MODTRAN® In-Band **Radiative Transfer**

Presented at the 33rd CALCON Technical Meeting Space Dynamics Laboratory, Bennett Laboratory 489 East Innovation Ave, North Logan, UT 84341 10 June 2024

Alexander (Lex) Berk

Spectral Spectral Sciences, Inc., Burlington, MA 01803-3304 lex@spectral.com

www.modtran.com

MODTRAN[®] is a registered trademark owned by the United States Government as represented by the Secretary of the Air Force.

MODTRAN6 Technical Lecture Presentation Outline

MODTRAN Overview

- Introduction to/Review of Radiative Transfer
- In-Band Radiative Transfer (RT)
 - Line-Of-Sight (LOS) Transmittance [detailed]
 - Correlated-k Algorithm [brief]
 - LOS Radiance [brief]
- Sample MODTRAN Simulations
- Backup: Additional/Future Projects

MODTRAN General Description

- Atmospheric Radiative Transfer Model for computing line-of-sight (LOS) UV / Vis / IR / microwave / RF Transmittances, Radiances, Fluxes, ...
- *Line-By-Line* (LBL) and *Statistical* Band Model and Correlated-*k* Algorithms
- Arbitrarily fine, 0.2, 2.0, 10.0 or 30.0 cm⁻¹ Spectral Resolutions
 - From *LBL* and 0.1, 1.0, 5.0 or 15.0 cm⁻¹ Band Model Bins, respectively
- Stratified Molecular / Aerosol / Cloud Atmosphere
 - Built-in and Auxiliary Molecular Species
 - Built-in and User-Specified Particulate Profiles and Optical Properties
 - Localize Gas Clouds / Warm or Cold Plumes
- Spherical Refractive Geometry
- Solar and Thermal Scattering
 - Pseudo Spherical DISORT Discrete Ordinate N-Stream Model
 - Diffuse Transmittances and Spherical Albedo
- Multiple Spectral Convolution and Filtering Options
- Many Applications: Remote Sensing, Measurement / Data Analyses, Scene Simulation, Algorithm Development, Climate Forecasting, Sensor Calibration³

MODTRAN6 Technical Lecture Presentation Outline

- MODTRAN Overview
- Introduction to/Review of Radiative Transfer
- In-Band Radiative Transfer (RT)
 - Line-Of-Sight (LOS) Transmittance [detailed]
 - Correlated-k Algorithm [brief]
 - LOS Radiance [brief]
- Sample MODTRAN Simulations
- Backup: Additional/Future Projects

Bouguer – Lambert – Beer Law Equation (French 1729 – Latin 1760 – German 1852)

- Monochromatic / Line-by-Line (LBL) molecular and particulate spectral transmittances t_v obey "Beer's" Law, attenuation falls off exponentially with opacity: $t_v = \exp(-\tau_v)$
- Dimensionless optical depth τ_{ν} is computed from a path ℓ integral over the extinction cross-section σ_{ν} (area) and the extinction source density ρ (number/volume): $\tau_{\nu} = \int \sigma_{\nu} \rho \, d\ell$
- Extinction arises from both absorption and scattering of light $\sigma_v = \sigma_v^{abs} + \sigma_v^{sct}$ Where do these come from?
- A fundamental implication of Beer's Law is that segment *monochromatic* (spectral) transmittances are multiplicative
 - Spectral optical depths are additive

$$t_{v}^{(A)} t_{v}^{(B)} = \exp\left[-\left(\tau_{v}^{(A)} + \tau_{v}^{(B)}\right)\right] = t_{v}^{(AB)} \text{ for contiguous segments A and B}$$

Bouguer – Lambert – Beer *Law Equation* Derivation

- Consider a homogeneous collection of particles (molecules, water droplets, aerosols, etc.) encapsulated in a column with cross-sectional area A_{xs} and aligned with the incoming photons
- The particle extinction cross-section σ is the cross-sectional area over which a photon (plane wave) interacts with (i.e., is scattered or absorbed by) a randomly oriented particle
 - Note that σ can exceed the particle geometric cross-section, πr^2
- The transmittance *t* is the probability that a photon does not interact with the particles
- If the encapsulating column contains a single particle, the transmittance is

$$t = 1 - \sigma / A_{xs}$$

• If the column contains two randomly located particles, the transmittance is the probability that a photon does not interact with either $t = (1 - \sigma_1 / A_{xs}) (1 - \sigma_2 / A_{xs})$

Bouguer – Lambert – Beer *Law Equation* Derivation

- More generally, if the column contains n_1 particles with extinction cross-section σ_1 , n_2 with cross-section σ_2 , etc., the probability of no interaction is $t = \prod (1 - \sigma_i / A_{xs})^{n_i}$
- Optical depth τ is defined as the negative natural logarithm of transmittance, t

$$\tau = -\sum_{i} n_{i} \ln\left(1 - \sigma_{i} / A_{xs}\right)$$

• Generally, the particle extinction cross-sections σ_i are very much smaller than the medium cross-section A_{xs} , equal to the volume of the column V over the column length ℓ , i.e., $\sigma_i < < A_{xs} = V/\ell$. It follows that

$$-\ln t \equiv \tau = \sum_{i} n_{i} \frac{\sigma_{i}}{A_{xs}} \left[1 + O\left(\frac{\sigma_{i}}{A_{xs}}\right) \right] \approx \sum_{i} \frac{n_{i} \sigma_{i}}{A_{xs}} = \ell \sum_{i} \left(\frac{n_{i}}{V}\right) \sigma_{i}$$

• This is the Bouguer-Lambert-Beer "Law" from slide 7

Atmosphere Definition

SSI

Spherical

Snell's Law

- MODTRAN constituent densities ρ(z) are defined on a grid of altitudes z from the ground to the Top-Of-Atmosphere (TOA), nominally 100km
- *Most* densities are modeled as varying exponentially with altitude within each atmospheric spherical shell
 - Cloud densities are modeled as varying linearly with altitude
 - (Future: Use linear interpolation for all particulates)
- Path integrals are performed above a *locally spherical Earth*: Defined by the local Earth radius, *R*
- Refractive effects are modeled: The product of
 - a) the real part of the index of refraction n_z at height z,
 - b) the Earth centered distance R + z, and
 - c) the sine of the path zenith angle $\sin \theta_z$

is a path constant: $n_z(R+z)\sin\theta_z = Constant$

MODTRAN does not model ducting, paths with max tangent heights 10

Particulate (Aerosol/Cloud) Cross-Sections

- MODTRAN includes built-in aerosol and cloud models
- NASA toolkit available for user-defined particulate data

- Aerosols profiles defined in terms of 550 nm *extinction* coefficients, $\kappa_{550 \text{ nm}}(z) = \sigma_{550 \text{ nm}} \rho(z)$, in km⁻¹
- Particulate spectral data not highly structured
 Allows coarse (5 cm⁻¹) spectral sampling

Rayleigh or Molecular Scattering Cross-Section

• Rayleigh scattering falls off, to first order, inversely proportional to the 4th power of wavelength λ

$$\sigma^{sct}(\lambda) = \frac{\sigma_o^{sct}(\lambda_o/\lambda)^4}{1 + A\Delta\lambda^2/\lambda^2 + B\Delta\lambda^4/\lambda^4 + \dots} \approx \sigma_o^{sct}(\lambda_o/\lambda)^4 \quad ; \quad \Delta\lambda^N \equiv \lambda^N - \lambda_0^N$$

- The Rayleigh scattering cross-section σ_o^{sct} (defined at a reference wavelength λ_o) depends on the relative concentration of atmosphere's molecular constituents
- The Rayleigh scattering phase function $P_{\lambda}(\varphi)$ has the well-known form: $3(1+f_{\lambda}\cos^2\varphi)$

$$P_{\lambda}(\varphi) = \frac{3(1+f_{\lambda}\cos\varphi)}{4\pi(3+f_{\lambda})} \quad \text{with} \quad f_{\lambda} \equiv \frac{1-\rho_{\lambda}}{1+\rho_{\lambda}}$$

where ρ_{λ} is the spectral depolarization factor (~0.031 for air), and φ is the scattering angle

Molecular Absorption **Cross-Sections and Lineshapes** 0.0008 **Pressure / Collision** Line Strength (atm⁻¹ cm⁻²) 32 CH, Molecular 0.0006 Doppler **Transitions Broadening** 0.0004 (HITRAN 2010) Shift 0.0002 1E-5 1E-6 1E-7 1E-8 Absorption Optical Depth Absorption Optical Depth 1E-9 5 3000.00 Lorentz Lineshape **Gaussian Lineshape** 2.5 2.5 3000.05 3000.10 $0.0029 \text{ cm}^{-1} < \gamma_{r} < 0.0064 \text{ cm}^{-1}$ $\gamma_{\rm p} = 0.0055 \ {\rm cm}^{-1}$ Frequency (cm⁻¹) 2.0 2.0 30 atm-cm CH₄ $f_{\gamma_D}(\Delta v) = N \exp \left| -(\Delta v)^2 / \gamma_D^2 \right|$ $f_{\gamma_L}(\Delta v)$ = 1.5 1.5 $(\Delta v)^{-1}$ T = 296K1.0 1.0 $\Delta v = v - v_0$ P = 0.1 atm0.5 0.5 0.0 ^{[____} 3000.00 0.0 [[]_____ 3000.00 Absorption Optical Depth 3000.05 3000.10 3000.05 3000.10 2.5 Voigt Lineshape Frequency (cm⁻¹) Frequency (cm⁻¹) 2.0 $f_{\gamma_{L},\gamma_{D}}(\Delta v) = \int_{\gamma_{D}}^{\infty} f_{\gamma_{D}}(\delta) f_{\gamma_{L}}(\Delta v - \delta) d\delta$ 1.5 1.0 0.5 **Spectral Spectral** 0.0 3000.00 Convolution Convolution 3000.05 3000.10 Frequency (cm⁻¹)

Line-By-Line Calculations

- Calculating molecular transmittance
 - Sum the molecular absorption cross-section from all transitions centered within 25 cm⁻¹ of a given spectral frequency v
 - Beyond 25 cm⁻¹, H₂O, CO₂ (and CH₄) continua define the absorption
 - Perform the sum for each line-of-sight (LOS) path segment
 - Repeat for a narrow spectral step size, ~0.001 cm⁻¹ or smaller
- The calculations are slow!
 - Physics-based methods are available for accelerating LBL calculations, for example adaptive spectral gridding, but transmittance calculations remain computationally intensive
 - Thermal (Planck) emission calculations are somewhat slower
 - Solar scatter calculations can become prohibitive for large spectral regions and variable atmospheric conditions
- Band Models were introduced to alleviate all these computational issues

MODTRAN6 Technical Lecture Presentation Outline

- MODTRAN Overview
- Introduction to/Review of Radiative Transfer
- In-Band Radiative Transfer (RT)
 - Line-Of-Sight (LOS) Transmittance [detailed]
 - Correlated-k Algorithm [brief]
 - LOS Radiance [brief]
- Sample MODTRAN Simulations
- Backup: Additional/Future Projects

Statistical Band Model Approach Fundamental/Abstract Concept

- 1. Statistically model the distribution of line positions and strengths within a spectral band using a simple parametric form $f(\alpha, \beta, ...)$ [See Goody & Yung, 1989]
- 2. The chosen parametric form for *f* must enable rapid and accurate spectral integration of the transmittance function

3. Pre-compute temperature- and pressure-dependent band model parameters α , β , ... for each spectral bin and each species using line strength compilation data, e.g., HITRAN

MODTRAN Molecular Transmittance Components

- SSI
- Since MODTRAN is a narrow band model, a significant fraction (red) of the absorption arising from molecular lines centered in each spectral bin fall outside of that bin
- MODTRAN band model partitions molecular absorption contributions into 3 components:

$$t_{mol} = t_{cen} t_{tail} t_{cont}$$

- *t_{cen}* lines centered within the spectral bin
- t_{tail} lines centered outside of the spectral bin but less than 25 cm⁻¹ from line center
- t_{cont} continua, i.e., distant lines, centered > 25 cm⁻¹ from line center

MODTRAN Temperature and Pressure Dependent Line Tails

• Spectra have at most one minimum; *fits are extremely accurate!*

MODTRAN's Line Strength Distribution Ansatz

- Statistically model line center absorption for each molecule as arising from n_s randomly distributed & identical strong lines of strength S_s and from n_w randomly distributed & identical weaker lines of strength S_w
- Define a line-strength weighted average Lorentz half-width γ_L and the frequency dependent Doppler half-width γ_D at the spectral bin center
- The parameters n_s , S_s , n_w , S_w are determined from 4 moment equations:

MODTRAN's Band Model Parameters

• The traditional temperature-dependent band model parameters are line-spacing parameters, (1/*d*) [cm], equal to the *effective* number of lines *n* in a spectral bin over the bin width Δv $\frac{1}{d} = \frac{n}{\Delta v}$

and absorption coefficients, (S/d) [cm⁻¹/atm], equal to the product of the average line strength and the line spacing parameter S (1) nS

$$\frac{S}{d} = S\left(\frac{1}{d}\right) = \frac{nS}{\Delta v}$$

 Following with tradition, MODTRAN stores two pairs of temperature-dependent line center band model parameters

$$\left(\frac{S}{d}\right)_{z} = \frac{n_{z}S_{z}}{\Delta v}$$
 and $\left(\frac{1}{d}\right)_{z} = \frac{n_{z}}{\Delta v}$ for $z = \begin{cases} s (strong) \\ w (weak) \end{cases}$ and

MODTRAN's Half-Width Band Model Parameters

• Doppler half-width at "1/e" of maximum [cm⁻¹]: γ_D

$$\gamma_D = v \sqrt{(2k/c^2)T/m} = 4.30142 \times 10^{-7} v \sqrt{T(K)/m(amu)}$$

- v: Spectral Bin Center Frequency (cm⁻¹)
- k : Boltzmann Constant
- -c: Speed of Light
- T: Temperature (Kelvin)
- *m*: Molecular Weight (atomic mass units)
- Air-broadened Lorentz half-width at half-maximum [cm⁻¹]: γ_L

$$\gamma_{L} = \gamma_{L}^{0} \left(P/P_{0} \right) \left(T_{0}/T \right)^{n_{air}} \quad ; \quad \gamma_{L}^{0} \equiv \sum_{i} \left(\gamma_{L} \right)_{i} S_{i} / \sum_{i} S_{i}$$

- T: Temperature (Kelvin), $T_0 = 273$ K
- P: Pressure (atm), $P_0 = 1$ atm
- n_{air} : HITRAN temperature dependence exponent, $\approx 3/4$
- S_i : Strength (atm⁻¹ cm⁻²) at T_0 of line *i* in current spectral bin
- $(\gamma_L)_i$: Air-broadened Lorentz half-width (cm⁻¹) at (P_0 , T_0) of line *i*

MODTRAN's Line Center Transmittance

• The transmittance *t* from *n* randomly distributed and identical lines of strength *S* in a spectral interval was derived by (Gilbert N. Plass, 1964)

$$t = \left(1 - \frac{W_{\Delta \nu}^{sl}}{\Delta \nu}\right)^n \quad ; \quad t_{sl} \equiv 1 - \frac{W_{\Delta \nu}^{sl}}{\Delta \nu}$$

"A current theory postulates that carbon dioxide regulates the temperature of the earth. This raises an interesting question: How do Man's activities influence the climate of the future?" GN Plass, Scientific American, **1959**

where $W_{\Delta v}^{sl}$ is the *finite-bin* Voigt Equivalent Width, i.e., the off-centered Voigt line spectrally-integrated absorptivity (1-transmittance) within the spectral interval; t_{sl} is the *s*ingle-*l*ine spectral bin transmittance.

