1 male), *Eucnide urens* (5 males), *Larrea divaricata* (1 male), *Phacelia catlifolia* (1 female), *Echinocereus engelmanni* (1 female).

Perdita (Macroterella) *opacella* Timberlake
(Figs. 27c, 34, 35)

Type material - The female holotype is located in the CAS (Type No. 14644). This specimen was collected at Marble Canyon, near Lee's Ferry, Grand Canyon, Coconino Co., Arizona, June 5, 1953, on *Stanleya* (G.D. Butler, coll.).

Diagnosis - Forewing length 2.5 - 2.8 mm. The female is similar to *P. carinata* and *P. mortuaria*, but can be distinguished from these two species by the shape of the pygidial plate (broader and more obtuse apically) and by the presence of faint metallic greenish tinge on the frons (Timberlake, 1968:8). Males are similar to the preceding two species in coloration and punctuation; however, with more creamy-white facial maculation, which extends up to the level of the antennal sockets. Males are most easily distinguished from all other members of *Macroterella* by the shape of T7: dorsoapically it bears two lateroposteriorly directed protuberances which are separated along the posterior margin of the tergum by a deep median slit. As in the other two species, the lateral margins of T7 meet ventrally to form a tube through which the genitalia project, in some specimens. The genital capsule is distinctive as well.

Distribution - Desertic regions of Coconino and Cochise counties, Arizona; San Juan Co., Utah (Fig. 35).
Phylogeny and Taxonomy of *Perdita* 669

Fig. 33. *Perdita mortuaria*. (a) female S6, (b) male S7 and S8, (c) male T7, dorsal and lateral views, (d) male genital capsule (dorsal, ventral and lateral views), aedeagus (dorsal and lateral view).

Phenology - June and August.
Floral associations - *Cleome lutea* (7 females/11 males) is almost certainly the primary source of pollen for this species, although females have been collected on *Stanleya* (1 female) and *Eriogonum abertianum neomexicanum* (1 female).

Subgenus *Macrotera* Smith

Macrotera Smith, 1853:130 [description]; Cresson, 1878:70-71 [additional species]; Cockerell, 1904 [additional species]; Cockerell, 1905; Timberlake, 1954:352 [diagnosis and key to species]; 1958:375-378 [additional species and key to species]; Snelling & Danforth, 1992 [additional species, keys to species].

Type species - *Perdita bicolor* Smith, monobasic.

Diagnosis - The species in this subgenus are distinguished by: (1) large body size (forewing length usually exceeding 4.5 mm and often approaching 5.0 mm); (2) glossa two or more, usually three, times length of prementum (Fig. 27d); (3) male with pygidial plate on T7; (4) second maxillary palpal segment longer than first, or any other segments.

All the species in this subgenus are oligolectic on *Opuntia*. Females of this subgenus are very hard to identify to species without associated males. The female S6 is the most useful structure for distinguishing females of this group. The subgenus ranges from Oklahoma and northern Texas (*P. crassa* and *P. texana*) to southern Mexico (*P. bicolor*).

Snelling and Danforth (1992) published taxonomic notes, keys, and illustrations of *Macrotera*.

Subgenus *Macroteropsis* Ashmead

Macroteropsis Ashmead, 1899:85; Cockerell & Porter, 1899:417 [de-
Fig. 35. Geographic distributions of *P. opacella*, *P. carinata*, *P. mortuaria*, *P. tristella*.

Perdita (Macroteropsis) arcuata Fox
(Figs. 37, 41)
Perdita arcuata Fox, 1893:18 [description of male]; Cockerell, 1896:54.
Perdita dinognatha Cockerell 1922a:19 [description of male].
Fig. 36. Mouthpart morphology, females. (a) *P. echinocacti*, (b) *P. portalis*, (c) *P. azteca*, (d) *P. solitaria* (Scale bar = 0.5 mm).

Fig. 37. *Perdita arcuata*. (a) female S6, (b) male S7 and S8, (c) male T7, dorsal and lateral views, (d) male genital capsule (dorsal, ventral and lateral views), aedeagus (dorsal and lateral view).

Perdita (Macroteropsis) arcuata dinognatha: Timberlake 1953:968 [additional material]; Timberlake, 1954:359 [description of female and additional material]; 1980:3 [key].

Type material - The male lectotype (Type No. 275) and the allotype (Type No. 276) are located in the CAS. The lectotype was collected at Calmalli Mines, Baja California Norte, Mexico (Fox, coll.). The male holotype of *P. dinognatha* is located in the NMNH (Cat. No. 24895) and was collected at San Diego Co., California, April (Coquillett, coll.).

Diagnosis - Forewing length 3.0 - 4.0 mm. Males of this species can be distinguished from all other species of *Macroteropsis* by the simple mandibles, lacking a pollex, and by the quadrate labrum with a transverse ridge across the middle (all other species have a round or ovoid labrum lacking a transverse ridge). Females have a uniquely-shaped S6 with the central pale area broad (length only 2-3 times width) while in *P. echinocacti* and *P. latior* the central pale area is very slender (length 5-6 times width). This is the best character for positively identifying females.

The two previously recognized subspecies of *P. arcuata* are not recognized here because no consistent suite of congruent characters could be found to delineate them. The two characters on which the distinction was based were the presence/absence of yellow maculation on the male clypeus and the number of maxillary palpal segments (5 or 6). The majority of the male specimens from Baja California lack yellow maculation on the clypeus (Timberlake, 1953:968) and most (10/12; 7 males, 5 females) of the specimens I dissected had 6-segmented maxillary palpi. In contrast, all 22 (16 males, 6 females) of the specimens from the states of Arizona and California had 5-segmented palpi and most of these males had yellow maculation on the clypeus. However, the specimens from San Benito Co., California, present somewhat of a problem. They possess both the derived traits of lacking yellow maculation and of reduced maxillary palpi. Timberlake (1968:4) considered them to belong to the subspecies *arcuata* because of the former character, and concluded that the true range of *P. (a.) arcuata* was coastal California from San Benito Co. to Baja California Sur. However, 5-segmented maxillary palpi suggest that this population is more closely related to the other California (and Arizona) populations than to those in Baja California.

Description - **FEMALE** - Head: (1) width 1.52-1.88 mm (x = 1.69 ± 0.05; n=6); (2) 1.3-1.4 times broader than long (as measured from the vertex to the lower margin of the clypeus); (3) clypeus weakly imbricate-punctate; (4) frons granulate with small punctures and with linear depression along midline; (5) vertex imbricate-punctate; (6) gena imbricate with scattered punctures; (7) head coloration dark brown with metallic blue or green sheen, strongest on the frons; (8) whole head clothed in white, finely-branched setae, recumbent and shorter on clypeus and frons, erect and longest
on vertex and genae; (9) inner margins of eyes diverging very slightly above; eyes brownish; (10) posterior ocelli at level of upper margin of compound eye; (11) facial foveae deeply impressed, elongate and broadened slightly dorsally; (12) scape of antenna equal in length to flagellar segments 1-6, first flagellar segment slightly longer than second.

Mouthparts: (13) labrum with central depressed area, clothed with erect, finely-branched setae, and central transverse ridge; (14) mandible rufous, bidentate, with sulcus originating at mandibular acetabulum and extending diagonally across base of mandible; (15) glossa elongate, roughly 1.25 times longer than prementum; (16) paraglossa slender basally but expanding distally into broad, brushlike apex; (17) labial palpus 4-segmented, first segment longer than remaining segments combined and second segment inserted subapically on first; (18) galeal comb absent or present and very small; (19) maxillary palpus 5-6 segmented, distal segments 3 (to end) greatly shortened so that overall length of palpus short.

Mesosoma: (20) pronotum brownish with transverse sulcus dorsally and fringe of erect setae on leading edge; dorsal surface glabrous and with scattered punctures becoming imbricate laterally; pronotal lobe with coarsely branched setae; (21) mesoscutum black with metallic blue sheen; surface minutely imbricate-punctate and dorso-ventrally compressed, surface weakly imbricate-punctate; (22) mesoscutelum and metanotum brownish with similar sculpturing and setae; (23) mesopleuron brown with faint metallic blue or green sheen; sculpturing imbricate-punctate anterior to scrobe, reticulate posterior to scrobe; scrobial sulcus absent; (24) metapleural reticulate, lacking setae; (25) propodeum reticulate dorsally, becoming glabrous posteriorly; paired patches of erect setae flank central glabrous area; laterally, below spiracle, cuticle imbricate; (26) inter-tergular distance 1.12 - 1.18 mm (x = 1.16 ± 0.01; n=6); (27) forewing length 3.16 - 4.00 mm (x = 3.75 ± 0.12; n=6); wings slightly opaque with brownish tinge, veins brown; (28) legs brown; (29) forcoxa with long, erect, unbranched, posterior-directed setae; (30) scopal hairs on anterior surface of tibia sim­ilar to tarsal and tarsal claws as in female.

