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Background

Halophilic Archaea

« Experience high levels of ultraviolet (UV)
radiation in their environments

 Demonstrate high resistance to UV

* Are protected by pigmentation and efficient
DNA repair

« Have high genomic G+C content

Figure 1. Halophilic archaea colonies from Great Salt Lake,
Utah growing on salt agar

UV-induced DNA Damage

 The predominant forms of UV-induced DNA
damage are cyclobutane pyrimidine dimers (CPDs)

 These form between adjacent pyrimidines

« Bipyrimidine photoreactivity is in the descending
order of: TC > TT > CT > CC

« Limiting of the most photoreactive sequences
should reduce overall genomic photoreactivity
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Figure 2. UV radiation damages DNA via inducing CPD
formation between adjacent pyrimidine nucleotides,
subsequently causing “kinks” in the DNA (Image
courtesy of: NASA/David Herring)

Overarching Questions

* Do halophilic archaea have a net-photoprotective
dipyrimidine signature?
« |f so, how is it related to G+C content?

* Are photoprotective bipyrimidine signatures
present among other taxa that live in high UV?

Results
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Figure 3. Genomic G+C content (%) distributions for samples of halophilic
archaea (n = 29) and other prokaryotes (n = 2231). Sample means are denoted
with +/- 1.96 standard errors. p < 2.2 x 10-1¢ (Welch Two Sample t-test)
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Figure 5. P, distributions for each sample group. Error bars represent sample
means +/- 1.96 standard errors. Intergroup differences were assessed via one-
way ANOVA and post-hoc Tukey contrasts. Halophilic archaea and enterobacter-
iaceae have significantly smaller P, than archaea and cyanobacteria (p < 10-).
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Figure 4. Mean bipyrimidine incidences for each
sample group. Error bars represent +/- 1.96
standard errors. Intergroup differences were
assessed via one-way ANOVA and post-hoc Tukey
contrasts. Only differences pertaining to
halophilic archaea are indicated. ***p < 104
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Figure 6. P, versus G+C content (%) of each

sampled genome (n,,,, = 272), with taxonomic
group indicated by color. Regression analysis
was conducted using a Pearson’s product-
moment correlation test.
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Conclusions

1. There is a strong, negative correlation

between P, and G+C content (Figure 6)
* This may be explained by the fact that the
most photoreactive sequences are T-
containing

2. We found no evidence that UV exposure is

a selective pressure for low P,
* Enterobacteriaceae have similar P, to
halophilic archaea
» Cyanobacteria have significantly higher P,
than both

3. The UV-resistance observed in halophilic
archaea can be attributed in part to a
genomic strategy

Methods

Genome Sampling
* Sequences were obtained from the NCBI database

« Four our G+C content analysis, one representative
genome for each prokaryotic species presently available
was sampled at random

* For all other analyses, we randomly sampled 1 halophilic
archaea strain per species, 1 (non-halophilic) archaea,
cyanobacteria, and enterobacteriaceae strain per genus,
and 101 bacterial strains of unique genus

Determining Bipyrimidine Incidences

« We wrote a word-counting script in R to determine
bipyrimidine frequencies within sampled genomes

» Bipyrimidine incidences (TC,, TT,, CT,, CC.) were
computed by dividing frequency by genome size in bases

Determining Theoretical Genomic Photoreactivity (P,)

* P, corresponds to the weighted sum of a genome’s
bipyrimidine incidences:

P, = 1.73(TC,) + 1.19(TT;) + 0.61(CT;) + 0.39(CC;)

« The weighting coefficients represent the intrinsic
photoreactivity of each bipyrimidine, as determined by
Matallana-Surget et al. (2008)
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