• MODTRAN line center transmittance for column density *u* is given by

$$t_{cen} = \left(1 - \frac{W_{\Delta v}^{sl} \left(S_{s} u, \gamma_{L}, \gamma_{D}\right)}{\Delta v}\right)^{n_{s}} \times \left(1 - \frac{W_{\Delta v}^{sl} \left(S_{w} u, \gamma_{L}, \gamma_{D}\right)}{\Delta v}\right)^{n_{w}}$$

Carbon Dioxide and Climate Gilbert N. Plass, July 1959

SCIENTIFIC AMERICAN

Caption: "MAN UPSETS THE BALANCE of natural processes by adding billions of tons of carbon dioxide to the atmosphere each year. Most of this carbon dioxide is released by the burning of fossil fuels in (cars,) homes and factories, such as these plants in Youngstown, Ohio. Like the smoke in the photograph, the carbon dioxide released in this manner diffuses rapidly throughout the atmosphere."

Carbon Dioxide and Climate Author(s): Gilbert N. Plass

Source: Scientific American, Vol. 201, No. 1 (July 1959), pp. 41-47Published by: Scientific American, a division of Nature America, Inc.Stable URL: https://www.jstor.org/stable/2494032723

Calculating Finite-Bin Single-Line Voigt Transmittance

$$\begin{split} t_{sl}\left(Su,\gamma_{L},\gamma_{D}\right) &= \frac{Su}{\Delta\nu} \left[\frac{V_{0}^{near}}{2} I_{0}\left(\frac{Su}{2} f_{near}\right) + \sum_{n=1}^{\infty} V_{n}^{near} I_{n}\left(\frac{Su}{2} f_{near}\right)\right] e^{-\nu_{2}Suf_{near}} + \frac{near}{\Delta\nu} e^{-Suf_{near}} \\ &+ \frac{Su}{\Delta\nu} \left[\frac{V_{0}^{far}}{2} I_{0}\left(\frac{Su}{2} f_{far}\right) + \sum_{n=1}^{\infty} V_{n}^{far} I_{n}\left(\frac{Su}{2} f_{far}\right)\right] e^{-\nu_{2}Suf_{far}} + \frac{far}{\Delta\nu} e^{-Suf_{D-\Delta}} \\ &- \frac{2Su}{\Delta\nu} \left[\frac{V_{0}^{0}}{2} I_{0}\left(\frac{Su}{2} f_{0}\right) + \sum_{n=1}^{\infty} V_{n}^{0} I_{n}\left(\frac{Su}{2} f_{0}\right)\right] e^{-\nu_{2}Suf_{0}} \end{split}$$

near= line center to near edge distance [cm⁻¹]far= line center to far edge distance [cm⁻¹]

 $f_v \equiv f_v(\gamma_L, \gamma_D)$ = Voigt line shape function [cm]

 $I_n(z)$ Modified Bessel Function V_n^{Δ} Fourier Coefficients

$$V_n^{\Delta} = \left\langle f_0 \right\rangle + n \sum_{k=1}^n \frac{(-4)^k (2k+1)_{n-k}}{(k+1)(n+k)(n-k)!} \left\langle f_k \right\rangle - \begin{cases} \frac{2\Delta f_\Delta}{n^2 - 1} & n \text{ even} \\ 0 & n \text{ odd} \end{cases} ; \quad \left\langle f_k \right\rangle \equiv \frac{2}{f_\Delta^k} \int_{\Delta}^{\infty} f_\nu^{k+1} d\nu$$

A. Berk, Journal of Quantitative Spectroscopy and Radiative Transfer, 118, p. 102-120 (2013)

Line-by-Line Curve-of-Growth

SSI

26

- The Curve-of-Growth (COG) defines the increase in spectral bin absorptivity, A, (one minus spectral bin transmittance) with column density, u, for a homogeneous path: COG = A[u] = 1 - t[u]
- The primary goal of band model theory is to generate COG's that closely match first principle, line-by-line (LBL) COG's

MODTRAN's Curve-of-Growth (COG)

- MODTRAN (n_s , S_s) predicts too much absorption near 30 atm-cm for CH₄ lines between 3000.0 and 3000.1 cm⁻¹
 - The 2nd strongest CH₄ line is centered very close to bin edge
 - Too much absorption results from the randomly distributed line assumption
- 1.15 For larger column 1.10 • 1.04 Integrated Absorpti Residual + 1.1 amounts, (n_w, S_w) **8.0** yields too little Line-by-Line absorptivity 0.6 **MODTRAN** 0.0008 Line Strength (atm⁻¹ cm⁻², 32 CH, Molecular 0.0006 0.4 **Band** Transitions 0.0004 (HITRAN 2010) Model 296K 0.0002 0.2 0.1 Atm 1E-5 1E-6 0.0 1E-7 **0.1** 10 100 1000 1E-8 CH, Column Amount (atm-cm) 1E-9 3000.00 3000.05 3000.10 27 Frequency (cm⁻¹)

MODTRAN's Modeling of Multiple Molecular Absorbers

- SSI
- MODTRAN assumes narrow band molecular absorption from distinct species is randomly correlated
 - Combined transmittance equals product of individual molecular species transmittances: $t_{cen} = t_{cen}(H_2O) \times t_{cen}(CO_2) \times \cdots$
 - An additional factor in the overall statistical error budget
- Sample Case 0.0010 **32 CH**₄ lines 0.0008 - Add 30 atm-cm O_3 to the \sim 5 O₃ lines 30 atm-cm CH₄ at 296 K § 0.0006 and 0.1 Atm (atm⁻¹ 0.0004 - O₃ band model data: 0.0002 ine Strength $(n_1, S_1) = (1.1793, 8.9608e-4)$ 1E-5[/] $(n_2, S_2) = (3.2767, 1.4552e-5)$ 1E-6 - Statistically, a poor case 1E-7 1E-8 Dominant O_3 line in region of minimum CH₄ absorption 1E-9 [└]____ 3000.05 3000.10 Band model under-predicts Frequency (cm⁻¹) LBL absorptivity

Multiple Molecular Absorbers: MODTRAN Band Model vs. LBL

- **LBL** transmittance is less than random correlation predicts $t_{cen}^{LBL}(CH_4 + O_3) = 0.41802 < 0.44368 = 0.56075 \times 0.79123 = t_{cen}^{LBL}(CH_4) \times t_{cen}^{LBL}(O_3)$
- MODTRAN result: $t_{cen}^{BM}(CH_4 + O_3) = 0.40679 = t_{cen}^{BM}(CH_4) \times t_{cen}^{BM}(O_3)$

$$t_{cen}^{BM}(O_3) = 0.79434$$

- In this case, the excess band model absorption for CH₄ is balanced by the anti-correlation of absorption features for O₃ and CH₄
- Best to degrade to 0.2 cm⁻¹ or coarser

Transmittance of Inhomogeneous Path Segment (i.e., within a single layer)

- Each transmittance calculation path segment is defined by column amounts u, and a path-averaged temperature T_{ρ} and pressure P_{ρ}
- Column amounts are computed as path integrals over altitudedependent molecular densities
- Line center molecular band models vary with *T*; line tail molecular band models are dependent on both *T* and *P*
- It is common practice within LBL models (e.g. MODTRAN6 and LBLRTM) to define path segment temperature T_{ρ} and pressure P_{ρ} as density ρ ($\propto P/T$) weighted averages :

$$T_{\rho} \equiv \frac{\int T(P/T) d\ell}{\int (P/T) d\ell} = \frac{\int P d\ell}{\int (P/T) d\ell} \quad ; \quad P_{\rho} \equiv \frac{\int P(P/T) d\ell}{\int (P/T) d\ell}$$

- Both pressure and density are modeled as decreasing exponentially with increasing altitude (*not path length*)
- Segment band models are defined using T_{ρ} and P_{ρ}

Failure of Beer's Law for Band Models

- Transmittance Summary
 - Absorption/scattering coefficients for particulates and Rayleigh
 - Attenuation due to molecular absorption is partitioned into continuum, line tail and line center transmittance components
 - Band model accurately predicts homogenous segment molecular transmittance
- Are we done modeling transmittance? No!
 - For Line-By-Line calculations, Beer's Law is used to calculate inhomogeneous path transmittances over multiple segments as the product of the segment transmittances
 - Beer's Law is not valid for in-band transmittances:

Band Model Approach for Multiple Segment Paths

- SSI
- Replace multiple segment (A, B, ...) inhomogeneous path with an "equivalent" homogenous path
 - Compute the cumulative path weak-line optical depth

$$\overline{S_i u_i} = S_i^A u_i^A + S_i^B u_i^B + \cdots$$
; $i = 1, 2$

Compute *Curtis-Godson* (CG) path-averaged strength-weighted line spacing and half-width parameters

$$\overline{\left(\frac{1}{d}\right)_{i}} \equiv \left[S_{i}^{A}u_{i}^{A}\left(\frac{1}{d}\right)_{i}^{A} + S_{i}^{B}u_{i}^{B}\left(\frac{1}{d}\right)_{i}^{B} + \cdots\right] / \overline{S_{i}}u_{i}$$
$$\overline{\gamma} \equiv \left[S_{i}^{A}u_{i}^{A}\left(\frac{1}{d}\right)_{i}^{A}\overline{\gamma^{A}} + S_{i}^{B}u_{i}^{B}\left(\frac{1}{d}\right)_{i}^{B}\overline{\gamma^{B}} + \cdots\right] / \overline{S_{i}}u_{i}\overline{\left(\frac{1}{d}\right)_{i}}$$

Total path band model transmittances
 determined from Curtis-Godson parameters

$$t_{cen} = t_{cen} \left(\overline{Su}, \overline{1/d}, \overline{\gamma_L}, \overline{\gamma_D} \right)$$

Higher order CG approach required for O₃

MODTRAN6 Technical Lecture Presentation Outline

- MODTRAN Overview
- Introduction to/Review of Radiative Transfer
- In-Band Radiative Transfer (RT)
 - Line-Of-Sight (LOS) Transmittance [detailed]
 - Correlated-k Algorithm [brief]
 - LOS Radiance [brief]
- Sample MODTRAN Simulations
- Backup: Additional/Future Projects

The Correlated-k Approach Motivation

- Modeling *multiple scattering* (MS) is hard
 - Photons enter each line-of-sight from all directions
- Most MS algorithms, including DISORT in MODTRAN, assume Beer's Law: additive segment optical depths
- Goody introduced the Correlated-k (Ck) approach to recast the band model into a Beer's Law compliant method
 - MODTRAN introduced the concept of a *statistical Ck* method
 - Additional Ck benefit: Eliminates the need for Curtis-Godson averaging to model multiple segment path transmittances

The Correlated-k Approach k-Distributions

Monochromatically reordering the *k*'s (absorption coefficients) within a spectral interval allows spectral integration with sparse sampling

- Only efficient if *T* and *P* dependent *k*-distributions for each spectral bin can be pre-computed
 Molecular *k*-distributions from
- Molecular *k*-distributions from each species must be combined
- Assuming random correlation between distinct molecules, distributions are combined via a convolution integral

MODTRAN's 18 *k*-distribution points illustrated in upper figure

The Correlated-k Approach Ck In-Band Transmittance

- Total path optical depths τ_j are computed at each pre-defined cumulative probability, g_j , grid point
- Δg_j interval transmittances t_j are computed by modeling optical depth τ_g as varying exponentially from τ_{j-1} to τ_j
- MODTRAN users select between 2 sets of g_j grids
 "S" = Slow for 33 Δg intervals
 "M" = preferred Moderate (fast) speed for 17 Δg intervals
- Radiance I_g modeled as varying exponentially between I_{j-1} and I_j

MODTRAN Statistical C-k Method k-Distribution Generation

- MODTRAN k-distributions computed from summing Voigt lines with Monte-Carlo sampling of line center positions
- Simulates MODTRAN band model of *n* identical lines randomly located in a spectral interval
- Figure illustrates three calculations for n = 5 using Lorentz (pressurebroadened) lines