Metasoma: (34) terga dark brown, with paler transparent apical margin; (35) terga 1-5 minutely imbricate-punctate with small posteriorly-directed, recumbent setae; on cleared terga pale membranous slits extend from leading edge to spiracle; (36) deeply impressed fovea on lateral edge of T2; (37) T5 with long, erect, plumose setae along anterior margin; (38) graduli on T2-T4; (39) T6 with raised, acutely pointed pygidial plate flanked by dense, plumose setae; central portion of pygidial plate colliculate; (40) sternum slightly paler than terga; sternit 1-5 similar in sculpturing and vestiture to terga; (41) S5 as in Fig. 37a; (42) sternal graduli lacking on all segments except S1, where they are present only laterally.

MALE – Head: (43) width 1.20 - 1.96 mm (x = 1.57 ± 0.08; n=8); (44) quadrates, 1.4-1.6 times broader than long; (45) clypeus broad and dorso-ventrally compressed, surface weakly imbricate-punctate; (46) frons granulate with many small punctures and with median linear depression above level of antennal sockets; (47) vertex imbricate-punctate; (48) gena imbricate-punctate; (49) head deep brown, becoming paler at clypeus which may be yellow in specimens from California (except San Benito Co.), Arizona and Nevada; blue or olive metallic sheen becoming strongest on frons; (50) head clothed in finely-branched setae, recumbent on clypeus and supraclypeal area, erect and longer on upper part of frons, vertex and genae; (51) inner margins of eyes subparallel; (52) posterior ocelli just above level of upper margin of compound eyes; (53) facial fovea weakly impressed, oval or teardrop shaped; (54) antennae brown.

Mouthparts: (55) labrum pale brown to yellow, rectangular, broader than long, with transverse ridge and scattered, finely-branched setae; (56) mandible yellow, with reddish tips; no apical tooth and with outer sulcus (as in female); (57-61) male mouthparts as in female except paraglossae slender and acutely pointed, not broad and brushlike.

Mesosoma: (62-67) coloration and sculpturing of mesosoma as in female; (68) intertergular distance 0.92 - 1.24 (x = 1.08 ± 0.04, n=8); (69) forewing length 2.84 - 3.72 (x = 3.33 ± 0.12; n=8); wings as in female except for veins forming the posterior and distal margins of second medial cell (veins CuA and 2m-cu), which are distinctly weaker than other veins; (70) legs brown, or in some specimens, with yellow maculation on inner surface of fore-tibia; (71) basitibial plate concave and well defined around entire margin; surface of plate with a few apressed setae; (72) outer surface of hind tibia imbricate with stout moss-like setae; (73-75) tibial spurs and tarsal claws as in female.

Metasoma: (76) terga brown to reddish brown; (77) terga 1-6 minutely punctate with small, recumbent, white setae; (78) single row of stout moss-like setae across T6; (79) faint longitudinal fovea on lateral edge of T2; (80) T7 with paired patches of moss-like setae apically; lacking pygidial plate; anterior edge convex in dorsal view; (81) graduli present on terga 2-6; weak lateral extensions of graduli on T2 and T3; (82) sternum similar in coloration to terga; (83) sternum 1-6 similar in vestiture and coloration to terga 1-6; (84) sternal graduli present laterally on S1 and complete on S2-S5; (85) S7 and S8 as in Fig. 37b; (86) genital capsule with broad, horizontal gonocoxites clothed apically with setae; (87) volsellar cupis large with papillae located dorsally sometimes restricted to base of cupis and sometimes extending to the apex; (88) digitus with papillae; (89) penis valves with two patches of stout setae laterally (Fig. 37d).

Distribution – Throughout desertic and montane regions of Riverside, San Bernardino, Inyo, San Diego, Imperial, San Ben­rito counties, California; Mojave, Yavapai, Coconino, Yuma, Pima, Maricopa counties, Arizona; Clark Co., Nevada; Washington, San Juan counties, Utah; Baja California Norte and Sur, Mexico (Fig. 41).

Phenology – April through July, and October (in Baja California).

Floral associations – Collected primarily on Sphaeralcea (ambigua, rosacea) (224 females/340 males); but also collected on Hibiscus demudatus (1 female), Malva (2 males), Eriodictyon trichocalyx (1 female), Echinothrix acanthodes (1 female), Eschscholtzia californica (1 male), Malacothamnus orbiculatus (1 male), Encelia frutescens (1 male/1 female), Hemizonia lob­bit (1 male).

Perdita (Macroteropsis) echinocacti Timberlake
(Figs. 36a, 38, 41)
Perdita tepicensis Timberlake, 1968:5 [description of male] NEW SYNONYM.
Type material – The holotype male and allotype are in the CAS (Type No. 14499). The type specimens were collected 4/1/2 miles
above Pepper Sauce Canyon, Santa Catalina Mts., Pima Co., Arizona, August 14, 1940, on Echinocactus (Timberlake, coll.). The holotype male of *P. tepicensis* is at KU, and was collected west of Tepic, Nayarit, Mexico, 1600 ft., Aug. 19, 1961 (C.F. Bennett, coll.).

Diagnosis - Forewing length 3.0 - 3.7 mm. Males have yellow maculation on the labrum, clypeus and supraclypeal area up to the level of the antenial sockets, and have a bluish metallic sheen on the frons and mesonotum. Unlike males of the other members of *Macroteropsis* (except *P. latior*), males of this species have a pygidial plate on T7 formed by two parallel carinae. The presence of a median, posteriorly-directed prong on male S2 will distinguish this species from all other *Macroteropsis*. In both males and females the maxillary palpi are distinctly 6-segmented; segments 1 and 2 are subequal and relatively long; segments 3-6 are much shorter. Females can be distinguished from other *Macroteropsis* (except *P. latior*) by the shape of S6 (central clear area 5-6 times longer than wide), by the maxillary palpi, and by the distinctly bluish tinge to the frons and mesonotum.

I see no reason to consider the holotype of *P. tepicensis* distinct from *Echinocactus*. According to Timberlake this species differs from the former in the sculpturing of the mesonotum. However, the seemingly unique cuticular sculpturing of the *P. tepicensis* holotype results from dirt caked on the specimen.

Distribution - Pinal, Pima, Santa Cruz, Cochise counties, Arizona; states of Sonora, Sinaloa and south to Nayarit (the type locality of *P. tepicensis*), Mexico (Fig. 41). Additional specimens are recorded from Chihuahua, Mexico by PCAM (Ayala, et al., 1996), but I have not examined these specimens myself.

Phenology - August through September.

Floral associations - *Kallstroemia* (grandiflora) (44 females/54 males), *Echinocactus* (wislezeni [sic]) (12 females/36 males), *Convovulus* (6 females/16 males), *Antigonum* (3 females), *Boerhaavia* (1 female/1 male), *Ferocactus* (1 female/2 males). Although this species is commonly thought to be a cactus oligolege, the frequency of females on *Kallstroemia* suggests this as a possible pollen source as well.

Perdita (Macroteropsis) latior Cockerell
(Figs. 39, 41)

Perdita latior Cockerell, 1896:33 [description]; Cockerell, 1897a:354 [flower record].

Perdita (Macroteropsis) latior Timberlake, 1953:968 [additional material]; Timberlake, 1954:359 [localities and flower records]; 1954:357 [key]; 1962:87 [key]; 1980:3 [key].

Type material - One female co-type is located in the USNM (Type No. 3365). This specimen was collected at Las Cruces, Dona Ana Co., New Mexico, August 1895, on Sphaeralcea angustifolia (Cockerell, coll.). Two additional co-types are located at the Academy of Natural Sciences of Philadelphia. Both specimens were collected at the same locality as the co-type in the USNM. Along with the locality and host plant labels, the male bears the label "Ckl. 4815" and the female bears the label "Ckl. 4822." I designate the male at the Academy of Natural Sciences the lectotype.

