

Enhanced Radiometric Characterization of Sonoran PICS for Vicarious Calibration of GOES Imagers

Prathana Khakurel, David Doelling, Conor Haney, Rajendra Bhatt, Benjamin Scarino, Arun Gopalan

> CALCON MEETING LOGAN, UTAH June 13, 2023

- •The Sonoran Desert in the Western Hemisphere is a commonly used PICS
- Minimal spatial and temporal variations and high reflectivity
- Within the field-of-view of GOES-East and West Imagers (lacking onboard calibrators), and thereby applicable for their vicarious calibration
- •GOES have been providing valuable information for global climate change studies observing the Western Hemisphere

Introduction

- NASA's CERES project utilizes the Sonoran Desert to uniformly scale GOES sensors to a common radiometric scale
- Current GOES sensors are directly calibrated against MODIS radiances using coincident and collocated ray-matched radiance pairs
- For pre-MODIS timeframe GOES sensors, the CERES GEO PICS methodology relies on an empirical daily exoatmospheric radiance model (DERM)
- DERM averages multiple years of observed local noon TOA radiances for each day of the year to predict the reference daily radiance to determine the stability across the GEO record

Problem Statement

- Current DERM methodology does not account for any inter-annual variability due to varying atmospheric conditions
- DERM uncertainty is larger at select wavelengths that are sensitive to atmospheric variability

Objective

 Enhance the Sonoran Desert DERM accuracy by correlating observed radiance variability with atmospheric parameters like precipitable water, ozone concentration, and surface pressure

Outline of the Study

Characterization of Sonoran Desert using MODIS incorporating the atmospheric parameters under similar viewing conditions as GOES

GOES-12 based DERM over Sonoran Desert

Traditional DERM + Atmospheric parameterization

Aqua MODIS PICS Methodology

Data Selection

- Aqua MODIS Collection 6.1
- Averaging the instantaneous MODIS pixel-level radiances that are located over the Sonoran ROI

Clearsky filtering

- ➢0.64µm radiance spatial homogeneity and brightness temperature within the ROI is used to identify pristine clear-sky observations
- Development of Directional Model
 - DM coefficients are derived that relate TOA reflectances with SZA and atmospheric parameters, which are used to predict the clearsky reflectance over Sonora Desert
 - The atmospheric parameters are from the GSFC GMAO reanalysis product
- Dividing observed reflectance with the predicted reflectance to compute channel relative reflectance

Clear-sky Filtering MODIS Radiance over the Sonoran Desert

Clear-sky filtering using spatial homogeneity test and IR BT threshold

The Aqua-MODIS Sonora reflectance are regressed by applying regression fit

- With respect to cosine SZA, Ref_{predicted} = g₀ + g₁*cos(SZA)
- Adding atmospheric parameters
 Ref_{predicted} = g₀ + g₁*cos(SZA) + g₂* PW + g₃* O₃ + g₄*SP + g₅*WS

Relative Reflectance Trend Standard Error (VZA<30°)

Parameters/Band(µm)	0.64 (%)	0.87 (%)	0.46 (%)	0.55 (%)	1.24 (%)	1.629 (%)	2.10 (%)	
SZA	1.0691	1.3762	1.1251	0.9327	1.2718	0.885	3.1235	trend standard error with sza only
SZA+PW	0.8992	0.8663	1.107	0.9312	0.794	0.7677	1.4611	SZA and one other parameter trend standard error (smallest shown in bold) Reduction when adding
SZA+P _{SURF}	1.0634	1.3551	1.1152	0.9215	1.2622	0.8847	2.936	
SZA+O ₃	1.0708	1.3128	1.128	0.9003	1.2236	0.8776	2.9572	
SZA+WS	1.0465	1.3102	1.1226	0.9336	1.2128	0.8871	2.8903	
Comparison with SZA	15.90	37.05	1.61	3.47	37.57	13.25	53.22	one parameter
SZA+PW+P _{SURF} +O ₃ + WS	0.856	0.8711	1.0933	0.8989	0.7899	0.7624	1.4514	SZA ands all parameter standard error
Comparison with SZA	19.93	36.70	2.83	3.62	37.89	13.85	53.53	Reduction when adding all the parameters