Frequency (cm⁻¹)

MODTRAN Statistical Ck Method MODTRAN Implementation

- SSI
- 1. For each path segment, compute the combined-species **band model** line-center transmittance: $t_{con}^{BM} = t_{con}^{H_2O} \times t_{con}^{CO_2} \times \cdots$
- 2. Define Optical Depth Weighted Lorentz and Doppler Half-Widths

$$\gamma = \frac{\gamma^{\mathrm{H}_{2}\mathrm{O}}\tau_{cen}^{\mathrm{H}_{2}\mathrm{O}} + \gamma^{\mathrm{CO}_{2}}\tau_{cen}^{\mathrm{CO}_{2}} + \cdots}{\tau_{cen}} \quad ; \quad \tau_{cen}^{mol} \equiv \Delta \nu \left(n_{1}S_{1} + n_{2}S_{2}\right)u$$

3. The number of lines *n* is treated as free-parameter used to select the *k*-distribution which produces a "gas-mixture" *Ck* line-center transmittance equal to the band model value:

$$t_{cen}^{Ck}\left(n,\gamma_{L},\gamma_{D},\tau_{cen}\right) = t_{cen}^{BM}$$

- For a fixed in-band optical depth τ_{cen} , the in-band transmittance decreases t_{cen}^{C-k} as the number of lines *n* increases
- 4. Add molecular line tail and continuum, particulate and Rayleigh optical depths to the segment k-distribution

MODTRAN6 Technical Lecture Presentation Outline

- MODTRAN Overview
- Introduction to/Review of Radiative Transfer
- In-Band Radiative Transfer (RT)
 - Line-Of-Sight (LOS) Transmittance [detailed]
 - Correlated-k Algorithm [brief]
 - LOS Radiance [brief]
- Sample MODTRAN Simulations
- Backup: Additional/Future Projects

MODTRAN Radiance The Band Model Objective/Challenge

SSI

- Objective
 - Compute narrow spectral bands (width Δv) at sensor ($\ell = 0$) line-of-sight radiances:

$$I_0 \equiv \frac{1}{\Delta \nu} \int_{\Delta \nu} I_0(\nu)$$

- (My Career) Challenge
 - Formulate algorithm that requires no monochromatic spectral data
- Available quantities
 - Molecular and particle spectral band transmittances from both absorption and scattering, e.g., band model molecular transmittances
 - Spectral band source function: Planck emission function and bandaveraged top-of-atmosphere solar irradiance data
- Quantities that should (can) not be spectrally averaged
 - Molecular absorption coefficients, cross-sections, and optical depths
 - Single scattering albedos, the scattering to extinction spectral cross-section ratio:

$$\omega_{\ell}(v) = \frac{\sigma_{\ell}^{sct}(v)}{\sigma_{\ell}(v)}$$

MODTRAN Radiance Three Integral forms for the spectral RTE

• Path length ℓ spectral radiant intensity $I_o(\nu)$ integral to boundary L

$$I_{0}(\nu) = \int_{0}^{L} k_{\ell}(\nu) J_{\ell}(\nu) \exp\left(-\int_{0}^{\ell} k_{\ell'}(\nu) d\ell'\right) d\ell + I_{L}(\nu) \exp\left(-\int_{0}^{L} k_{\ell}(\nu) d\ell\right)$$

• Spectral optical depth $\tau_{\nu}^{0 \to L}$ spectral radiant intensity $I_{o}(\nu)$ integral

$$I_0(\nu) = \int_0^{\tau_\nu^{0 \to L}} J_\ell(\nu) \exp\left(-\tau_\nu^{0 \to \ell}\right) d\tau_\nu^{0 \to \ell} + I_L(\nu) \exp\left(-\tau_\nu^{0 \to L}\right); \tau_\nu^{0 \to \ell} = \int_0^\ell k_{\ell'}(\nu) d\ell'$$

• Spectral transmittance $t_{\nu}^{0 \rightarrow L}$ spectral radiant intensity $I_{0}(\nu)$ integral

$$I_0(\nu) = \int_{t_\nu^{0\to L}}^1 J_\ell(\nu) dt_\nu^{0\to\ell} + t_\nu^{0\to L} I_L(\nu) ; \quad t_\nu^{0\to\ell} \equiv \exp\left(-\tau_\nu^{0\to\ell}\right)$$

 $I_{\ell}(v)$ Spectral radiant intensity $[W \, cm^{-2} \, sr^{-1}/cm^{-1}]$ at ℓ in direction of a sensor at $\ell = 0$ $J_{\ell}(v)$ Spectral source function $[W \, cm^{-2} \, sr^{-1}/cm^{-1}]$ at ℓ in direction of a sensor at $\ell = 0$ $k_{\ell}(v) = \rho \, \sigma_{\ell}(v)$ Spectral extinction coefficient [1/km] a distance ℓ along the sensor LOS

and
$$J_{\ell}^{sct}(v) = t_{v}^{0 \to \ell \to sun} F_{v}^{sun} p_{\ell}(\Omega_{\ell}, \Omega^{sun}; v) + \int_{4\pi} I(\Omega'; v)_{\ell} p_{\ell}(\Omega_{\ell}, \Omega'; v) d\Omega'$$

 Scattering is only a loss mechanism for the emissive source, and absorption is only a loss mechanism for the scattering source

$$I_{0}(v) = \int_{t_{v}^{0 \to L}}^{1} J_{\ell}(v) dt_{v}^{0 \to \ell} + t_{v}^{0 \to L} I_{L}(v) ; \quad t_{v}^{0 \to \ell} \equiv t_{abs}^{0 \to \ell}(v) t_{sct}^{0 \to \ell}(v) \quad \text{What happened}$$
$$= \int_{t_{v}^{0 \to \ell}}^{1} t_{v}^{0 \to \ell}(u) J_{v}^{em}(u) dt_{v}^{0 \to \ell}(u) + \int_{t_{v}^{0 \to \ell}}^{1} t_{v}^{0 \to \ell}(u) J_{sct}^{0 \to \ell}(u) dt_{sct}^{0 \to \ell}(u) + t_{v}^{0 \to L} I_{v}(u)$$

$$= \int_{t_{abs,v}^{0 \to L}} t_{sct}^{0 \to \ell} (v) J_{\ell}^{em} (v) dt_{abs}^{0 \to \ell} (v) + \int_{t_{sct,v}^{0 \to L}} t_{abs}^{0 \to \ell} (v) J_{\ell}^{sct} (v) dt_{sct}^{0 \to \ell} (v) + t_{v}^{0 \to L} I_{L} (v)$$
How is this

• For the band model spectral bin of width Δv , one obtains

$$I_0 = \frac{1}{\Delta \nu} \int_{\Delta \nu} I_0(\nu) = \int_{t_{abs}^{0 \to L}}^1 t_{sct}^{0 \to \ell} J_\ell^{em} dt_{abs}^{0 \to \ell} + \int_{t_{sct}^{0 \to L}}^1 t_{abs}^{0 \to \ell} J_\ell^{sct} dt_{sct}^{0 \to \ell} + t^{0 \to L} I_L$$

Terms without spectral dependence are band model averages

Determined?

MODTRAN Radiance Eliminating $\omega_{\ell}(v)$ from Path Thermal Emission

• Insert the path thermal emission source function, $B_{\nu}(T_{\ell})$

$$I_{0}^{Em}(\nu) = \int_{t_{\nu}^{0\to L}}^{1} \left[1 - \omega_{\ell}(\nu) \right] B_{\nu}(T_{\ell}) dt_{\nu}^{0\to\ell} \quad ; \quad \omega_{\ell}(\nu) = \frac{\sigma_{\ell,\nu}^{scl}}{\sigma_{\ell,\nu}}$$

• The path thermal emission can be re-expressed as a $t_{abs}^{0\to\ell}(v)$ integral:

$$I_{0}^{Em}(\nu) = \int_{t_{abs}^{0 \to L}(\nu)}^{1} t_{sct}^{0 \to \ell}(\nu) B_{\nu}(T_{\ell}) dt_{abs}^{0 \to \ell}(\nu); \quad B_{\nu}(T) = \frac{c_{1}\nu^{3}/\pi}{\exp(c_{2}\nu/T) - 1}$$

Here, c_1 and c_1 are the first and second radiation constants

• Conversion from dependent variable $t_{abs}^{0\to\ell}(\nu)$ to dependent variable $t_{\nu}^{0\to\ell}$:

$$\begin{split} t_{sct}^{0\to\ell}(v)dt_{abs}^{0\to\ell}(v) &= \frac{t_{\nu}^{0\to\ell}}{t_{abs}^{0\to\ell}(v)}dt_{abs}^{0\to\ell}(v) = t_{\nu}^{0\to\ell}d\ln t_{abs}^{0\to\ell}(v) = -t_{\nu}^{0\to\ell}d\tau_{abs}^{0\to\ell}(v) = t_{\nu}^{0\to\ell}d\left(-\int_{0}^{\ell}\sigma_{\ell,\nu}^{abs}\rho\,d\ell'\right) \\ &= -t_{\nu}^{0\to\ell}\sigma_{\ell,\nu}^{abs}\rho\,d\ell = -t_{\nu}^{0\to\ell}\left(\frac{\sigma_{\ell,\nu}}{\sigma_{\ell,\nu}}\right)\left(\sigma_{\ell,\nu}\rho\,d\ell\right) = t_{\nu}^{0\to\ell}\left(\frac{\sigma_{\ell,\nu}-\sigma_{\ell,\nu}^{sct}}{\sigma_{\ell,\nu}}\right)d\left(-\int_{0}^{\ell}\sigma_{\ell',\nu}\rho\,d\ell'\right) \\ &= -t_{\nu}^{0\to\ell}\left[1-\omega_{\ell}(v)\right]d\tau_{\nu}^{0\to\ell} = \left[1-\omega_{\ell}(v)\right]t_{\nu}^{0\to\ell}d\ln t_{\nu}^{0\to\ell} = \left[1-\omega_{\ell}(v)\right]dt_{\nu}^{0\to\ell} \end{split}$$

MODTRAN Radiance The Discrete Ordinate Solution

Nobel Laureate Chandrasekhar laid out the foundation of the discrete-ordinate method for solving the thermal and solar plane-parallel atmosphere integro-differential radiative transfer equation (1950):

- Requires additive optical depths (Beer's Law)
- Converges to exact solution
- Implemented in software (DISORT) by Knut Stamnes *et al.* in the 1980's
- For each atmospheric layer, a general solution is defined applicable for any pair of viewing zenith and relative solar azimuth angles

Quote from KC Wali, "Chandra", p. 190

S. Chandrasekhar Radiative Transfer

"My research on radiative transfer gave me the most satisfaction. I worked on it for five years, and the subject, I felt, developed on its own Initiative and momentum. Problems arose one by one, each more complex and difficult than the previous one, and they were solved. The whole subject attained an elegance and beauty which I do not find to the same degree in any of my other work. And when I finally wrote the book Radiative Transfer, I left the area entirely. Although I could think of several problems, I did not want to spoil the coherence and beauty of the subject" by further additions.

MODTRAN Radiance **DISORT Standard Inputs and Outputs**

- Solar Beam (F^{sun}) Geometry Inputs Inputs Cosine of path zenith **Outputs** \mathcal{T}^{*sct} $T_0, \tau_0^{\downarrow}, T_1, \tau_1^{\downarrow}$ μ^{sun} Cosine of solar zenith I_0, F_0 Relative solar azimuth I_1, F_1 • Profile Inputs p_2 Temperature Nadir extinction OD $T_{i-1}, \tau_{i-1}^{\downarrow}, \tau_{i-1}^{\downarrow sct}$ $T_{i}, \tau_{i}^{\downarrow}, \tau_{i}^{\downarrow sct}$ sct I_{i-1}, F'_{i-1} $\tau^{\downarrow sct}$ Nadir scattering OD p_i Scattering phase function Legendre Expansion Environment Inputs Surface Reflection F^{sun} Solar irradiance Emission p_I Surface reflectance $T_L, \tau_L^{\downarrow}, \tau_L^{\downarrow sct}$ • Profile Outputs I_I, F_I Surface Solar/thermal radiances to ground or space from all levels at view angle μ
 - Up/Down Diffuse Flux F

L

T

 τ

D

0

Ι

- MODTRAN is a spherical refractive geometry atmosphere model while DISORT models the atmosphere as plane-parallel
- DISORT is a monochromatic model that depends on additive segment optical depths; the MODTRAN band model does not obey Beer's Law
 - Solutions: Correlated-k or LBL

MODTRAN Radiance MODTRAN Upgraded DISORT I/O

Spherical Earth Upgrades

- Upgraded Geometry Inputs
 - μ_l Cosine of path zenith for each LOS path segment
 - μ^{sun} Cosine of solar zenith
 - φ_l Relative solar azimuth for each LOS path segment
- Same Profile Inputs
- Same Environment Inputs
- Upgraded Outputs
 - ΔI_l^{sct} Thermal and solar scattered segment radiances
 - *F* Downward and upward diffuse flux at each altitude level

MODTRAN6 Technical Lecture Presentation Outline

- MODTRAN Overview
- Introduction to/Review of Radiative Transfer
- In-Band Radiative Transfer (RT)
 - Line-Of-Sight (LOS) Transmittance [detailed]
 - Correlated-k Algorithm [brief]
 - LOS Radiance [brief]
- Sample MODTRAN Simulations
- Backup: Additional/Future Projects