Diagnosis - Forewing length 2.9 - 4.0 mm. *P. latior* is very similar to *Echinocactus*. The males can be distinguished from *Echinocactus* because they lack the prong on the apical margin of S2. The yellow facial maculation is less extensive on the face of *P. latior*, scarcely reaching the upper margin of the clypeus laterally, whereas in *P. echinocactus* the yellow extends upward along the inner margins of the eyes to above the level of the antennal sockets. Maxillary palpi are 6-segmented, as in *P. echinocactus*, but segment 5 is often indistinct. Females of these two species are difficult to distinguish (Timberlake, 1954:360) and it is best to rely on associated males. However, in the absence of males, this species may be distinguished from *P. echinocactus* by (1) the more bluish tinge on frons and mesoscutum in *P. echinocactus*, and (2) the more elongate and slender central pale area on the female S6 in *P. latior*, as compared to *P. echinocactus*.

Distribution - Desertic regions of Cochise, Yavapai, Coconino, Apache, Navajo, Gila, Mojave, Pima, Pinal counties Arizona; Dona Ana, Sandoval, Santa Fe, Hidalgo, Grant, Valencia, McKinley, Lin...
Fig. 39. *Perdita latior*. (a) female S6, (b) male S7 and S8, (c) male genital capsule (dorsal, ventral and lateral views), aedeagus (dorsal and lateral view).

colin counties New Mexico; Robertson Co., Texas; Clark Co., Nevada; Sonora, Mexico (Fig. 41). Additional specimens are recorded from Chihuahua, Mexico by PCAM (Ayala, et al., 1996), but I have not examined these specimens myself.

Phenology – May through October.

Floral associations – The vast majority of specimens were collected on *Sphaeralcea angustifolia* (115 females/108 males) and this is apparently the sole pollen source, but specimens have also been collected on *Heterotheca subaxillaris* (5 females), *Malva* (1 male), *Sida heteracea* [sic] (1 female), *Tidestromia lanuginosa* (1 male), *Helianium hoopesi* (1 female) and *Lygodesmia juncea* (1 female).

Fig. 40. Perdita magniceps. (a) male head, frontal and lateral views, (b) male S7 and S8, (c) male genital capsule (dorsal, ventral and lateral views), aedeagus (dorsal and lateral view), (d) female S6, (e) female T6.

Perdita (Macroteropsis) magniceps Timberlake

(Figs. 40, 41)

Perdita (Macroteropsis) magniceps Timberlake, 1960:124 [description of male].

Type material – The male holotype is located in the CAS (Type No. 14597). The holotype was collected 17 miles east of Deming, Luna Co., New Mexico, September 13, 1957, on *Kalstroemia* (Timberlake, coll.).

Diagnosis – Forewing length 3.2–3.8 mm. At the time Timberlake described this species there was only a single, rather large-headed, male specimen available. Since his original description was written, a long series of both male and female specimens have been collected at several additional localities and a more complete description of male variation can be given along with a description of the female (see below). The male of this species is clearly distinct from all other species of the subgenus *Macroteropsis*. In all specimens the head is orange-ferruginous with small, black facial foveae. In the largest specimens (head width = 1.6 mm) the head is almost entirely glabrous except for sparsely distributed, small, appressed hairs over the frons and genae and a band of erect setae running across the vertex posterior to the ocelli. In lateral view, the gena of the largest males is expanded to 1.9 times the width of the compound eye, while the smallest specimens show almost no genal enlargement. Unlike in all other members of *Macroteropsis* there can be extensive orange-ferruginous maculation over the mesosoma. The extent of the maculation covaries with overall body size. In the smallest specimens orange-ferruginous maculations are restricted to the pronotum and a small central spot on the scutellum. In the largest specimens orange maculation covers the pronotum, the lateral portions of the mesopleuron, meta­pleuron and the entire propodeum, although the dorsal and posterior surfaces of the propodeum appear brownish. Dorsally, small lateral portions of the scutum, immediately above the forewing bases, the central parts of the scutellum and the meso
tum are orange-ferruginous. The maxillary palpi are four-segmented, but unlike those of *P. haplura* and *P. portalis*, the mandibles are simple. The genital capsule, S7 and S8 slide mounted by Timberlake (slide no. 887) agree in all respects with the new material of this species, and serve to further distinguish this species from all other *Macroteropsis*.

Females are distinctive in showing similarly colored, although much less extensively distributed, orange-ferruginous maculation on the head and, in some specimens, the lateral lobes of the pronotum. Orange-ferruginous maculation is present on the mandibles, labrum, and clypeus, and extends upward as two thin bands on either side of the eye which meet dorsally and form a broad band along the vertex. The orange band extends medially from the eye and reaches the lateral ocelli in all specimens. The presence of orange-ferruginous bands on the vertex will separate this species from all others treated herein.

One of the most distinctive feature of this species, in both the males and females, is the extensive development of dense, closely appressed setae clothing the mesoscutum, scutellum and lateral portions of the mesopleuron. These setae give the females in particular a frosted appearance.

This species is united with *P. latior*, *P. echinocacti* and *P. arcuata* by the setae on the lateral surfaces of the penis valves.

Description – FEMALE – Head: (1) width 1.35 - 1.60 mm (x = 1.51 ± 0.20; n=10); (2) 1.30 - 1.40 (x = 1.34 ± 0.01; n=10) times broader than long (as measured from the vertex to the lower margin of the clypeus); (3) clypeus distinctly and densely punctate, with weakly imbricate regions between the punctation; (4) frons imbricate with small punctures and with linear depression along midline; (5) vertex imbricate with scattered punctations; (6) gena imbricate with scattered punctures; (7) head coloration primarily black with coppery sheen on frons and orange-ferruginous maculation with the following distribution: clypeus (along lower margin or extending upward to cover entire surface), in some specimens, small medial area between the antennal bases, thin band surrounding compound eyes and extending medially from upper margins of the compound eyes along vertex to lateral ocellus (never meeting to form continuous band across vertex); (8) entire face up to level of compound eyes clothed in closely appressed thick white setae in unsworn specimens; more elongate, erect setae along vertex, lateral, and posterior portions of head; (9) inner margins of eyes diverging above; eyes brownish (in pinned specimens); (10) posterior ocelli at level of upper margin of compound eye; (11) facial fovea weakly impressed, slender (0.32 mm in length); difficult to see through hairs on unsworn specimens; (12) scape of antenna equal in length to flagellar segments 1-5, first flagellar segment slightly longer than second.

Mouthparts: (13) labrum with central depressed area, clothed with erect, finely-branched setae, and central transverse ridge; (14) mandible yellow, becoming reddish apically; bidentate, with sulcus originating at mandibular acetabulum and extending diagonally across base of mandible; (15) glossa elongate and slender, roughly equal to prementum in length; (16) paraglossa slender basally but expanding distally into broad, brushlike apex; (17) labial palpus 4-segmented, first segment longer than remaining segments combined and second segment inserted subapically on first; (18) galeal comb absent or present and very small; (19) maxillary palpus 4-5 segmented at most, distal segments (3 to end) greatly shortened so that overall length of palpus short.