 The channels impacted by PW reduced the trend standard error between 15 to 50%

Years

Parameters/Band(µm)	0.64 (%)	0.87 (%)	0.46 (%)	0.55 (%)	1.24 (%)	1.629 (%)	2.10 (%)	trend standard error with sza only
SZA	1.4789	1.6564	1.942	1.4902	1.5162	1.0547	3.8653	
SZA+PW	1.3382	1.0999	1.8799	1.464	0.9887	0.9223	1.7624	SZA and one other parameter trend standard error (smallest shown in bold) Reduction when adding one parameter
SZA+P _{SURF}	1.4618	1.6349	1.8699	1.423	1.4906	1.0315	3.6863	
SZA+03	1.4627	1.6227	1.9217	1.4246	1.4834	1.0349	3.6919	
SZA+WS	1.4579	1.5704	1.9406	1.4837	1.4454	1.0323	3.5917	
Comparison with SZA	9.51	33.60	3.71	4.51	34.79	12.55	54.40	
SZA+PW+P _{SURF} +O ₃ + WS	1.2192	1.0541	1.8023	1.3678	0.9427	0.8759	1.7219	SZA ands all parameter standard error
Comparison with SZA	17.56	36.36	7.19	8.21	37.82	16.95	55.44	all the parameters

- The channels impacted by PW reduced the trend standard error between 15% to 50%
- Expect a 15% decrease in temporal noise adding in PW and other atmospheric parameters of the GOES observations

- This approach uses a PICS to transfer calibration from a reference GEO sensor to a target co-located GEO sensor.
- The reference GEO sensor calibration is obtained from its intercalibration (ray-matching) with a matching Aqua MODIS band.
- The similar daily imaging schedules of the reference GEO provides consistent solar and azimuth angular conditions on a particular day of year.
- Multiple years of consistent-time daily TOA radiances observed from the reference GEO over the PICS are used to construct a daily-exoatmospheric radiance model (DERM).
- Near local noon-time data is chosen for maximum SNR.
- Since the daily angular conditions are repeated annually for any historical or successive co-located GEO, the reference GEO DERM is used to predict the TOA radiance of the co-located target GEO, and calibrate it.

GOES-12 DERM

CERES SYN1deg Edition 4 Product, Remote Sens. 2018, 10(2), 288, DOI:10.3390/rs10020288.

- PW oscillates with season, but has day to day variability in the PW that will impact the radiance
- Larger PW values correspond to smaller radiances, whereas smaller PW values correspond to greater radiances
- For each day, describe the radiance departure from DERM using a linear relationship based on PW <u>Predicted_rad_y-DDD</u> = slope* PW_{Y-DDD15}+offset

 $\begin{aligned} & Predicted_rad_{y-DDD} = \text{Slope}^* \ PW_{Y-DDD} + \text{Offset} \\ & Normalized_rad_{Y-DDD} = \frac{Observed_rad_{Y-DDD}}{Predicted_rad_{Y-DDD}} \times Rad_{mean_PW_{DDD}} \end{aligned}$

• By adding the PW-term the standard deviation , 28% reduction

G-12 DERM Validation

- GOES-12 gains derived from the DERM and Aqua ray-matching are consistent within 1% during the overlapping timeframe
- Improved DERM reduced error by ~30%

Conclusions

- DERM approach uses the consistent, repeating cycle of the PICS daily TOA radiance every year to inter-calibrate co-located GEO sensors
- The DERM results are consistent with GEO-to-MODIS ray-matching outputs
- Improved DERM incorporates the atmospheric parameters to mitigate inter-annual reflectance variability
- Correlating the MODIS observations with atmospheric parameters showed a significant reduction (up to 50%) of trend standard error, with PW having the greatest impact
- Improved DERM shows ~30% reduction in the natural variability of the daily TOA radiances
- The DERM approach has the potential to calibrate historical, current, and future co-located GEO sensors to the same calibration reference (MODIS or VIIRS)
- GOES-12 based improved DERM will be tested with additional GOES imagers, including the next-generation ones (e.g. GOES-16 ABI)