AVIRIS Next Gen Channels - Transm GUI Main Page

Input Configuration Open Save Save As	Output Output Combined Transmittance(1.S) — H2O Transmittance(1.S) — H2O Continuum
Configuration Name:	
AVng_AllChanT.json	
Select a preset configuration or open	9E-1
an existing configuration file.	8E-1
	9 7E-1
	6E-1
Preset Configurations:	4E-1
Angstrom Law ~ Load	4E-1
	3E-1
Case Control	2E-1
05Ref_1p0wn_AVngT ~ 1	1E-1
New Edit Delete	
	500 1,000 1,500 2,000 2,5 Wavelength (nm)
Run MODTRAN Clear Output Data	1:05Ref_1p0wn_AVngT, Case 1/1 v Plot Reset Plot
	CH4 Transmittance 🗸 🗸 Multiplot
View Log Open Output Folder	Scanned Resolution [cm-1 nm um]

AVIRIS Next Gen Channels- Transm RT Options Tab

MODTRAN Options - 05Ref_1p0wn_AVngT - Case 1 of 1	- 🗆 X
RT Options Atmosphere Clouds & Aerosols Geometry Surfaces Spectral Options Output File Options	
RT Option:	RT Run Mode:
Band Model \checkmark	Transmittance ~
Band Model Resolution (cm ⁻¹):	Multiple Scattering:
1 ~	DISORT MS v At observer
Line-by-Line Intervals:	DISORT streams:
100 🗧	8 v Spherical albedo (atmosphere)
DATA location: Use system DATA directory	
Choose C:\ProgramData\SSI\MOD6DATA	
Cours An Name Cours	
Save As New Case	OK Cancel

AVIRIS Next Gen Channels - Transm Atmosphere Tab

MODTRAN Options - 05Ref_1p0wn_AVng - Case 1 of 4	4				_		×
		ations Output File Octions				-	
RT Options Atmosphere Clouds & Aerosols Geom	etry Surfaces Spectral O	ptions Output File Options					
Model: Mid-latitude winter $\qquad \lor$	Edit custom model		Molecular Species Scale factors:	Edit			
View profile							
H2O: 0E0 Scaled V		Model Selection by Profile					_
O₃: 0E0 Scaled ∨	Temperature and Pressure:	Default	~				
CO2: 4E2 ppm	H₂O:	Default	~				
Aerosol RH: 0.00 %	O₃:	Default	~				
Air Molecular Weight: 0.00 g/mol	CH₄:	Default	~				
Planetary Mass: 0.00 (scale)	N2O:	Default	\checkmark				
Allow relative humidity to exceed 100%	CO:	Default	~				
Use relative humidity of the model profile		M6					
Include trace molecular species							
Save As New Case					ОК	Cano	cel

AVIRIS Next Gen Channels - Transm Molecular Species Scale Factors

🛞 Molecular species scale	factors				_	о x
Uniformly mixed species	🗌 Use d	efault				
N2O: 1.0000 CO:	1.0000	CH4: 1.1250	02:	1.0000	NO: 1.0	000
SO2: 1.0000 NO2:	1.0000	NH₃: 1.0000) HNO₃:	1.0000	N ₂ : 1.0	000
Cross-section species	🗹 Use o	lefault				
CFC-11: 1.000	CFC-12:	1.000	CFC-13:	1.000	CFC-14:	1.000
CFC-22: 1.000	CFC-113:	1.000	CFC-114	: 1.000	CFC-115:	1.000
CIONO2: 1.000	HNO4:	1.000	CHCl₂F:	1.000	CCl4:	1.000
N2O5: 1.000						
Trace species		Use default				
OH: 1.000	HF:	1.000	HCI:	1.000	HBr:	1.000
HI: 1.000	CIO:	1.000	OCS:	1.000	H₂CO:	1.000
HOCI: 1.000	N2:	1.000	HCN:	1.000	CH₃Cl:	1.000
H ₂ O ₂ : 1.000	C ₂ H ₂ :	1.000	C2H6:	1.000	PH₃:	1.000
						ОК

AVIRIS Next Gen Channels - Transm Clouds & Aerosols Tab

MODTRAN Options - 05Ref_1p0wn_AVng - Case 1	l of 4	- 🗆 X
RT Options Atmosphere Clouds & Aerosols G	eometry Surfaces Spectral Options Output File Options	
Clouds	Aerosols	
Model: None	Model: Rural V	Season: Default 🗸
Edit Cloud Propert	Wind speed (m/s): 0.00 0.00 24 Hr Avg.	Air mass: 3 🗸
Cloud thickness: Default -9.0000 km Cloud altitude (AGL): Default -9.0000 km	Visibility: O Default Range (km) Optical Depth 	Phase Function: Model Default (Mie) Henyey-Greenstein User-defined Edit
Cloud extinction: Default -9.0000 km ⁻¹ Rain rate: Default 0.0000 mm/hr	Stratospheric model: Background ~	Optical Properties: Customize
Save As New Case		OK Cancel

AVIRIS Next Gen Channels - Transm Geometry Tab

Options Atmos	sphere Clouds & Aeros	ols Geometry	Surfaces Spectral Optic	ons Output File Options						
	Path to Space or Gro Horizontal path Path between two al ar Path to Space or Gro User defined path	titudoc	e: 180.0 Earth ctr an	gle: 0.0 Azim: 0.0 LongPath: 0 Target zenith	n angle: 0.0	Earth radiu		00]	
Add	Edit Delete	9				-				
Solar/Lunar Scatt O Location-ba	tering Geometry ased				() Ai	ngle-based				
		Source Laboratoria	at/Long	O Time (GMT)	-	ngle-based Zenith (°):	30.0000			
O Location-ba	ased	 Source Latitude: 0.0000 	at/Long Longitude (West):	O Time (GMT) Time: 0.00	Solar	-				

AVIRIS Next Gen Channels - Transm Line Of Sight (LOS) Editor

Line of sight edito	r	<u> 11 – 1</u>		×
Observer (km)	Target (km)	Path length (km)		
10.6	0.0	0.0		
Obs zenith angle (°)	Tar zenith angle (°)	Earth center ang	le (°)	
180.0	0.0	0.0		
Path azimuth angle (°) CK Range			
0.0	0.0	Long path		
		Ok	Car	ncel
	HRANGE' (LENN=1)	HTANGENT	H2/	ALT'

AVIRIS Next Gen Channels - Transm Spectral Options Tab

MODTRAN Options - 05Ref_1p0wn_AVngT - Case 1 of 1		— [
RT Options Atmosphere Clouds & Aerosols Geometry Surfaces	Spectral Options	Output File Options	
Initial: Final: Increment: FWHM: 366.0000 2511.0000 1.0000 5.0000 Plotout File: Transmittance Vanometers V	 Absolute Relative (%) 	Units: Slit function: Nanometers V Gaussian V Resample only total radiance and transmittance	
Flux Table: Wrap Lines ✓ Altitudes: 12 Frequency for spherical refraction:		Include Filter Function MOD6DATA\AVIRIS_NG08nov2017.flt	
Top-of-atmosphere solar irradi Default Choose	Open	HITRANtrace2013	×
	Recent Iten Desktop	Image: Sentine l-28.ft Image: Sentine l-28.ft Image: Sentine l-28.ft Image: Sentine l-28.ft	
Save As New Case	Documents	K AVIRIS_NG08nov2017.fit K IIRS_assorted.fit	
	This PC	GOES12ir.ft HyspIRI_TIR.ft andsat5.ft	
	Network	File name: AVIRIS_NG08nov2017.flt Files of type: filter	Open Cancel

AVIRIS Next Gen Channels - Transm Spectral Options Tab

MODTRAN Options - 05Ref_1p0wn_AVngT - Case 1 of 1		- D	\times
RT Options Atmosphere Clouds & Aerosols Geometry Surfaces	Spectral Options	Output File Options	
Initial: Final: Increment: FWHM: 366.0000 2511.0000 1.0000 5.0000 Plotout File: Transmittance Nanometers Flux Table: Wrap Lines Altitudes: 12 Frequency for spherical refraction: Image: Construction in the second s	 Absolute Relative (%) 	Units: Slit function: Nanometers Gaussian Resample only total radiance and transmittance Include Filter Function Choose MOD6DATA\AVIRIS_NG08nov2017.flt	
Top-of-atmosphere solar irradi Default Choose Default Top-of-atmosphere FWHM 0.000 wavenumbers	Copen Look	HITRANtrace2013 Sandsat7.fit IRSL Landsat8.fit	×
Save As New Case	Desktop Descuments	😰 Bands3to5_8to12.fit 🖳 yankee.fit	
	This PC		oen ncel

AVIRIS Next Gen Channels AVIRIS_NG08nov2017.flt

🖫 TextPad - C:\ProgramData\SSI\MOD6DATA\AVIRIS — 🔲 🗙
File Edit Search View Tools Macros Configure Window Help
🗅 😂 🔲 🗐 😂 🔃 🐰 🖻 🛣 🖾 으 🗠 🍸 Find incrementally
🗅 🖆 🔲 🗐 🎒 🖪 🔲 🐰 🖻 🕼 🕰 💭 💭 🍟 Find incrementally
AVIRIS_NG08nov2017.flt × 🗸 🗸 🗸 🗸
Nanometer data for sensor
CENTER: 376.86 NM FWHM: 5.57 NM
366.8400 0.0001267 27259.84
367.0404 0.0001807 27244.96
367.2408 0.0002560 27230.09
367.4412 0.0003601 27215.24
367.6416 0.0005027 27200.40
367.8420 0.0006970 27185.59
368.0424 0.0009593 27170.78 368.2428 0.0013109 27156.00
368.4432 0.0017786 27141.23
368.6436 0.0023959 27126.47
368.8440 0.0032044 27111.73
369.0444 0.0042550 27097.01
369.2448 0.0056096 27082.30
369.4452 0.0073426 27067.61
369.6456 0.0095423 27052.94
369.8460 0.0123122 27038.28
370.0464 0.0157725 27023.64 370.2468 0.0200607 27009.01
370.4472 0.0253324 26994.40
370.6476 0.0317605 26979.81
370.8480 0.0395349 26965.23
371.0484 0.0488603 26950.66
371.2488 0.0599534 26936.11
371.4492 0.0730389 26921.58
371.6496 0.0883439 26907.07
371.8500 0.1060916 26892.56 372.0504 0.1264933 26878.08
372.2508 0.1497395 26863.61
372.4512 0.1759897 26849.16
372.6516 0.2053622 26834.72
372.8520 0.2379227 26820.29
373.0524 0.2736739 26805.89
373.2528 0.3125453 26791.49
373.4532 0.3543846 26777.12
373.6536 0.3989504 26762.76
373.8540 0.4459079 26748.41 374.0544 0.4948272 26734.08
374.0544 0.4948272 26734.08 374.2548 0.5451853 26719.76
374.4552 0.5963715 26705.46
374.6556 0.6476969 26691.18
374.8560 0.6984076 26676.91
375.0564 0.7477015 26662.66
375.2568 0.7947485 26648.42
375.4572 0.8387130 26634.19
375.6576 0.8787781 26619.99
375.8580 0.9141706 26605.79
376.0584 0.9441857 26591.61 376.2588 0.9682105 26577.45
376.2588 0.9682105 26577.45 376.4592 0.9857445 26563.30
376.6596 0.9964169 26549.17
376.8600 1.0000000 26535.05
377.0604 0.9964169 26520.95 V
< >

【 TextPad - C:'	Program	Data\S	SI\MOD	6DATA\A	VIRIS	-		×
File Edit S	earch	View	Tools	Macros	Conf	igure	Window	Help
0 🚅 🖫 🗍) 🖨 🛛		X 🖻	812	<u> </u>	Fin	d increme	ntally
AVIRIS_NG08nov	2017.flt	×						->
2499.538				00.74				~
2499.738 2499.938				000.42				
2500.139				999.78				
2500.339				99.46				
2500.540				999.14				
2500.740				98.82				
2500.940 2501.141				98.50				
2501.341				97.85				
2501.542				97.53				
2501.742				97.21				
2501.942 2502.143				96.89				
2502.343				96.25				
2502.544				95.93				
2502.744	4 0.69	03244	39	95.61				
2502.944				95.29				
2503.145 2503.345				94.97				
2503.546				94.33				
2503.746				94.01				
2503.946				993.70				
2504.147				93.38				
2504.347 2504.548				93.06				
2504.748				92.42				
2504.948				92.10				
2505.149				991.78				
2505.349				991.46				
2505.550 2505.750				991.14				
2505.950				90.50				
2506.151	2 0.09	06090) 39	90.18				
2506.351				989.86				
2506.552 2506.752				89.54 89.23				
2506.752				989.23				
2507.153				88.59				
2507.353				988.27				
2507.554				987.95				
2507.754 2507.954				987.63 987.31				
2508.155				986.99				
2508.355				86.68				
2508.556	0 0.00	74435	5 39	986.36				
2508.756				86.04				
2508.956 2509.157				985.72 985.40				
2509.357				985.08				
2509.558				984.77				
2509.758				84.45				
2509.958				984.13				
2510.159 2510.359				983.81 983.49				
2510.560				983.18				
<								> .
For Help, press F1		1 -	1 1	Road	Ver Bt-	ما ا م	nc Rec (Canc
or help, press Fi				Reau C		ek sy	ne nec (

59

AVIRIS Next Gen Channels - Transm Output File Options Tab

Full Tape6 Details ~ Standard Detail ~ 05Ref_1p0wn_AVngT		
5Ref_1p0wn_AVngTjson Status+Output ~		
c-K and LBL)		
5	Full Tape6 Details Standard Detail 05Ref_1p0wn_AVngT 05Ref_1p0wn_AVngT.sli 05Ref_1p0wn_AVngT.csv	<pre>Full Tape6 Details Standard Detail O5Ref_1p0wn_AVngT O5Ref_1p0wn_AVngT.sli O5Ref_1p0wn_AVngT.csv SRef_1p0wn_AVngT_json Status+Output </pre>