Mesosoma: (20) pronotum blackish with orange-ferruginous maculation weakly developed on lateral lobes and dorsal surface; dorsal and lateral surfaces imbricate and hairless; (21) mesoscutum black with metallic green or coppery sheen; surface coarsely imbricate-punctate with extremely dense clothing of white recumbent setae and more widely scattered longer, erect setae; notauli (weak), parapsidal lines and central longitudinal sulcus present; (22) mesoscutellum and metanotum dark brown with similar sculpturing and setae but with more erect setae than recumbent setae; (23) mesopleuron weakly metallic; sculpturing reticulate-punctate dorsally becoming imbricate-punctate ventrally; setae on lateral portions of mesopleuron erect, white, and finely branched; setae on ventral portion of mesopleuron simple, distinct from ones on lateral portion; scrobial sulcus absent; (24) metapleuron reticulate, lacking setae; (25) propodeum imbricate to reticulate laterally; posterior surface glabrous; dorsal surface (propodeal triangle) with more metallic bluish sheen and weakly imbricate; lateral and posterior surfaces separated by dense row of erect, white setae similar to those on metanotum and scutellum; (26) intertergular distance 1.12 - 1.28 mm (x = 1.18 ± 0.017; n=10); (27) forewing length 3.20 - 3.80 mm (x = 3.46 ± 0.04; n=10); wings milky white with pale yellowish to whitish wing veins; (28) legs mostly brown but apices of forefemur, most of foretibia, apices of mesofemur, base of mesotibia and apex of metabasal orange to fuscous; (29) basitibial plate quadrate and well-developed, with a few recumbent setae on its concave surface; (30) scopal hairs on anterior surface of tibia simple, become finely branched along outer edge of tibia; (31) midtibial spur finely serrate and very slightly hooked at apex; (32) hind tibial spurs finely serrate; subequal in length; (33) tarsal claws all bifid. Metasoma: (34) most terga dark brown, with paler transparent apical margin; sometimes with weakly-defined light brown areas on anterior and dorsal surface of T1 and dorsal surface of T2; (35) terga 1-5 minutely imbricate-punctate with small posteriorly-directed, recumbent setae; pale membranous slits extending from leading edge to spiral visible in cleared terga; (36) deeply impressed fovea on lateral edge of T2; (37) T5 with long, erect, plumose setae along posterior margin; (38) graduli on T2-T4; (39) T6 with raised, acutely pointed pygidial plate flanked by dense, plumose setae; central portion of pygidial plate colliculate; (40) sternum dark brown like terga; S1-S2 similar in sculpturing and vestiture to terga; (41) S6 as in *P. arcuata* (Fig. 40d); (42) sternad graduli lacking on all segments except S1, where they are present only laterally.

Distribution – Luna and Socorro counties, New Mexico; northern part of Chihuahua, Mexico (Fig. 41). This species seems to be restricted to mostly sandy soils as compared to other members of *Macroteropsis* since most collecting sites were located within large dune formations, such as the Samalayuca sand dunes south of El Paso, Texas, and a dune system running northward from Deming to Hatch, New Mexico (Brown & Howe 1980).

Phenology – August and September.

**Floral associations – The male holotype was collected on *Kallstroemia*, but all of the other 94 specimens were collected on *Sphaeralcea* sp., in particular, *S. incana*. *P. magneiceps* is clearly a *Sphaeralcea* oligogone since pollen-laden females carry *Sphaeralcea* pollen in their scopae. *S. incana* is a distinctive species of *Sphaeralcea* that grows to more than two meters in height. Like *P. magneiceps*, *S. incana* is restricted to very dry, sandy localities in New Mexico and northern Mexico (Martin & Hutchins 1981), suggesting that these two species form a close association.

Perditia (Macroteropsis) portalis Timberlake

(Plates I and II; Figs. 36b, 43, 45)

Type material – The male holotype and allotype are located in the CAS (Type No. 14670). The types were collected at Portal, Cochise Co., Arizona, August 12, 1940, on Sphaeralcea, (Timberlake, coll.).

Diagnosis – Forewing length 2.7 - 3.4 mm. This species and P. haplura are the smallest in Macroteropsis. Males of these two species are similar in having greatly enlarged, apparently glandular, facial foveae (black in P. haplura and cream colored in P. portalis), strongly protuberant, grey-blue eyes which are convergent below, elongate, thick, white erect setae over the vertex, meso- and metanotum (as well as the usual fine, recumbent pilosity), an acutely pointed clypeus which hangs over the base of the labrum (in the smallest specimens this feature can be weakly developed) and a broad, spade-like S8 (Fig. 42e). Furthermore, males have a conspicuous, acute inner tooth at the apex of the mandibles. Males of these two species can be distinguished based on the color of the facial foveae (see above), size (P. portalis smaller than P. haplura), the shape of T7 (apex more slender in P. portalis [Fig. 42g] than in P. haplura [Fig. 44e]) and the genital capsule (cuspis expanded in P. haplura and with extensive papillae over upper surface). Female P. portalis, like P. haplura, have a black head and mesosoma covered with scattered, erect, finely-branched, white setae and a fuscous metasoma. P. portalis can be distinguished from P. haplura by the presence of yellow maculation on the fore-
PHYLOGENY AND TAXONOMY OF *Perdita*

A pair of male specimens, collected at Gray mountain, Coconino Co., Arizona, July 26, 1952 by M. Cazier and R. Schrammel, differ from the majority of the *P. portalis* specimens in the structure of the genital capsule and T7. The apex of the genital capsule is more quadrate and the mesal margins of the volsellae are obtusely produced (Fig. 43a). The apex of the male T7, which possesses a broad, blunt protuberance in typical *P. portalis*, bears an acute, horizontal shelf (Fig. 43b). One of these males was seen by Timberlake (1956:323). In the absence of more material from this locality I see no reason to consider these specimens a different species from *P. portalis*; more likely they simply represent the extreme of the morphological variation in this species.

P. portalis, like *P. mellea*, has dimorphic males. The male referred to in the diagnosis is the typical flight-capable male most common in collections (Plate I). However, in 1970, J.G. Rozen, Jr., discovered in nests a flightless, macrocephalic male morph (described by Timberlake, 1980:5-6) (Plate II). The behavior and morphology of this bizarre and highly derived male morph is described elsewhere (Danforth, 1991b).

Distribution - Semidesert/grassland regions of Cochise, Graham, Coconino counties, Arizona; Luna, Hidalgo, Socorro, Otero, Chaves, Eddy, Quay counties, New Mexico; Hudspeth Co., Texas; Zacatecas and Coahuila states, Mexico (Fig. 45). Additional specimens are recorded from Chihuahua and Durango, Mexico by PCAM (Ayala, et al., 1996), but I have not examined these specimens myself.

Phenology - July through September.

Floral associations - The majority of specimens were collected on *Sphaeralcea* (angustifolia, laxa), (79 females/29 males) and this is clearly the predominant pollen source for this species, but some specimens have been collected on *Aplopappus* (2 males) and *Tidestromia lanuginosa* (1 female).

Fig. 42. Perdita portalis. (a) female head, (b) male head, (c) female S6, (d) female T6, (e) male S7 and S8, (f) male T7, lateral view, (g) male T7, dorsal view, (h) male genital capsule (dorsal, ventral and lateral views), aedeagus (dorsal and lateral view).

Fig. 43. Perdita portalis (variant form). (a) male genital capsule (dorsal, ventral and lateral views), (b) male T7, dorsal and lateral views.
Perdita (Macroteropsis) haplura Cockerell
(Figs. 44, 45)

Perdita haplura Cockerell, 1922a:19 [description of female].

Type material - The holotype female is in the NMNH (Type No. 24896). The type was collected at Sanderson, Terrell Co., Texas, May 9, 1912 (J.D. Mitchell, coll.).

Diagnosis - Forewing length 3.2 - 4.0 mm. Males of P. haplura and P. portalis share greatly enlarged, apparently glandular, facial foveae (black in P. haplura and cream colored in P. portalis), strongly protuberant, grey-blue eyes (in pinned specimens) which are convergent below, elongate, thick, white, erect setae over the vertex, meso- and metanotum (as well as the usual fine, recumbent pilosity), an acutely-pointed clypeus which hangs over the base of the labrum (in the smallest specimens this feature can be weakly developed), a broad, spade-like S8 (Fig. 44d) and elongate, bifid mandibles. These two species can be distinguished based on the features given above (in the diagnosis of P. portalis). Female P. haplura, like P. portalis, have a black head and mesosoma with scattered, erect, finely branched setae and afuscous metasoma. The density of the white mesosomal setae will distinguish these two species from all other members of Macroteropsis. P. haplura can be distinguished from P. portalis by the lack of yellow maculation on the foretibiae, by the stronger convergence of the eyes ventrally (Fig. 44a), by the shape of S6, and by the broader, less acutely pointed pygidial plate.

Distribution - Desert/grassland habitats of Lincoln and Dona Ana counties, New Mexico; Terrell, Pecos, Val Verde counties, Texas (Fig. 45).

Phenology - April through May and September.

Floral associations - Collected primarily on Sphaeralcea (angustifolia var. cuspidata) (5 females/4 males), but also on Fallugia paradoxa (1 female).

Subgenus Cockerellula Strand

Lutziella Cockerell, 1922c:1.
Cockerellula Strand 1932:196; Timberlake 1953:963-968 [key to species, additional species]; 1954:354 (description, key to species); 1956:323 [additional species]; 1960:122-123 [key to males; additional species]; 1968:2-4 [key to males, additional species]; 1980:1-2 [additional species].

Type species - Perdita opuntiae Cockerell, by original designation for Lutziella and autobasic for Cockerellula.

Diagnosis - This subgenus can be distinguished from the other subgenera treated here by the following combination of characters: (1) un-segmented, latero-apical projection on side of gonocoxite, (2) extremely slender S7, (3) modifications of male S1-S3 (in some species), (4) female metasoma reddish, (5) 6-segmented maxillary palpus, (6) second labial palpal segment arising apically on first, and (7) apodemes of the penis valves curving dorsal.

Perdita (Cockerellula) azteca Timberlake
(Figs. 36c, 46, 50)

Type material - Holotype male and allotype are in the CAS (Type No. 14438). They were collected at Zimapán, Hidalgo, Mexico, June 11, 1951 (P.D. Hurd, coll.).

Diagnosis - Forewing length 3.6 - 4.0 mm. With P. opuntiae this is the largest species of Cockerellula, with forewing lengths reaching 4.0 mm. Males are easily distinguished from all other close relatives by the uniquely-shaped seventh tergum, with paired blunt prongs extending dorso-posteriorly from the posterior margin (Fig. 46d), by the hind tibial spurs, which have particularly long teeth on the inner surface, which gives them a pectinate appearance, and by the male genital capsule (Fig. 46f). In addition, males have a unique combination of sternal modifications: the first sternum is produced medially into a pucker-like fold, and S2 and S3 have obtuse transverse protuberances along their posterior margins (strongest on S3) (Fig. 62a). Females can be recognized by the presence of a raised triangular area between the antennal
sockets which extends down to the lateral corners of the clypeus. On the postero-lateral surfaces of the propodeum there are patches of dense, finely-branched, white setae, which are present in only a few other species, and the female mandibles are particularly bright yellow. The pygidial plate is especially broad and blunt in *P. azteca* (e.g., in comparison to *P. knulli* and *P. bidenticauda* [Fig. 46b], and S6 is uniquely shaped also [Fig. 46a]).

Distribution — States of Hidalgo, San Louis Potosí, Jalisco, Puebla and Oaxaca, Mexico; up to 8100 ft. in elevation (Fig. 50).

Phenology — March through July, and rarely into September.

Floral associations — Collected exclusively on Cactaceae: *Opuntia* (25 females/16 males), *Eysenhardtia polystachya* (7 females), *Echinocactus* (2 females) and *Ferrocactus* (1 male).

Perdita (Cockerellula) bidenticauda Timberlake

(Figs. 47, 50)

Type material — The male holotype is at KU. The holotype was collected at Cooper's Store, Big Bend National Park, Brewster Co., Texas, April 11, 1947, on *Opuntia* (Michener and Beamer, coll.).

Fig. 45. Geographic distributions of species in the subgenus *Macroteropsis*, in part.
Diagnosis – Forewing length 2.8 - 3.2 mm. Males of this species can be recognized by the T7 shape, which has paired, postero-apical processes, as in *P. azteca*, however much less well developed. The presence of obtuse transverse protuberances along the posterior margin of S2 and S3 (more pronounced on S3) and the lack of a pucker like fold on S1 will further distinguish this species. In the key to *Cockerellula*, Timberlake states that *P. bidenticauda* and *P. laticauda* are indistinguishable in the female sex (1954:355). I have found no characters which allow one to distinguish them. These two species may be distinguished from all others by the shape of the female S6, with the elongate central fused area and the deeply divided lateral portions (Fig. 47a).

Distribution – This species is known only from the type locality (Fig. 50).

Phenology – April.

Floral associations – All paratype and the holotype specimens (2 females/6 males) were collected on *Opuntia* flowers.

Fig. 46. *Perdita azteca*. (a) female S6, (b) female T6, (c) male S7 and S8, (d) male T7, dorsal view, (e) male T7, lateral view, (f) male genital capsule (dorsal, ventral and lateral views), aedeagus (dorsal and lateral view).

Fig. 47. *Perdita bidenticauda*. (a) female S6, (b) female T6, (c) male S7 and S8, (d) male T7, dorsal view, (e) male T7, lateral view, (f) male genital capsule (dorsal, ventral and lateral views), aedeagus (dorsal and lateral view).
Perdita (Cockerellula) knulli Timberlake
(Figs. 48, 50)
Perdita (Cockerellula) knulli Timberlake, 1960:123 [description]; 1960:122 [key]; 1968:2 [key].
Type material – The male holotype and allotype are located at OhS. Both were collected in the Davis Mts., Jeff Davis Co., Texas, June 21, 1949 (D.J. and J.N. Knull, colls.). The female allotype bears similar labels.
Diagnosis – Forewing length 2.6 - 3.0 mm. Males can be distinguished by the narrowly bidentate apex of T7. S1 is produced medially into a pucker-like lobe (which will distinguish this species from P. bidenticauda) and S2 has paired diverging ridges which end at the posterior margin of the sternum in minute prongs or points. These are similar to the structures on the second sternum in P. opuntiae, but are less strongly protuberant. Female P. knulli can be recognized by the unique combination of very small size (wing length < 3.0 mm), reddish metasoma, and thick, dense erect setae on lateral surface of propodeum. The head and thorax are entirely dark, and have a distinct greenish sheen.
Distribution – Jeff Davis, Brewster and Pecos, Texas; Luna Co., New Mexico. Additional specimens from Mexico were collected by Terry Griswold and others at two localities (Ojinaga and Mapimi) in the states of Chihuahua and Durango; up to 4700’ (Fig. 50).
Phenology – April to June and August to November (in the southern-most locality).
Floral associations – Opuntia (1 female/1 male) and Acacia (2 males); in Mexico, Argemone turneri (7 females/10 males) and Opuntia imbricata (3 females/2 males).

Perdita (Cockerellula) rubida Timberlake
(Figs. 49, 50)
Perdita (Cockerellula) rubida Timberlake, 1968:2 [description of male]; 1968:2 [key].
Type material – The male holotype is reported to have been deposited in the CAS, but there is no record of this species in their type catalog or in the collection, nor is this specimen in the UCR collection. The holotype male was collected at 9 miles south of San Juan del Rio, Durango, Mexico, Aug. 21, 1960 (Arnaud, Ross, Rentz, colls.).
Diagnosis – Forewing length is 2.6-2.8 mm. This is the smallest Cockerellula species. Males can be easily recognized based on the paired, dorso-ventrally directed prongs arising preapically on the seventh terga. These are similar to prongs seen in P. azteca but more slender and acutely pointed. Metasomal sterna lack modifications seen in other members of this group. Yellow maculation on the face of males reaches the antenna sockets medially, but unlike all other close relatives, maculation extends above the antenna sockets along the inner margins of the eyes laterally. The background coloration of the head and metasoma is black with a metallic blue sheen. Females are entirely black with a metallic blue tinge to the head and mesosoma. The female S6 is similar to that of P. azteca. Timberlake did not have any female specimens of this species when he described it.

Although I have not seen the male holotype, nor any other specimens identified by Timberlake, I have two specimens, a male and a female, found in the undetermined Perdita collection of the AMNH, which appear to belong to this species. The male specimen agrees in all respects to Timberlake’s description, except the AMNH specimen lacks any small fold along the posterior margin of S1, a feature Timberlake noted for the holotype. The shape of the S1 could easily vary depending on the condition of the specimen, and so I do not consider this discrepancy reason for describing the AMNH specimens as a new species.