AVIRIS Next Gen Channels - Transm Full Domain Spectral Transmittance

AVIRIS Next Gen Channels - Transm CH₄ Band Spectral Transmittance

AVIRIS Next Gen Channels - Transm Channel File Output

🛐 TextPad - D:\Users	\lex\OneE	Drive - Spectral Sciences	s, Inc\Documents\MO	DTRAN6\4CALCO	N\05Ref_1p0w	n_AVngT.chn														- 🗆 ×
File Edit Search V	'iew Tool	ls Macros Configure	Window Help																	
	xeel	2e 🗃 er 💷	2 0 QQ 4 + III	Find increm	nentally 🖟 î 🗆	Match case														
05Ref_1p0wn_AVngT.c	×																			~ ×
						00000000	00000000													~
1ST SPECTRAL MOMENT	NEL	AVERAGE EXTINCTION	CHANNEL EXTINCTION	FULL CH EQUIVALEN		SPECTRAL MINIMUM	SPECTRAL MAXIMUM	H2O (NO CONTM)	UNIFORMLY MIX GASES	03	TRACE GASES	N2 CONTINUUM	H2O CONTINUUM	MOLECULAR (RAYLEIGH)	AEROSOL PLUS CLOUD	HNO3	AEROSOL PLUS CLOUD	CO2	со	CH4
(NANOMETERS)	NO.	(1 - TRANSM)	(CM-1)	(CM-1)	(NM)	(NM)	(NM)	ABSORBANCE	ABSORBANCE	ABSORBANCE	ABSORBANCE	ABSORBANCE	ABSORBANCE	SCATTERING	EXTINCTION	ABSORBANCE	ABSORBANCE	ABSORBANCE	ABSORBANCE	ABSORBANCE
ToutPad D\Users		Drive - Spectral Sciences	Inc) Documents) MOI		NI\OEPof 1p0w	n AlleaT che														- 0 ×
				DTRAIND (4CALCO	invlookei_ipow	m_Avng1.cnn														~
		ls Macros Configure		le ti																
		₽₽,■■₽¶⊗♥	Although the	Find increm	ientally U 🛛 🗆	Match case														* X
05Ref_1p0wn_AVngT.c 2159.95068	×	0.03803	0.5119	13.4598	6.2795	2149.9299	2169.9700	0.01958	0.00747	0.00001	0.00000	0.00000	0.00056	0.00030	0.01050	0.00000	0.00143	0.00202	0.00000	0.00500
2164.95972	358	0.04549	0.6094	13.3976	6.2795	2154.9399	2174.9800	0.02674	0.00787	0.00001	0.00000	0.00000	0.00060	0.00030	0.01048	0.00000	0.00143	0.00184	0.00000	0.00540 ^
2169.96045 2174.97070	359 360	0.03570 0.03911	0.4761 0.5191	13.3359 13.2745	6.2795 6.2795	2159.9399 2164.9500	2179.9800 2184.9900	0.01657 0.02120	0.00810 0.00692	0.00000	0.00000 0.00000	0.00000 0.00000	0.00064 0.00066	0.00030 0.00030	0.01045 0.01042	0.00000 0.00000	0.00143 0.00143	0.00113 0.00052	0.00000	0.00651 0.00616
2179.98071	361	0.03999	0.5284	13.2135	6.2795	2169.9600	2190.0000	0.02299	0.00603	0.00000	0.00000	0.00000	0.00068	0.00029	0.01040	0.00000	0.00143	0.00019	0.00000	0.00576
2184.99097 2190.00000	362 363	0.06299 0.03605	0.8285 0.4728	13.1530 13.1151	6.2795 6.2901	2174.9700 2179.9800	2195.0100 2200.0200	0.04888 0.02261	0.00346 0.00246	0.00000	0.00000	0.00000	0.00068	0.00029 0.00029	0.01037 0.01035	0.00000 0.00000	0.00143 0.00143	0.00012	0.00000	0.00331 0.00231
2195.01001	364	0.04603	0.6009	13.0553	6.2901	2184.9900	2205.0300	0.02712	0.00837	0.00000	0.00001	0.00000	0.00064	0.00029	0.01032	0.00000	0.00143	0.00008	0.00000	0.00829
2200.02002 2205.02026	365 366	0.07981 0.05639	1.0372 0.7295	12.9959 12.9370	6.2901 6.2901	2190.0000 2195.0000	2210.0400 2215.0400	0.02733 0.02213	0.04278 0.02415	0.00000	0.00001	0.00000	0.00061 0.00058	0.00028	0.01030 0.01027	0.00000	0.00143 0.00143	0.00003	0.00000	0.04275 0.02414
2210.02881	367 368	0.02556	0.3292	12.8784	6.2901	2200.0100	2220.0500	0.00952	0.00519	0.00000	0.00002	0.00000	0.00056	0.00028	0.01025	0.00000	0.00143	0.00005	0.00000	0.00515
2215.03906 2220.05054	369	0.03189 0.02896	0.4088 0.3702	12.8203 12.7840	6.2901 6.3007	2205.0200 2210.0300	2225.0601 2230.0701	0.01315 0.00566	0.00798 0.01251	0.00000	0.00002	0.00000 0.00000	0.00054 0.00054	0.00027 0.00027	0.01022 0.01020	0.00000 0.00000	0.00143 0.00143	0.00004 0.00003	0.00000	0.00793 0.01247
2225.05933 2230.06909	370 371	0.03186 0.03336	0.4054 0.4227	12.7265 12.6694	6.3007 6.3007	2215.0400 2220.0500	2235.0801 2240.0901	0.00682	0.01430 0.02105	0.00000	0.00002	0.00000	0.00055	0.00027 0.00027	0.01017 0.01015	0.00000	0.00143 0.00143	0.00003	0.00000	0.01426 0.02102
2235.07935	372	0.03881	0.4894	12.6127	6.3007	2225.0601	2245.1001	0.00270	0.02548	0.00000	0.00002	0.00000	0.00060	0.00027	0.01012	0.00000	0.00144	0.00001	0.00000	0.02546
2240.08911 2245.08911	373 374	0.03989 0.04896	0.5009 0.6120	12.5563 12.5005	6.3007 6.3007	2230.0701 2235.0701	2250.1101 2255.1101	0.00137 0.00232	0.02788 0.03614	0.00000	0.00002	0.00000	0.00064	0.00026	0.01010 0.01008	0.00000	0.00144 0.00144	0.00001	0.00000	0.02787 0.03610
2250.10010	375	0.04806	0.5991	12.4658	6.3114	2240.0801	2260.1201	0.00086	0.03659	0.00000	0.00002	0.00000	0.00074	0.00026	0.01005	0.00000	0.00144	0.00003	0.00000	0.03534
2255.11060 2260.12012	376 377	0.06082	0.7549 0.8577	12.4105 12.3556	6.3114 6.3114	2245.0901 2250.1001	2265.1299 2270.1399	0.00081 0.00078	0.04951 0.05820	0.00000	0.00002	0.00000	0.00080 0.00086	0.00026	0.01003	0.00000	0.00144 0.00144	0.00003	0.00000	0.04227 0.05099
2265.13037	378	0.07044	0.8664	12.3010	6.3114	2255.1101	2275.1499	0.00196	0.05815	0.00000	0.00002	0.00000	0.00094	0.00025	0.00998	0.00000	0.00144	0.00001	0.00000	0.05437
2270.14062 2275.15039	379	0.07186	0.8801 0.9711	12.2467 12.1928	6.3114 6.3114		2280.1599 2285.1699	0.00314 0.00050	0.05851 0.06866	0.00000	0.00002	0.00000	0.00103 0.00112	0.00025	0.00996 0.00994	0.00000	0.00144 0.00144	0.00001	0.00000	0.05228 0.06383
2280.14941 2285.15967	381 382	0.07197 0.07908	0.8751 0.9574	12.1599 12.1066	6.3220 6.3220	2270.1299 2275.1399		0.00082	0.06056 0.06718	0.00000	0.00002	0.00000	0.00123	0.00024 0.00024	0.00991 0.00989	0.00000	0.00145 0.00145	0.00001	0.00000	0.05815 0.06593
2290.16943	383	0.08593	1.0357	12.0537	6.3220	2275.1399		0.00135	0.06990	0.00000	0.00002	0.00000	0.00135	0.00024	0.00989	0.00000	0.00145	0.00000	0.00000	0.06927
2295.17969 2300.19019	384 385	0.10136 0.10199	1.2164 1.2186	12.0011 11.9489	6.3220 6.3220	2285.1599 2290.1699		0.01257 0.00402	0.07934 0.08758	0.00000	0.00002	0.00000	0.00163 0.00180	0.00024 0.00024	0.00985 0.00982	0.00000	0.00145 0.00145	0.00000	0.00000 0.00000	0.07908 0.08744
2305.19946	386	0.08982	1.0704	11.9170	6.3326	2295.1799	2315.2200	0.00294	0.07600	0.00000	0.00001	0.00000	0.00200	0.00023	0.00980	0.00000	0.00145	0.00000	0.00002	0.07589
2310.20947 2315.21948	387 388	0.05007 0.10459	0.5941 1.2356	11.8654 11.8141	6.3326 6.3326	2300.1899 2305.2000	2320.2300 2325.2400	0.00451 0.00724	0.03398 0.08712	0.00000	0.00001 0.00002	0.00000	0.00222	0.00023	0.00978 0.00976	0.00000	0.00146 0.00146	0.00000	0.00013 0.00046	0.03381 0.08669
2320.22046	389	0.14108	1.6596	11.7633	6.3326	2310.2000	2330.2400	0.02809	0.10374	0.00000	0.00001	0.00000	0.00273	0.00023	0.00973	0.00000	0.00146	0.00000	0.00105	0.10274
2325.23022 2330.24023	390 391	0.08270 0.07159	0.9686 0.8349	11.7126 11.6623	6.3326 6.3326		2335.2500 2340.2600	0.02469 0.00992	0.04702 0.04974	0.00000	0.00001 0.00001	0.00000	0.00304 0.00338	0.00023	0.00971 0.00969	0.00000	0.00146 0.00146	0.00000	0.00183	0.04526 0.04758
2335.24951	392	0.08696	1.0115	11.6318	6.3433	2325.2300	2345.2700	0.01447	0.06096	0.00000	0.00001	0.00000	0.00378	0.00022	0.00967	0.00000	0.00146	0.00000	0.00231	0.05875
2340.25977 2345.26978	393 394	0.14575 0.14535	1.6881 1.6762	11.5821 11.5326	6.3433 6.3432		2350.2800 2355.2900	0.04865 0.03670	0.08957 0.09908	0.00000 0.00001	0.00000 0.00000	0.00000 0.00000	0.00421 0.00470	0.00022	0.00965 0.00963	0.00000 0.00000	0.00146 0.00147	0.00000	0.00158 0.00059	0.08808 0.09854
2350.27979	395 396	0.20142	2.3130 1.9407	11.4835 11.4348	6.3433 6.3433		2360.3000 2365.3000	0.08415 0.05812	0.11117	0.00001	0.00000	0.00000	0.00525	0.00022	0.00961	0.00000	0.00147	0.00000	0.00059	0.11061
2355.28003 2360.28979	397	0.16972 0.11668	1.3308	11.4054	6.3539	2350.2700	2370.3101	0.03353	0.10296 0.07166	0.00000	0.00000	0.00000	0.00587 0.00659	0.00021	0.00958 0.00956	0.00000	0.00147 0.00147	0.00000	0.00124 0.00152	0.10187 0.07026
2365.30029 2370.30933	398 399	0.13556 0.27494	1.5396 3.1093	11.3571 11.3091	6.3539 6.3539	2355.2800 2360.2900	2375.3201 2380.3301	0.05937 0.10667	0.06691 0.18017	0.00000	0.00000	0.00000	0.00740 0.00829	0.00021 0.00021	0.00954 0.00952	0.00000	0.00147 0.00147	0.00000	0.00138 0.00114	0.06559 0.17929
2375.31958	400	0.21316	2.4005	11.2615	6.3539	2365.3000	2385.3401	0.10348	0.10431	0.00000	0.00000	0.00000	0.00928	0.00021	0.00950	0.00000	0.00147	0.00000	0.00085	0.10354
2380.32983 2385.33960	401 402	0.20645 0.24095	2.3152 2.6952	11.2142 11.1858	6.3539 6.3645	2370.3101 2375.3201	2390.3501 2395.3601	0.14144 0.17778	0.05713 0.05860	0.00000	0.00000 0.00000	0.00000	0.01035 0.01156	0.00021 0.00020	0.00948 0.00946	0.00000	0.00147 0.00147	0.00000	0.00056 0.00035	0.05659 0.05827
2390.35010	403	0.20320	2.2634	11.1389	6.3645	2380.3301	2400.3701	0.13421	0.05826	0.00000	0.00000	0.00000	0.01296	0.00020	0.00944	0.00000	0.00148	0.00001	0.00022	0.05804
2395.34985 2400.36011	404 405	0.18685 0.16937	2.0726 1.8709	11.0925 11.0462	6.3645 6.3645	2385.3301 2390.3401	2405.3701 2410.3799	0.12078 0.11705	0.05372 0.03600	0.00000	0.00000	0.00000	0.01455 0.01637	0.00020	0.00942 0.00940	0.00000	0.00148 0.00148	0.00001	0.00013	0.05359 0.03594
2405.37036	406	0.23816	2.6199	11.0003	6.3645	2395.3501	2415.3899	0.19118	0.03211	0.00000	0.00000	0.00000	0.01836	0.00020	0.00938	0.00000	0.00148	0.00001	0.00004	0.03206
2410.38013 2415.38989	407 408	0.24512 0.37081	2.6897 4.0520	10.9729 10.9274	6.3751 6.3751	2400.3601 2405.3701	2420.3999 2425.4099	0.20846 0.34248	0.01746 0.01287	0.00000	0.00000	0.00000	0.02048	0.00020 0.00019	0.00936 0.00934	0.00000	0.00148 0.00148	0.00001	0.00003	0.01743 0.01284
2420.40112		0.32816	3.5711	10.8822	6.3751	2410.3799		0.29378	0.01399	0.00000	0.00000	0.00000	0.02598	0.00019	0.00932	0.00000	0.00148	0.00000	0.00002	0.01397
2425.41016 2430.40991	411	0.21691 0.18315	2.3508 1.9767	10.8373 10.7928	6.3751 6.3751	2415.3899 2420.3899	2440.4299	0.17093 0.13830	0.01797 0.01078	0.00000	0.00000 0.00000	0.00000 0.00000	0.02918 0.03282	0.00019 0.00019	0.00930 0.00928	0.00000 0.00000	0.00148 0.00148	0.00000	0.00002	0.01795 0.01076
2435.41943 2440.43018	412 413	0.42685	4.5956 2.1422	10.7663 10.7222	6.3858 6.3858	2425.3999 2430.4099	2445.4399 2450.4500	0.39359 0.15083	0.00973	0.00000	0.00000	0.00000	0.03690 0.04139	0.00019 0.00019	0.00926	0.00000	0.00148 0.00148	0.00000	0.00001	0.00972
2445.44092	414	0.40737	4.3500	10.6783	6.3858	2435.4199	2455.4600	0.36877	0.00651	0.00000	0.00000	0.00000	0.04664	0.00018	0.00922	0.00000	0.00149	0.00000	0.00000	0.00649
2450.45117	415	0.52706	5.6051	10.6347	6.3858	2440.4299	2460.4700	0.49286	0.00562	0.00000	0.00000	0.00000	0.05296	0.00018	0.00920	0.00000	0.00149	0.00000	0.00000	0.00556 🗸
)