Description – FEMALE – Head: (1) width 1.32 mm; (2) 1.1 times broader than long (as measured from the vertex to the lower margin of the clypeus); (3) clypeus weakly imbricate, shiny, with distinct punctuation; (4) frons imbricate to granulate with distinct, widely scattered punctures and with linear depression along midline; (5) vertex imbricate-punctate; (6) gena imbricate with scattered punctures; (7) head except clypeus and central, raised triangular area between antennae distinctly bluish-green; (8) whole head clothed in fine, white, minutely branched setae, especially dense on genae, vertex and paraocular areas; (9) inner margins of eyes subparallel, diverging slightly below; eyes brownish; (10) posterior ocelli slightly above upper margin of com-
veloped; palpus almost equal in length to distal part of galea.

coming more distinctly coriarious laterally; (21) mesoscutum
dorsally; coriarious-imbricate dorsally, with weak punctures,
be­

veloped; palpus almost equal in length to distal part of galea.

coming more distinctly coriarious laterally; (21) mesoscutum
dorsally; coriarious-imbricate dorsally, with weak punctures,
be­

veloped; palpus almost equal in length to distal part of galea.

coming more distinctly coriarious laterally; (21) mesoscutum
dorsally; coriarious-imbricate dorsally, with weak punctures,
be­

veloped; palpus almost equal in length to distal part of galea.

coming more distinctly coriarious laterally; (21) mesoscutum
dorsally; coriarious-imbricate dorsally, with weak punctures,
be­

veloped; palpus almost equal in length to distal part of galea.

coming more distinctly coriarious laterally; (21) mesoscutum
dorsally; coriarious-imbricate dorsally, with weak punctures,
be­

veloped; palpus almost equal in length to distal part of galea.

coming more distinctly coriarious laterally; (21) mesoscutum
dorsally; coriarious-imbricate dorsally, with weak punctures,
be­

veloped; palpus almost equal in length to distal part of galea.

coming more distinctly coriarious laterally; (21) mesoscutum
dorsally; coriarious-imbricate dorsally, with weak punctures,
be­

veloped; palpus almost equal in length to distal part of galea.

coming more distinctly coriarious laterally; (21) mesoscutum
dorsally; coriarious-imbricate dorsally, with weak punctures,
be­

veloped; palpus almost equal in length to distal part of galea.

coming more distinctly coriarious laterally; (21) mesoscutum
dorsally; coriarious-imbricate dorsally, with weak punctures,
be­

veloped; palpus almost equal in length to distal part of galea.

coming more distinctly coriarious laterally; (21) mesoscutum
dorsally; coriarious-imbricate dorsally, with weak punctures,
be­

veloped; palpus almost equal in length to distal part of galea.

coming more distinctly coriarious laterally; (21) mesoscutum
dorsally; coriarious-imbricate dorsally, with weak punctures,
be­

veloped; palpus almost equal in length to distal part of galea.

coming more distinctly coriarious laterally; (21) mesoscutum
dorsally; coriarious-imbricate dorsally, with weak punctures,
be­

veloped; palpus almost equal in length to distal part of galea.

coming more distinctly coriarious laterally; (21) mesoscutum
dorsally; coriarious-imbricate dorsally, with weak punctures,
be­

veloped; palpus almost equal in length to distal part of galea.

coming more distinctly coriarious laterally; (21) mesoscutum
dorsally; coriarious-imbricate dorsally, with weak punctures,
be­

veloped; palpus almost equal in length to distal part of galea.

coming more distinctly coriarious laterally; (21) mesoscutum
dorsally; coriarious-imbricate dorsally, with weak punctures,
be­

veloped; palpus almost equal in length to distal part of galea.

coming more distinctly coriarious laterally; (21) mesoscutum
dorsally; coriarious-imbricate dorsally, with weak punctures,
be­

veloped; palpus almost equal in length to distal part of galea.

coming more distinctly coriarious laterally; (21) mesoscutum
dorsally; coriarious-imbricate dorsally, with weak punctures,
be­

veloped; palpus almost equal in length to distal part of galea.

coming more distinctly coriarious laterally; (21) mesoscutum
dorsally; coriarious-imbricate dorsally, with weak punctures,
be­

veloped; palpus almost equal in length to distal part of galea.

coming more distinctly coriarious laterally; (21) mesoscutum
dorsally; coriarious-imbricate dorsally, with weak punctures,
be­

veloped; palpus almost equal in length to distal part of galea.
medially and the lateral corners are bent further ventrally. The
genital capsule of these two species is very similar, but in *P. lobata*
the apical margin of the gonocoxites are produced medially, in
ventral view, while in *P. laticauda* the apical margin is more or less
straight. Finally, in *P. lobata* the papillae extend almost all the way
to the apex of the cuspis, while in *P. laticauda* the papillae are fur­
ther removed from the apex of the cuspis, restricted to the basal
1/2, in dorsal view. Female *P. laticauda*, *P. lobata* and *P. bidenti­
cauda* are very difficult to distinguish, and one must rely on asso­
ciations with males collected at the same locality.
Distribution — Terrell and Webb counties, Texas; Coahuila,
Mexico (Fig. 53).
Phenology — April in Texas and August in Mexico.
Floral associations — *Gilia acerosa* (9 females/11 males), *Chamae-
saracha conoides* (6 females/2 males), *Opuntia* (1 male) and *Gail­
lardia* (1 female).
Perdita (Cockerellula) lobata Timberlake
(Figs. 52, 53)

Type material – The male holotype is located at KU, and was collected 15 miles northwest of Mission, Hidalgo Co., Texas, March 30, 1946, on Opuntia (C.D. Michener, coll.).

Diagnosis – Forewing length 3.0-3.2 mm. This species is very similar to P. laticauda. See above for features which allow them to be distinguished.

Distribution – Starr and Hidalgo counties, Texas (Fig. 53).

Phenology – March.

Floral associations – Opuntia (2 males).

Perdita (Cockerellula) opuntiae Cockerell
(Figs. 54, 58)
Perdita (LutzieUa) opuntiae Cockerell, 1922c:2 [description]; Custer, 1928:67-84; 1929a:50-51; 1929b:294-295 [biology].
Perdita (Cockerellula) opuntiae: Timberlake, 1953:964 [key]; 1954:355

Fig. 51. Perdita laticauda. (a) female S6, (b) male S7 and S8, (c) male T6, dorsal and lateral views showing erect, moss-like setae, (d) female T6, dorsal view, (e) male T7 dorsal view, (f) male T7, lateral view, (g) male genital capsule (dorsal, ventral and lateral views), aedeagus (dorsal and lateral view).

Fig. 52. Perdita lobata. (a) female S6, (b) male S7 and S8, (c) male T7, dorsal and lateral views, (d) male genital capsule (dorsal, ventral and lateral views), aedeagus (dorsal and lateral view).
Type material – The male holotype is located in the CAS (Type No. 13443). The holotype was collected at White Rocks, Boulder, Boulder Co., Colorado, June 13, on Opuntia (W.P. Cockerell, coll.).

Diagnosis – This species, along with P. azteca and P. seminigra, are the largest species of Cockerellula (forewing length = 3.6 - 4.0 mm). Males are easily recognized by the shape of T7, with two latero-apical prongs separated by a wide emargination, and the presence of a broad, quadrate protuberance on the posterior margin of the S2. The female head and mesosoma are much lighter in coloration than in the similarly-sized P. azteca, and possess dense patches of yellowish-white setae on the postero-lateral surface of the propodeum. Scopal hairs are longer and denser than in P.
Fig. 54. Perdita opuntiae. (a) female head, (b) male head, (c) female S6, (d) male S7 and S8, (e) male T7, dorsal and lateral views, (f) male genital capsule (dorsal, ventral and lateral views), aedegaus (dorsal and lateral view).

Phenology - June through July.

Floral associations - Pollen collection is restricted to Opuntia compressa and O. polyacantha (Bennett and Breed, 1985).

Perdita (Cockerellula) parkeri Timberlake (Figs. 53, 55)

Perdita (Macroteropsis) parkeri Timberlake, 1980:4 [description of female]; 1980:3 [key].

Type material - The female holotype is located in the CAS (Type No. 14656), and was collected at Cacaloapan, Puebla, Mexico, April 26, 1962 (F.D. Parker, coll.).

Diagnosis - This species is known only from the holotype and two additional specimens collected by Jack Neff in Blanco Co., Texas. The male is very similar to *P. opuntiae* except that the mesonotum and mesopleura are more dull (they are shining in *P. opuntiae*), and the head and thorax are black (they are light brown in *P. opuntiae*). The female of this species shows a number of characteristics that indicate it is more closely related to members of Cockerellula than to species of Macroteropsis: the head is only 1.1 times wider than long (rather than 1.3 times in Macroteropsis), the lateral surfaces of the propodeum have dense patches of setae, as in female *P. azteca* and *P. opuntiae*, the maxillary palpi are six-segmented and the segments are all much longer than wide, and the second labial palpal segment inserts apically on the first. Females of this species differ from all others in *Cockerellula* in the striate (or lineolate; Timberlake, 1980) sculpturing of the dorsal surface of the propodeum, in the shape of S6 (Fig. 55a), and in the dark coloration of T1.

This species was heretofore known only from the female. The description of the male given below is based on a single male collected along with a female by Jack Neff.

Description - MALE - Head: (43) width 1.84 mm; (44) 1.35 times broader than long; (45) clypeus broad, imbricate and weakly punctate; (46) frons coarsely granulate, unusually dull, with shallow punctures; (47) vertex similar but more distinctly punctate; (48) gena imbricate-punctate; (49) head black with creamy white maculation on clypeus, subantennal plates and paraocular area extending upward along inner margin of eye to between eye and facial fovea; sharp border between yellow and black areas; very weak reddish metallic sheen on frons; (50) head nearly bare; few, short setae on frons and vertex; (51) inner margins of eyes strongly divergent below; (52) posterior ocelli separated from occipital margin by 0.4 mm; (53) facial fovea distinctly impressed, slender, 0.30 mm in length; (54) antennae light brown; scape equal in length to first six flagellar segments.

Mouthparts: (55) labrum yellow, 2.4 times broader than long; shallow, concave depression along proximal margin; (56) mandible yellow with reddish tip; apex simple, no sub-apical tooth; (57) glossa normal, equal to premamentum in length; (58) paraglossae slender and acutely pointed; (59) labial palpus normal, 4-segmented, with the first segment longer than remaining segments combined; (60) galeal comb absent; (61) maxillary palpus 6-segmented, second segment elongate, as in other members of the Macrotera group.

Mesosoma: (62) pronotum brown, imbricate; thick white setae across dorsum, extending to pronotal lobes; (63) mesoscutum densely granulate with large, shallow punctures as on head; parapsidal lines distinct, unusually deeply impressed, 0.32 mm in length; notaui absent; (64) sculpturing of mesoscutellum and metanotum similar to mesoscutum; metanotum with erect white setae laterally and along posterior margin; (65) mesopleuron with distinctly imbricate, scale-like sculpturing; scrobe deeply impressed; scroal sulcus lacking; erect, widely-scattered setae over surface; (66) metapleuron similar but without setae; (67) lateral surface of propodeum alveolate; lateral and dorsal or posterior surface sep-
PHYLOGENY AND TAXONOMY OF PERDITA

Fig. 55. Perdita parkeri. (a) female S6, (b) male S7 and S8, (c) male T7, dorsal and lateral views, (d) male genital capsule (dorsal and ventral views), aedeagus (dorsal and lateral view).

arated by row of setae that are erect and widely separated dorsally, becoming shorter and more closely-spaced ventrally (toward junction of metanotum) to form a discrete patch of setae; dorsal surface of propodeum of propodeal triangle deeply alveolate; lateral alveoli roughly quadrate while those along midline are laterally compressed giving the propodeum a slightly lineolate or striate appearance, as in female; (68) intertergular distance 1.16 mm; (69) forewing length 3.64 mm; wing veins light brown; stigma dark brown; venation pattern roughly as in female except veins Cu1a and 2m-cu slightly weaker than others; (70) legs dark brown except for apex of forefemur and anterior surface of foretibia, which are light brown/yellowish; (71) basitibial plate distinct; surface imbricate with 6-8 punctures; no setae covering surface; (72) outer surface of hind tibia with erect, moss-like setae intermixed with slender, white setae; (73-74) mid- and hindtibial spurs finely serrate and hooked at apex; (75) tarsal claws all bifid.

Metasoma: (76) terga all bright red; (77) T1-T7 smooth with minute punctation and inconspicuous, recumbent white setae; (78) single row of stout setae across T6; (79) longitudinal fovea on lateral surface of T2; (80) T7 divided apically into paired prongs separated by 0.45 mm (similar to P. opuntiae); (81) graduli present on T2-T6; graduli on T2 and T3 especially well-developed with lateral portions visible; (82-83) sternum similar in coloration, punctuation and vestiture to terga; (84) S2 with paired acute projections from posterior surface extending out of plane of sternum; (85) S7 elongate and slender, S6 narrow (as in Fig. 55b); (86) genital capsule quadrate in dorsal view, with ventro-lateral projections (Fig. 55d) as in other Cockerellula; (87) volsellar cuspis compressed laterally; (88) papillae along dorsal surface of cuspis; (89) penial valves diverging apically, as in P. seminigra and P. opuntiae (Fig. 55d).

Distribution – Blanco Co., Texas south to Puebla, Mexico (Fig. 53). The specimens collected by Jack Neff greatly expand the known range of this species.

Phenology – April.

Floral associations – The holotype bears no flower record but the specimens collected in Texas were on Opuntia.

Perdita (Cockerellula) seminigra Timberlake
(Figs. 56, 58)

Perdita (Cockerellula) seminigra Timberlake, 1956:323 [description of male]; 1960:122 [key].

Type material – The male holotype is in the CAS (Type No. 14705), and was collected 34 miles south Acatlan, Puebla, Mexico, 6000', July 10, 1952 (E.E. Gilbert and C.D. MacNeill, colls.).

Diagnosis – This species is known only from the holotype specimen. Forewing length 3.6 mm. The male of this species is very similar to that of P. opuntiae. Both species are large (forewing length > 3.6 mm) and have brownish heads and mesosomas, and fuscous metasomas. The facial maculation in P. seminigra, however, is whiter than in P. opuntiae and is restricted to the parocular areas, between the outer subantennal sulcus and the compound eye up to the level of the antennal sockets. In both
species, the male S2 has a broad, quadrate protuberance (broader in *P. opuntiae* [width = 0.5 mm] than in *P. seminigra* [width = 0.32 mm]) and the male T7 has two, large, latero-apical prongs along the posterior margin which are separated by a wide, concave emargination. The prongs are more widely separated in *P. opuntiae* (distance between apices of two prongs roughly 0.56 mm) than in *P. seminigra* (0.48 mm), and in *P. seminigra* there is a distinct flange on the inner margin of each prong (Fig. 56c). The setae over the metanotum and lateral surface of the propodeum are shorter and less dense in *P. seminigra*. The penis valves and genital capsules of *P. opuntiae* and *P. seminigra* are also very similar.

Distribution – Known only from the type locality (Fig. 58).
Phenology – July.
Floral associations – unknown.

Perdita (Cockerellula) solitaria Cockerell
(Figs. 36d, 57, 58)

Perdita Cockerell, 1897b:152 [description of female]; Cockerell, 1922b:1 [new locality].

Perdita (Cockerellula) quadridentata Timberlake 1980:1 [description of male] NEW SYNONYMY.

Perdita (Macroteropsis) atrella Timberlake 1968:4 [description of female]; 1980:3 [key] NEW SYNONYMY.

Type material – The female holotype is located in the NMNH (Type No. 3384). The holotype was collected at Soledad Canon, Organ Mountains, Dona Ana Co., New Mexico, August 15 (C.H.T. Towneend, coll.). The male holotype and allotype of *P. quadridentata* are in the CAS (Type No. 14680), and were collected 5 miles east of Nogales, Santa Cruz Co., Arizona, September 1, 1970, on *Baccharis* (G.E and R.M. Bohart, colls.). The female holotype of *P. atrella* is in the CAS (Type No. 14434) and was collected 20 miles south Estacion Llano, Sonora, Mexico, August 18, 1964 (M.E. Irwin, coll.).

Diagnosis – Forewing length 2.4 - 2.6 mm. Males are most easily recognized by the uniquely-shaped T7, with two converging dorso-apically directed prongs and two diverging latero-apical prongs (Fig. 57). Both males and females can be distinguished from other close relatives by the unusually proportioned labial palpi: segments 2-4 are long and thin and their total combined length is equal to the first segment (Fig. 36d). Females are entirely dark, lacking reddish metasomal coloration, the body is sparsely clothed in elongate, erect setae and there is no metallic sheen to the head or mesosoma.

P. atrella and *P. quadridentata* appear to be junior synonyms of *P. solitaria*. *P. quadridentata* was based on the male of *P. solitaria*, as judged by a male specimen collected along with females of *P. solitaria* at Sycamore Canyon, Santa Catalina Mts., Pima Co., Arizona, 20 August, 1916. Timberlake (1954:365) was unaware of this male specimen when he treated *P. solitaria* as a species known only from the female. Cockerell (1922b:1) does not mention this male specimen, although he did report having seen two females from the same locality and date. The female allotype of *P. quadridentata* is indistinguishable from females of *P. solitaria*.

P. atrella is also a junior synonym of *P. solitaria*; the type agrees in all respects with *P. solitaria*. Because Timberlake (1968:4) compared the holotype specimen of *P. atrella* to species of *Macroteropsis* rather than *Macroterella* (which contained *P. solitaria*), he was lead to the incorrect conclusion that it was a new species.