AVIRIS Next Gen Channels - Rad GUI Main Page

AVIRIS Next Gen Channels - Rad RT Options Tab

MODTRAN Options - 05Ref_1p0wn_AVng - Case 1 of 4	– 🗆 X
RT Options Atmosphere Clouds & Aerosols Geometry Surfaces Spectral Options Output File Options	
RT Option: Band Model V Band Model Resolution (cm ⁻¹): 1 V Line-by-Line Intervals:	RT Run Mode: Solar and thermal ~ Multiple Scattering: DISORT MS ~ At observer DISORT streams:
100 🔦	8 ~ Spherical albedo (atmosphere)
DATA location: Use system DATA directory Choose C:\ProgramData\SSI\MOD6DATA	
Save As New Case	OK Cancel

AVIRIS Next Gen Channels - Rad Surfaces Tab

🐼 MODTRAN Options - 05Ref_1p0wn_AVng - Case 1 of 4	-		×
RT Options Atmosphere Clouds & Aerosols Geometry Surfaces Spectral Options Output File Options			
Surface type: Lambertian Reflectance: 0.000 □ Area averaged Model direct surface as a point Temperature: Default 300.0 Image: K model direct Temperature: Default 300.0 K model			
LOS Surface Index: 1 Lambertian: Constant 5% Constant 0% BRDF: Walt Constant 5% Constant 10% Constant 10% Constant 30% Lambertian: Constant 0% BRDF: Walthall Edit Surface BRDF: Walthall Edit BRDF			
Spectral Albe Constant 50% Choose Constant 80% Constant 100% Sea ice ccm3 Sea ice ccm3 V Ground altitude: 0.0000 km Liquid water thickness 0.0000 mm Embedded surface moisture model			
Save As New Case	Ж	Cano	cel

SSI

AVIRIS Next Gen Channels - Rad Spectral Options Tab

MODTRAN Options - 05Ref_1p0wn_AVng - Case 1 of 4		_		\times
RT Options Atmosphere Clouds & Aerosols Geometry Surfaces S	pectral Options	Output File Options		
366.0000 2511.0000 1.0000 5.0000	● Absolute) Relative (%)	Units: Slit function: Nanometers Gaussian Resample only total radiance and transmittance		
Plotout File: Radiance Nanometers Flux Table: Wrap Lines Altitudes: 12 Frequency for spherical refraction:		Include Filter Function Choose MOD6DATA\AVIRIS_NG08nov2017.flt		
Top-of-atmosphere solar irradi Default	Open Look	in: MOD6DATA 🗸 🦻 📂 🖽 -		×
Choose Default Top-of-atmosphere FWHM 0.000 wavenumbers Save As New Case	Recent Item Desktop Documents	HITRANtrace2013 Iandsat7.flt IRSL Landsat8.flt NOAA Iandsat9.flt airs.flt modis3p615_14p532um.flt ASTER_swir.flt PFM1998011.flt ASTER_vnir.flt Sentinel-2A.flt aviris.flt Sentinel-2B.flt AVIRIS_NG08nov2017.flt VIIRS_assorted.flt		
	This PC	HyspIRI_TIR.flt Iandsat5.flt File name: AVIRIS_NG08nov2017.flt Files of type: filter	Open Cancel	

AVIRIS Next Gen Channels - Rad Output File Options Tab

MODTRAN Options - 80Ref_1p0wn_AVr	ng - Case 4 of 4	_		×
RT Options Atmosphere Clouds & Ae	erosols Geometry Surfaces Spectral Options Output File Options			
Output File Selection: Output Log Options: Output Message Options: Set legacy output name ENVI Spectral Library (sli) CSV text output	Full Tape6 Details v			
□ JSON text output	80Ref_1p0wn_AVngjson Status+Output ~			
Cumulative path output (c-H	K and LBL)			
Binary legacy output				
Save As New Case		K	Can	cel

AVIRIS Next Gen Channels - Rad Full Domain Spectral Radiance

— Total Radiance(1.S) — Total Radiance(2.S) — Total Radiance(3.S) — Total Radiance(4.S)

AVIRIS Next Gen Channels - Rad CH₄ Band Spectral Radiance

- Total Radiance(1.S) — Total Radiance(2.S) — Total Radiance(3.S) — Total Radiance(4.S) 2.05 2.00 1.95 1.90 1.85 1.80 1.75 1.70 1.65 1.60 1.55 1.50 1.45 1.40 1.35 1.30 1.25 Ê 1.20 5 1.15 700 1.10 \$ 1.05 1.00 e 0.95 10.90 High ₩ 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50 0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00 1,920 2,480 2,500 1,940 1,960 1,980 2,000 2,040 2,060 2.080 2,100 2,120 2.1402,160 2,180 2,200 2,220 2,240 2,260 2,280 2,300 2,320 2,340 2,360 2,380 2,400 2,420 2,440 2,460 Wavelength (nm)

AVIRIS Next Gen Channels AVIRIS_NG08nov2017.flt

TextPad - D:\Users\lex\OneDrive - Spectral Sciences, Inc\Documents\MODTRAN6\4CALCON\05Ref_1p0wn_AVng.chn —											- 🗆	×				
			Macros Configure	· · · · · · · · · · · · · · · · · · ·												
10 🚅 🖬 🗐 🎒	<u>d</u> 🗉) % 🛾	a@ ⊂ ≂ ;	1 🗠 🕈 🐼 🖤	🛃 🙀 👁 a	🖗 📲 🔹 IIA 🕨 📮	Find incrementa	lly 🖟 û 🗌	Match case $=$							
05Ref_1p0wn_AVng.ch	in ×															~ ×
1ST SPECTRAL	LOS	CHAN	SPECTRAL	RADIANCE	BRIGHT-	CHANNEL	FULL CH	ANNEL	SPECTRAL	SPECTRAL	THERMAL	THERMAL	TRANSM GROUND	PATH MULTIPLE	PATH SING	LE ^
MOMENT	NO.	NEL	(W SR-1 CM	1-2 / XXXX)	NESS	RADIANCE	EQUIVALEN	T WIDTH	MINIMUM	MAXIMUM	EMISSION	SCATTER	EMISSION	SCAT SOLAR	SCAT SOL	AR
(NANOMETERS)		NO.	(PER CM-1)	(PER NM)	TEMP (K)	(W SR-1 CM-2)	(CM-1)	(NM)	(NM)	(NM)	(W SR-1 CM-2)	(W SR-1 CM-2)	(W SR-1 CM-2)	(W SR-1 CM-2)	(W SR-1 CM-	-2)
376.85995	1	1	6.849871E-08	4.823629E-06	1947.633	2.859685E-05	417.4801	5.9285	366.8400	386.8800	0.000000E+00	0.00000E+00	0.000000E+00	1.107418E-05	1.349398E	
381.86996	1	2	6.449503E-08	4.423288E-06	1920.072	2.627049E-05	407.3258	5.9391	371.8500	391.8900	0.000000E+00	0.00000E+00	0.000000E+00	9.862578E-06	1.247502E	-05
386.88004	1	3	6.212593E-08	4.151158E-06	1895.376	2.465427E-05	396.8434	5.9391	376.8600	396.9000	0.000000E+00	0.000000E+00	0.000000E+00	8.943438E-06	1.175227E	-05
391.88980	1	4	6.562758E-08	4.273717E-06	1880.106	2.538217E-05	386.7607	5.9391	381.8700	401.9100	0.000000E+00	0.000000E+00	0.000000E+00	8.924902E-06	1.213741E	
396.89020	1	5	7.283688E-08	4.624421E-06	1870.067	2.751424E-05	377.7515	5.9498	386.8700	406.9100	0.000000E+00	0.000000E+00	0.000000E+00	9.327035E-06	1.318832E	
401.90005	1	6	1.052474E-07	6.516600E-06	1886.258	3.877228E-05	368.3918	5.9498	391.8800	411.9200	0.000000E+00	0.000000E+00	0.000000E+00	1.274557E-05	1.860000E	-05
406.91010	1	7	1.058834E-07	6.395506E-06	1867.290	3.805180E-05	359.3745	5.9498	396.8900	416.9300	0.000000E+00	0.000000E+00	0.000000E+00	1.213159E-05	1.824796E	
411.92001	1	8	1.047658E-07	6.175008E-06	1847.128	3.680558E-05	351.3128	5.9604	401.9000	421.9400	0.000000E+00	0.000000E+00	0.000000E+00	1.135378E-05	1.762489E	-05
416.93002	1	9	1.093128E-07	6.289084E-06	1832.576	3.748551E-05	342.9195	5.9604	406.9100	426.9500	0.000000E+00	0.000000E+00	0.000000E+00	1.120666E-05	1.790872E	-05
421.93988	1	10	1.075957E-07	6.044144E-06		3.602558E-05	334.8236	5.9604	411.9200	431.9600	0.000000E+00	0.000000E+00	0.000000E+00	1.043577E-05	1.715201E	
426.94989	1	11	1.010838E-07	5.545849E-06	1788.909	3.305553E-05	327.0111	5.9604	416.9300	436.9700	0.000000E+00	0.000000E+00	0.000000E+00	9.289529E-06	1.567161E	
431.95999	1	12	9.739917E-08	5.220450E-06	1767.963	3.117155E-05	320.0392	5.9710	421.9400	441.9800	0.000000E+00	0.000000E+00	0.000000E+00	8.476421E-06	1.469616E	
436.96002	1	13	1.079750E-07			3.376983E-05	312.7561	5.9710	426.9400	446.9800	0.000000E+00	0.000000E+00	0.000000E+00	8.912074E-06	1.582750E	
441.97003	1	14	1.130806E-07	5.789489E-06		3.456931E-05	305.7050	5.9710	431.9500	451.9900	0.000000E+00	0.000000E+00	0.000000E+00	8.845075E-06	1.609812E	
446.98007	1	15	1.196971E-07	5.991627E-06	1737.043	3.584003E-05	299.4226	5.9817	436.9600	457.0000	0.000000E+00	0.000000E+00	0.000000E+00	8.895888E-06	1.656415E	
451.98990	1	16	1.260224E-07	6.169157E-06		3.690196E-05	292.8206	5.9817	441.9700	462.0100	0.000000E+00	0.000000E+00	0.000000E+00	8.902435E-06	1.690649E	
456.99979	1	17	1.261605E-07	6.041243E-06		3.613681E-05	286.4353	5.9817	446.9800	467.0200	0.000000E+00	0.000000E+00	0.000000E+00	8.466491E-06	1.640631E	
462.01013	1	18	1.281963E-07			3.592786E-05	280.2566	5.9817	451.9900	472.0300	0.000000E+00	0.000000E+00	0.000000E+00	8.174585E-06	1.615690E	
467.02014	1	19	1.281669E-07	5.876775E-06		3.521555E-05	274.7632	5.9923	457.0000	477.0400	0.000000E+00	0.000000E+00	0.000000E+00	7.783475E-06	1.568424E	
472.02002	1	20	1.284973E-07	5.767754E-06	1666.000	3.456226E-05	268.9727	5.9923	462.0000	482.0400	0.000000E+00	0.000000E+00	0.000000E+00	7.407446E-06	1.526049E	-05 🗸