Distribution – Pima, Cochise and Santa Cruz counties, Arizona; Dona Ana Co., New Mexico and Sonora, Mexico (Fig. 58); collected up to 3800 ft. (in Santa Catalina Mts.)

Perdita (Cockerellula) anthracina Timberlake
(Figs. 53, 59)

Perdita (Macroteropsis) anthracina Timberlake, 1980:3 [description of female and key].

Type material – The female holotype is in the CAS (Type No. 14422), and was collected 10 miles north of Guadalajara, Jalisco, Mexico, October 16, 1968 (G.E. Bohart, coll.).

Diagnosis – This species is known only from the holotype fe-
male. Forewing length 3.4 mm. The body is entirely black with a faint coppery sheen on the head and mesosoma; and scattered, long, erect setae. Wing veins are brown. The female is superficially similar to female *Macroteropsis*, but lacks the mouthpart characters of that group. The holotype female lacks dense patches of setae on the lateral surface of the propodeum.

Distribution — Jalisco, Mexico (Fig. 53).

Phenology — May.

Floral Associations — unknown.

Perdita (Cockerellula) peninsularis Timberlake

(Figs. 53, 59)

Perdita (Cockerellula) peninsularis Timberlake, 1968:3 [description of female].

Perdita (Macroteropsis) peninsularis 1980:2; 1980:3 [key].

Type material — The holotype female is located in the CAS (Type No. 12993), and was collected at Triunfo, Baja California Sur, Mexico, July 7, 1938 (Michelbacher and Ross, coll.).

Diagnosis — Forewing length 3.4 mm. This species is known from only two female specimens collected at the type locality on 7 and 13 July, 1938. Timberlake originally placed it in the subgenus *Cockerellula* but in 1980 (p.2), he transferred it to the subgenus...
Macroteropsis, without giving any explanation for this change. I have since seen all of Timberlake's material from the CAS, and in this material were one male and one female, collected 6 mi. NW El Rosario, near Consuelo, Baja California, Mexico on 18 May, 1965 by D.Q. Cavagnaro, C.E. and E.S. Ross and V.L. Vesterby, which were identified by Timberlake as *P. peninsularis*. Based on dissections of these specimens it is clear that they are really *P. arcuata*. In fact, in the CAS *P. arcuata* material is another female specimen with the same locality data which he had identified as *P. arcuata*. I believe that by mistaking these specimens of *P. arcuata* as *P. peninsularis* he made the incorrect decision to transfer *P. peninsularis* to *Macroteropsis*.

Based on the two female *P. peninsularis*, this species clearly belongs in *Cockerellula*. Females have relatively long faces (width only 1.1 times length), elongate, well-developed maxillary palpi, and the second labial palpus arises apically on the first. The body is entirely black, with fine imbricate-punctate sculpturing over much of the head and metasoma and scattered, erect white setae. Wing veins are brown. The propodeal triangle is finely areolate and the lateral surfaces of the propodeum bear erect, plumose, white setae, similar to the setae on the propodea of *P. opuntiae* or *P. azteca*, but less dense. This species can be most easily distinguished from the other *Cockerellula* by the conspicuously concave basithial plate, the shape of the female S6 (deeply divided apically), and pygidal plate (elongate and slender with narrowly quadrate apex; Fig. 59d).

Distribution – Baja California Sur, Mexico (Fig. 53).

Phenology – July.

Floral associations – unknown.

Perdita (Cockerellula) robertsi Timberlake

(Figs. 50, 59)

Perdita (Macroteropsis) robertsi Timberlake, 1968:6 [description of female]; 1980:3 [key].

Type material – The female holotype is in the CAS (Type No.

Fig. 59. *Perdita anthracina*. (a) female S6, (b) female T6. *Perdita peninsularis*. (c) female S6, (d) female T6. *Perdita robertsi*. (e) female S6, (f) female T6.
John Neff. Although originally placed in white setae on the frons, the scuto-scutellar suture and the metan-
turned, the second labial palpal segment arises apically on the
second labial palpal segment arises apically on the
the mandibular bases, and S6 shape will distinguish
the head is scarcely longer

Heteroperdita Timberlake

Perdita (Heteroperdita) pilonotata Timberlake

Type material - I was unable to locate the holotype female.

ACKNOWLEDGMENTS

I am grateful to Dr. Charles D. Michener for his excellent support and guidance at all points throughout this work. I thank the members of my Ph.D. committee, David Alexander, William J. Bell, George W. Byers, Rudolf Jander and Edward O. Wiley, for their critical comments on the manuscript and for their help throughout my graduate tenure at the University of Kansas.

I am very grateful to the Smithsonian Institution for a Pre-Doctoral Fellowship at the National Museum of Natural History. Ronald J. McGinley provided excellent advice and oversight, and generously shared his office and resources with me during my stay.

I thank the following people and institutions for providing specimens for this study and for allowing me to work in their collections: Jerome G. Rozen, Jr., and Eric Quinter, American Museum of Natural History (AMNH); Wojciech Pulawski, California Academy of Sciences (CAS); Roy R. Snelling, Los Angeles County Museum of Natural History (LACM); Ronald McGinley, National Museum of Natural History, Smithsonian Institution (NMMH); Ohio State University, Columbus (OS); James DiGiulio, Oregon State University (ORS); Howell V. Daly, University California, Berkeley (UCB); Lynn Kimsey, R.M. Bohart Museum of Entomology, University of California, Davis (UCD); Saul I. Frommer, University of California, Riverside (UCR); U.N. Lanham, University of Colorado Museum, Boulder (UCoB); Charles D. Michener and Robert W. Brooks, Snow Entomological Museum, University of Kansas, Lawrence (KU); and Ricardo Ayala and Gregorio Rodriguez, Estacion de Biologia Chamela, Universidad Nacional Autonoma de Mexico (UNAM) (Acronyms used follow McGinley, 1986). Additional specimens for this study were provided as a result of collecting trips organized by the Programa Cooperativo sobre la Apifauna Mexicana (PCAM) and funded by the National Science Foundation (Wallace E. LaBerge & Ronald J. McGinley, Principal Investigators, NSF BFR 90-24723). I am grateful to Doug Yanega for providing locality data for PCAM specimens. Natalya Florenska generously provided the half-tone illustrations (Plates I and II).

LITERATURE CITED

Farris, J.S. 1988. Hennig86, version 1.5. Distributed by the author, Port Jefferson Station, N.Y.

ANNOUNCEMENT

The University of Kansas Science Bulletin (continuation of the Kansas University Quarterly) is an outlet for scholarly scientific investigations carried out at the University of Kansas or by University faculty and students. Since its inception, volumes of the Bulletin have been variously issued as single bound volumes, as two or three multi-paper parts or as series of individual papers. Issuance is at irregular intervals, with each volume prior to volume 50 approximately 1000 pages in length. Effective with volume 50, page size has been enlarged, reducing the length of each volume to about 750 pages.

The supply of all volumes of the Kansas University Quarterly is now exhausted. However, most volumes of the University of Kansas Science Bulletin are still available and are offered, in exchange for similar publications, to learned societies, colleges and universities and other institutions, or may be purchased at $30.00 per volume. Where some of these volumes were issued in parts, individual parts are priced at the rate of 3 cents per page. Current policy, initiated with volume 46, is to issue individual papers as published. Such separata may be purchased individually at the rate of 7 cents per page, with a minimum charge of $1.50 per separate. Subscriptions for forthcoming volumes may be entered at the rate of $30.00 per volume. All communications regarding exchanges, sales and subscriptions should be addressed to the Exchange Librarian, University of Kansas Libraries, Lawrence, Kansas 66045.

Reprints of individual papers for personal use by investigators are available for most recent and many older issues of the Bulletin. Such requests should be directed to the author.

The International Standard Serial Number of this publication is US ISSN 0022-8850.

Editor
Charles D. Michener

Editorial Board
Meredith Lane, Chairman
James S. Ashe
George W. Byers
Christopher Haufler
Norman A. Slade

This issue, vol. 55, no. 16, is the last to be published under the title "University of Kansas Science Bulletin."

The publication program will be continued as part of a new series entitled "Scientific Papers, University of Kansas Natural History Museum." Exchanges and subscriptions will be continued through the University of Kansas Library.