1ST SPECTRAL MOMENT	LOS NO.	CHAN	TOTAL TRANSM GRND REFLECT	DIRECT TRANSM GRND REFLECT	COSSUN TIMES TOA SUN / PI	TRANSM SOLAR LOS+SUN PATH	TRANSM SOLAR	A, DIRECT REFLECTANCE	B, DIFFUSE	SPHERICAL ALBEDO	SENSOR PATH		CHANNEL				Ê
(NANOMETERS)		NO.	(W SR-1 CM-2)	(W SR-1 CM-2)	(W SR-1 CM-2)	(W CM-2)	(W CM-2)	COEFFICIENT (AT GROUND	TRANSM	EMISSIVITY	DESCRIPT	101			
376.85995	1	1	4.028690E-06	2.568028E-06	1.703536E-04	1.863155E-04	5.373866E-04	0.4637941	0.1710942	0.2924913	0.6110285	0.9499995	CENTER:	376.86 NM	FWHM:	5.57 NM	
381.86996	1	2	3.932891E-06	2.552537E-06	1.616424E-04	1.851916E-04	5.130499E-04	0.4773954	0.1680510	0.2831989	0.6236663	0.9500001	CENTER:	381.87 NM	FWHM:	5.58 NM	
386.88004	1	3	3.958557E-06	2.618351E-06	1.568482E-04	1.899666E-04	5.012933E-04	0.4954293	0.1657099	0.2743876	0.6369050	0.9500000	CENTER:	386.88 NM	FWHM:	5.58 NM	
391.88980	1	4	4.319852E-06	2.903427E-06	1.665144E-04	2.106494E-04	5.351914E-04	0.5094889	0.1629668	0.2659900	0.6488470	0.9499998	CENTER:	391.89 NM	FWHM:	5.58 NM	
396.89020	1	5	4.998886E-06	3.419666E-06	1.870292E-04	2.481035E-04	6.048545E-04	0.5251783	0.1596287	0.2563014	0.6600963	0.9500007	CENTER:	396.89 NM	FWHM:	5.59 NM	
401.90005	1	6	7.426719E-06	5.151654E-06	2.713406E-04	3.737627E-04	8.818908E-04	0.5380374	0.1568708	0.2484782	0.6708748	0.9499995	CENTER:	401.90 NM	FWHM:	5.59 NM	
406.91010	1	7	7.672246E-06	5.392496E-06	2.739912E-04	3.912363E-04	8.946898E-04	0.5506705	0.1541572	0.2409268	0.6812262	0.9500012	CENTER:	406.91 NM	FWHM:	5.59 NM	
411.92001	1	8	7.826906E-06	5.575424E-06	2.731497E-04	4.045080E-04	8.960977E-04	0.5637432	0.1512161	0.2330198	0.6910826	0.9499996	CENTER:	411.92 NM	FWHM:	5.60 NM	
416.93002	1	9	8.370136E-06	6.034723E-06	2.860948E-04	4.378311E-04	9.427390E-04	0.5758214	0.1484441	0.2256839	0.7004297	0.9499997	CENTER:	416.93 NM	FWHM:	5.60 NM	
421.93988	1	10	8.437793E-06	6.153999E-06	2.827722E-04	4.464848E-04	9.353097E-04	0.5875243	0.1456539	0.2185827	0.7094264	0.9500000	CENTER:	421.94 NM	FWHM:	5.60 NM	
426.94989	1	11	8.094389E-06	5.966129E-06	2.663521E-04	4.328545E-04	8.842405E-04	0.5985887	0.1430344	0.2119549	0.7180141	0.9500000	CENTER:	426.95 NM	FWHM:	5.60 NM	
431.95999	1	12	7.998963E-06	5.960350E-06	2.583023E-04	4.324352E-04	8.607435E-04	0.6102096	0.1402071	0.2049555	0.7262015	0.9499998	CENTER:	431.96 NM	FWHM:	5.61 NM	
436.96002	1	13	9.030259E-06	6.792447E-06	2.869482E-04	4.928055E-04	9.591989E-04	0.6203248	0.1376375	0.1987605	0.7339772	0.9500000	CENTER:	436.96 NM	FWHM:	5.61 NM	
441.97003	1	14	9.626115E-06	7.308144E-06	3.014119E-04	5.302203E-04	1.010647E-03	0.6297545	0.1348753	0.1923424	0.7411252	0.9500006	CENTER:	441.97 NM	FWHM:	5.61 NM	
446.98007	1	15	1.037999E-05	7.949402E-06	3.203124E-04	5.767448E-04	1.076973E-03	0.6392222	0.1323068	0.1864034	0.7481690	0.9499998	CENTER:	446.98 NM	FWHM:	5.62 NM	
451.98990	1	16	1.109304E-05	8.562516E-06	3.370746E-04	6.212275E-04	1.136598E-03	0.6493562	0.1302066	0.1812797	0.7554407	0.9500013	CENTER:	451.99 NM	FWHM:	5.62 NM	
456.99979	1	17	1.126401E-05	8.761856E-06	3.377629E-04	6.356900E-04	1.141433E-03	0.6582247	0.1278386	0.1759409	0.7620563	0.9500003	CENTER:	457.00 NM	FWHM:	5.62 NM	
462.01013	1	18	1.159637E-05	9.087319E-06	3.437168E-04	6.593030E-04	1.163371E-03	0.6661134	0.1253799	0.1706714	0.7682349	0.9499996	CENTER:	462.01 NM	FWHM:	5.62 NM	
467.02014	1	19	1.174783E-05	9.270900E-06	3.443505E-04	6.726221E-04	1.168560E-03	0.6737767	0.1230028	0.1654352	0.7738341	0.9499999	CENTER:	467.02 NM	FWHM:	5.63 NM	
472.02002	1	20	1.189432E-05	9.452873E-06	3.465698E-04	6.858246E-04	1.178155E-03	0.6780411	0.1199702	0.1594888	0.7778913	0.9499995	CENTER:	472.02 NM	FWHM:	5.63 NM	v

71

AVIRIS_NG – 1000 PPM-m CH4 Plume GUI Main Page – Band Model Calculation

0 MODTRAN 6	- 🗆 X
Input Configuration Open Save Save As Configuration Name: AVng_CH4plume.json AVng_CH4plume.json Image: Characteristic Configuration State Preset Configurations: Image: Characteristic Configuration State Angstrom Law Image: Load Case Control Image: Characteristic Configuration State	Output Total Radiance(1.S) — Total Radiance(2.S) — Total Radiance(3.S) Total Radiance(4.S) 0.19 0.19 0.19 0.19 0.19 0.17 0.16 0.15 0.16 0.15 0.14 0.13 0.12 0.12 0.12 0.12 0.14 0.12 0.14 0.13 0.12 0.14 0.12 0.14 0.13 0.12 0.14 0.13 0.12 0.14 0.13 0.12 0.14 0.13 0.12 0.
AVng1000PPMmCH4BM1p0 I New Edit Delete Run MODTRAN Clear Output Data View Log Open Output Folder	Image: Construction of the second state of the second s

AVIRIS_NG – 1000 PPM-m CH4 Plume Atmosphere Tab – Band Model Calculation

10000000000000000000000000000000000000	Case 1 of 2			_		\times
RT Options Atmosphere Clouds & Aerosols Geom	etry Surfaces Spectral O	ptions Output File Options				
Model: User-defined (altitude profile) \checkmark	Edit custom model		Molecular Species Scale factors: Edit			
View profile						
H2O: 0E0 Scaled ~ O3: 0E0 Scaled ~	Temperature	Model Selection by Profile				
	and Pressure:	Mid-latitude winter	~			
	H₂O:	Mid-latitude winter	~			
Aerosol RH: 0.00 %	O3:	Mid-latitude winter	~			
Air Molecular Weight: 0.00 g/mol	CH₄:	Mid-latitude winter	\checkmark			
Planetary Mass: 0.00 (scale)	N2O:	Mid-latitude winter	~			
Allow relative humidity to exceed 100%	CO:	Mid-latitude winter	~			
Use relative humidity of the model profile						
Include trace molecular species						
Save As New Case				OK	Cano	el

ill table with mo	del: Mid-latitude	winter	~	ОК	2	CLocalized Ch	emical Cloud			
tmospheric Pro	files New Atm	Profile							Brov	vse
rofile	Units	Layer 1	Layer 2	Layer 3	Layer 4	Layer 5	Layer 6	Layer 7	Layer 8	
OF_ALTITUDE	UNT_KILOMET	0.0	1.0	2.0	3.0	4.0	5.0	6.0	7.0	~
OF_PRESSURE	UNT_PMILLIBAR	1018.00494	897.2996	789.69745	693.7974	608.1003	531.3017	462.7006	401.60138	
OF_TEMPER	UNT_TKELVIN	272.2	268.7	265.2	261.7	255.7	249.7	243.7	237.7	
OF_H2O	UNT_DPPMV	4316.0	3454.0	2788.0	2088.0	1280.0	824.1	510.3	232.1	
OF_CO2	UNT_DPPMV	330.0	330.0	330.0	330.0	330.0	330.0	330.0	330.0	
OF_03	UNT_DPPMV	0.02778	0.028	0.02849	0.032	0.03567	0.0472	0.05837	0.07891	
OF_N2O	UNT_DPPMV	0.32	0.32	0.32	0.32	0.32	0.32	0.32	0.32	
OF_CO	UNT_DPPMV	0.15	0.145	0.1399	0.1349	0.1312	0.1303	0.1288	0.1247	
CH4*	UNT_UNKNOWN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

AVIRIS_NG – 1000 PPM-m CH4 Plume <rootname>.rng file – Band Model Calculation

AVIRIS NG – 1000 PPM-m CH4 Plume GUI Main Page – Correlated-k Calculation

AVIRIS_NG – 1000 PPM-m CH4 Plume RT Options Tab – Correlated-k Calculation

MODTRAN Options - AVng1000PPMmCH4CK0p1 - Case 2 of 2	- 🗆 X
RT Options Atmosphere Clouds & Aerosols Geometry Surfaces Spectral Options Output File Options	
RT Option: Correlated-k (fast)	RT Run Mode: Solar and thermal \checkmark
Band Model Resolution (cm ⁻¹):	Multiple Scattering:
Line-by-Line Intervals:	DISORT streams: 8 V Spherical albedo (atmosphere)
DATA location: Use system DATA directory Choose C:\ProgramData\SSI\MOD6DATA	
Save As New Case	OK Cancel

	NG – 1000 PPM-m CH4 Plume es Options Tab – Correlated-k Calc	S	S
MODTRAN Options - AVng1000PPMm	CH4CK0p1 - Case 2 of 2	-	
RT Options Atmosphere Clouds & Ae	erosols Geometry Surfaces Spectral Options Output File Options		
Output File Selection:	All Files 🗸		
Output Log Options:	Full Tape6 Details \checkmark		
Output Message Options:	Standard Detail 🗸		
Set legacy output name	AVng1000PPMmCH4CK0p1		
ENVI Spectral Library (sli)	'ng1000PPMmCH4CK0p1.sli		
CSV text output	g1000PPMmCH4CK0p1.csv		
□ JSON text output	.000PPMmCH4CK0p1json Status+Output ~		
Cumulative path output (c-	K and LBL)		
Binary legacy output			
Save As New Case		ОК	Cancel

AVIRIS_NG – 1000 PPM-m CH4 Plume Band Model and Correlated-k Calculations

SS

AVIRIS_NG – 1000 PPM-m CH4 Plume Band Model <rootname>.chn Output File

TextPad - D:\Users\lex\OneDrive	 Spectral Sciences, Inc\ 	Documents\MODTRA	N6\4CALCON\A	Wng1000PPMmCH4BM	1p0.chn *			- 🗆	×
File Edit Search View Tool	s Macros Configur	e Window Help							
n 🕫 🖬 🖪 🚑 R 🔳 🔭	ം ലെഗേരി⊒ാ	📰 🗁 🖷 🙆 💖	AL 🔂 👁 o	¢ 🙀 🔹 🗤 🕨 🚽	Find incremental	lv Л î Г	Match case		
AVng1000PPMmCH4CK0p1.chn						.,	Ŧ		. ×
									• ^
1ST SPECTRAL LOS CHAN MOMENT NO. NEL		RADIANCE M-2 / XXXX)	BRIGHT- NESS	CHANNEL RADIANCE	FULL CHA EQUIVALENT		SPECTRAL MINIMUM	SPECTRAL MAXIMUM	^
(NANOMETERS) NO.	(PER CM-1)		TEMP (K)	(W SR-1 CM-2)	(CM-1)	(NM)	(NM)	(NM)	
· · · · · · · · · · · · · · · · · · ·									
2335.24951 1 392	8.227923E-08	1.508777E-07	441.861	9.570567E-07	11.6318	6.3433	2325.2300	2345.2700	~
INCLUDING PLUME:	8.143746E-08	1.493341E-07		9.472653E-07					
PLUME - AMBIENT: 2340.25977 1 393	-8.41//31E-10 7.218344E-08	-1.543582E-09 1.317986E-07		-9.791348E-09 8.360330E-07	11.5821	6 2422	2330.2400	2350.2800	
INCLUDING PLUME:	7.109549E-08	1.298122E-07		8.234322E-07	11.5021	0.3435	2330.2400	2330.2000	
PLUME - AMBIENT:		-1.986487E-09							
2345.26978 1 394	7.186200E-08	1.306517E-07		8.287558E-07	11.5326	6.3432	2335.2500	2355.2900	
INCLUDING PLUME:	7.061527E-08	1.283850E-07	435.599	8.143778E-07					
PLUME - AMBIENT:	-1.246731E-09	-2.266671E-09	-0.542	-1.437805E-08					
2350.27979 1 395	6.434934E-08	1.164947E-07		7.389562E-07	11.4835	6.3433	2340.2600	2360.3000	
INCLUDING PLUME:	6.320921E-08	1.144307E-07		7.258636E-07					
PLUME - AMBIENT:				-1.309263E-08					
2355.28003 1 396	6.851386E-08	1.235079E-07		7.834428E-07	11.4348	6.3433	2345.2600	2365.3000	
INCLUDING PLUME: PLUME - AMBIENT:	6.750649E-08 -1.007374E-09	1.216919E-07		7.719236E-07 -1.151912E-08					
2360.28979 1 397	7.750918E-08	1.391310E-07		8.840234E-07	11.4054	6 3539	2350.2700	2370 3101	
INCLUDING PLUME:	7.681140E-08	1.378785E-07		8.760649E-07	11.1051	0.0000	2000.2700	2070.0101	
PLUME - AMBIENT:				-7.958480E-09					
2365.30029 1 398	7.465133E-08	1.334340E-07	434.412	8.478249E-07	11.3571	6.3539	2355.2800	2375.3201	
INCLUDING PLUME:	7.401046E-08	1.322885E-07	434.145	8.405465E-07					
PLUME - AMBIENT:	-6.408686E-10	-1.145507E-09	-0.267	-7.278429E-09					
2370.30933 1 399	5.387081E-08	9.588366E-08		6.092328E-07	11.3091	6.3539	2360.2900	2380.3301	
INCLUDING PLUME:	5.268610E-08	9.377502E-08	423.154	5.958348E-07					
	-1.184710E-09			-1.339806E-08					
2375.31958 1 400	6.146096E-08	1.089323E-07		6.921435E-07	11.2615	6.3539	2365.3000	2385.3401	
INCLUDING PLUME: PLUME - AMBIENT:	6.047932E-08	1.071924E-07		6.810888E-07 -1.105468E-08					
2380.32983 1 401	6.334743E-08	1.118037E-07		7.103887E-07	11.2142	6 3539	2370.3101	2390 3501	
INCLUDING PLUME:	6.281523E-08	1.108644E-07		7.044205E-07	11.2112	0.0000	2370.3101	2000.0001	
PLUME - AMBIENT:				-5.968211E-09					
2385.33960 1 402	5.868470E-08	1.031397E-07	424.237	6.564346E-07	11.1858	6.3645	2375.3201	2395.3601	
INCLUDING PLUME:	5.819574E-08	1.022803E-07	423.988	6.509652E-07					
PLUME - AMBIENT:	-4.889597E-10	-8.593578E-10	-0.250	-5.469399E-09					
2390.35010 1 403	6.303577E-08	1.103229E-07		7.021504E-07	11.1389	6.3645	2380.3301	2400.3701	
INCLUDING PLUME:	6.246263E-08	1.093197E-07	425.404	6.957661E-07					
PLUME - AMBIENT:	-5.731486E-10	-1.003103E-09	-0.275	-6.384257E-09					\sim

AVIRIS_NG – 1000 PPM-m CH4 Plume Correlated-k <rootname>.chn Output File

TextPad - D:\Users\lex\OneDrive	- Spectral Sciences, Inc\Documents\MODTR	AN6\4CALCON\4	Wng1000PPMmCH4CK	0p1.chn *		- 0	×
File Edit Search View Tools	s Macros Configure Window Help						
	``@	ሃ 🛃 🛃 👁 o	🕫 📭 🖕 💿 🗤 🖗 📮	Find incrementally 🖟 🕆	🗌 Match case 💂		
AVng1000PPMmCH4CK0p1.chn * ×							~ >
1ST SPECTRAL LOS CHAN	SPECTRAL RADIANCE	BRIGHT-	CHANNEL	FULL CHANNEL	SPECTRAL	SPECTRAL	-
MOMENT NO. NEL	(W SR-1 CM-2 / XXXX)	NESS	RADIANCE	EQUIVALENT WIDTH	MINIMUM	MAXIMUM	
(NANOMETERS) NO.	(PER CM-1) (PER NM)) TEMP (K)	(W SR-1 CM-2)	(CM-1) (NM)	(NM)	(NM)	
2335.24951 1 392	8.186836E-08 1.501243E-07	7 441.703	9.522776E-07	11.6318 6.343	3 2325.2300	2345.2700	
INCLUDING PLUME:	8.103854E-08 1.486026E-0'		9.426253E-07			201012/00	^
	-8.298250E-10 -1.521673E-09						
2340.25977 1 393	7.204012E-08 1.315370E-0'		8.343732E-07	11.5821 6.343	3 2330.2400	2350.2800	
INCLUDING PLUME:	7.096469E-08 1.295734E-0'	7 436.486	8.219175E-07				
PLUME - AMBIENT:	-1.075432E-09 -1.963614E-09	9 -0.467	-1.245572E-08				
2345.26978 1 394	7.174959E-08 1.304473E-0'	7 436.092	8.274595E-07	11.5326 6.343	2 2335.2500	2355.2900	
INCLUDING PLUME:	7.052761E-08 1.282257E-0'	7 435.560	8.133669E-07				
PLUME - AMBIENT:	-1.221977E-09 -2.221667E-09	9 -0.532	-1.409258E-08				
2350.27979 1 395	6.360479E-08 1.151468E-0'	7 431.662	7.304064E-07	11.4835 6.343	3 2340.2600	2360.3000	
INCLUDING PLUME:	6.247549E-08 1.131024E-0'	7 431.117	7.174381E-07				
PLUME - AMBIENT:	-1.129296E-09 -2.044420E-09	9 -0.545	-1.296829E-08				
2355.28003 1 396	6.789195E-08 1.223868E-0'	7 432.932	7.763314E-07	11.4348 6.343	3 2345.2600	2365.3000	
INCLUDING PLUME:	6.690580E-08 1.206091E-0'	7 432.483	7.650550E-07				
PLUME - AMBIENT:	-9.861484E-10 -1.777701E-09	9 -0.448	-1.127642E-08				
2360.28979 1 397	7.686537E-08 1.379754E-0'		8.766807E-07	11.4054 6.353	9 2350.2700	2370.3101	
INCLUDING PLUME:	7.620981E-08 1.367986E-0		8.692039E-07				
	-6.555565E-10 -1.176741E-09	9 -0.267	-7.476888E-09				
2365.30029 1 398	7.443914E-08 1.330547E-0'	7 434.324	8.454152E-07	11.3571 6.353	9 2355.2800	2375.3201	
INCLUDING PLUME:	7.382177E-08 1.319512E-0		8.384036E-07				
PLUME - AMBIENT:	-6.173691E-10 -1.103504E-09		-7.011543E-09				
2370.30933 1 399	5.434978E-08 9.673622E-08		6.146499E-07	11.3092 6.353	9 2360.2900	2380.3301	
INCLUDING PLUME:	5.317587E-08 9.464681E-08		6.013740E-07				
	-1.173905E-09 -2.089413E-09						
2375.31958 1 400	6.151695E-08 1.090315E-0'		6.927742E-07	11.2615 6.353	9 2365.3000	2385.3401	
INCLUDING PLUME:	6.053818E-08 1.072968E-0'		6.817518E-07				
	-9.787693E-10 -1.734753E-09		-1.102243E-08				
2380.32983 1 401	6.305812E-08 1.112931E-0		7.071442E-07	11.2142 6.353	9 2370.3101	2390.3501	
INCLUDING PLUME:	6.252272E-08 1.103481E-0		7.011402E-07				
PLUME - AMBIENT:	-5.353981E-10 -9.449396E-10						
2385.33960 1 402	5.757276E-08 1.011854E-0		6.439967E-07	11.1858 6.364	5 2375.3201	2395.3601	
INCLUDING PLUME:	5.707737E-08 1.003148E-0'		6.384554E-07				
PLUME - AMBIENT:	-4.953870E-10 -8.706539E-10		-5.541294E-09				
2390.35010 1 403	6.242511E-08 1.092541E-0'		6.953482E-07	11.1389 6.364	5 2380.3301	2400.3701	
INCLUDING PLUME:	6.188871E-08 1.083153E-0		6.893733E-07				
	-5.364008E-10 -9.387887E-10	0 -0.259	-5.974925E-09				\sim

MODTRAN6 Technical Lecture Presentation Outline

- MODTRAN Overview
- Introduction to/Review of Radiative Transfer
- In-Band Radiative Transfer (RT)
 - Line-Of-Sight (LOS) Transmittance [detailed]
 - Correlated-k Algorithm [brief]
 - LOS Radiance [brief]
- Sample MODTRAN Simulations
- Backup: Additional/Future Projects

MODTRAN LBL Calculations

- MODTRAN solves the LBL problem in disjoint, contiguous 0.1 cm⁻¹ steps
 - Line center term defined to include all transitions centered within a narrow 0.2 cm⁻¹ bin
 - Line tail fits are computed off-line
- Challenge

 Ensure that spectral discontinuities do not arise at bin edges, even though the *line center* and *line tail* components are themselves discontinuous Line-by-Line (LBL) MODTRAN Motivation

- Difficult to isolate sources of discrepancies when validating MODTRAN against independent LBL models
 - Requires consistent inputs and methods
 - $\checkmark\,$ Pressure, temperature and density profiles
 - ✓ Column density calculations
 - ✓ Continuum and particular data
 - ✓ Spectral convolutions
 - ✓ ...
 - Internal LBL option provides "common elements"
- Many benefits
 - Quantification of band model accuracy
 - Insight into approaches for refining the band model
 - Laser/Lidar application simulations

Spectrally Universal Lineshape

MODTRAN LBL Conclusions & Continuing Activities

- SSI
- Fidelity of MODTRAN LBL validated against LBLRTM
 - Successfully eliminated bin edge discontinuities
 - Microwave line tail fits must be upgraded
 - Will use modified Gross-Doppler line shape function
- Many model updates resulting from validation efforts
 - Provide option to use the LBLRTM lines file
 - For BAND MODEL
 - Eliminate line center displacement to avoid bin edges
 - Include line shift correction in band model line tail calculations
 - Update line tail pressure interpolation algorithm
 - Add self-broadening correction

Radiometric MODTRAN6 Radiance **DISORT Expression for Segment Radiance**

$$\Delta I_{\sigma} \equiv \Delta I_{l_{\sigma}}(\mu,\phi;\tau_{\sigma-1} \Rightarrow \tau_{\sigma}) = \sum_{m=0}^{2M-1} \Delta I_{l_{\sigma}}^{m}(\mu;\tau_{\sigma-1} \Rightarrow \tau_{\sigma}) \cos m\phi \qquad \begin{array}{l} \begin{array}{l} \mbox{Solar Particular Solution} \\ \Delta I_{l_{\sigma}}^{m}(\mu;\tau_{\sigma-1} \Rightarrow \tau_{\sigma}) = \left[t_{\sigma-1}^{sun} - t_{\sigma}^{sun} \exp\left(-\frac{\tau_{\sigma}^{\downarrow} - \tau_{\sigma-1}^{\downarrow}}{\mu}\right) \right] \frac{Z_{l_{\sigma}}^{m}(\mu)}{1 + \mu/\mu^{sun}} \qquad \begin{array}{l} \begin{array}{l} \mbox{Thermal Particular Solution} \\ \mbox{Particular Solution} \\ + \delta_{m0} \left\{ \left[1 - \exp\left(-\frac{\tau_{\sigma}^{\downarrow} - \tau_{\sigma-1}^{\downarrow}}{\mu}\right) \right] \left[V_{0l_{\sigma}}^{m}(\mu) + \left(\tau_{\sigma}^{\downarrow} + \mu\right) V_{1l_{\sigma}}^{m}(\mu) \right] - \mu(\tau_{\sigma} - \tau_{\sigma-1}) V_{1l_{\sigma}}^{m}(\mu) \right\} \\ + \sum_{j=1}^{N} \left\{ \hat{C}_{jl_{\sigma}}^{m} \frac{G_{jl_{\sigma}}^{m}(\mu)}{1 + k_{jl_{\sigma}}\mu} \left\{ \exp\left[-k_{jl_{\sigma}} \left(\tau_{\sigma-1}^{\downarrow} - \tau_{l_{\sigma-1}}^{\downarrow}\right) \right] - \Delta t_{\sigma} \exp\left[-k_{jl_{\sigma}} \left(\tau_{\sigma}^{\downarrow} - \tau_{\sigma}^{\downarrow}\right) \right] \right\} \right\} \\ + \hat{C}_{-jl_{\sigma}}^{m} \frac{G_{-jl_{\sigma}}^{m}(\mu)}{1 - k_{l_{\sigma}}\mu} \left\{ \exp\left[-k_{jl_{\sigma}} \left(\tau_{j_{\sigma}}^{\downarrow} - \tau_{\sigma-1}^{\downarrow}\right) \right] - \Delta t_{\sigma} \exp\left[-k_{jl_{\sigma}} \left(\tau_{j_{\sigma}}^{\downarrow} - \tau_{\sigma}^{\downarrow}\right) \right] \right\} \right\} \\ \left\{ 0 < |\mu| \le 1 \qquad \mu = cosine of the off - nadir angle \right\} \\ \begin{array}{l} \mbox{Coefficients} \end{array} \right\}$$

Polarimetric MODTRAN7 Stokes Parameters

VDISORT Expression for Segment Radiance

$$\begin{split} & \begin{array}{l} \hline \textbf{Down Look} & \overline{\tau_{p-1} \leq \tau \leq \tau_{p}} ; \ \tau_{t-1} replaced by \tau \ for \ \ell = p \\ & [\tau_{q-1} \leq \tau' \leq \tau_{q} ; \ \tau < \tau' ; \ 1 \leq p \leq q \leq L ; \ \tau_{\ell} \ replaced by \tau' \ for \ \ell = q \\ & \Delta \tau_{\ell} = \tau_{\ell} - \tau_{\ell-1} ; \ s_{j\ell} \equiv 2 \cos(k_{j\ell}\Sigma\tau_{\ell}/2) \sin(k_{ij}\Delta\tau_{\ell}/2) \\ & \Sigma \tau_{\ell} = \tau_{\ell} + \tau_{\ell-1} ; \ s_{j\ell} \equiv 2 \sin(k_{ij\ell}\Sigma\tau_{\ell}/2) \sin(k_{ij\ell}\Delta\tau_{\ell}/2) \\ & \Sigma \tau_{\ell} = \tau_{\ell} + \tau_{\ell-1} ; \ s_{j\ell} \equiv 2 \sin(k_{ij\ell}\Sigma\tau_{\ell}/2) \sin(k_{ij\ell}\Delta\tau_{\ell}/2) \\ & \overline{\tau}_{a,q}^{-1}(\tau,\tau';+\mu) \equiv \overline{l}_{a}^{m}(\tau',+\mu_{q}) ; \ \mu_{q} \equiv \mu(\tau') ; \ \overline{l}_{a}^{m}(\tau,\tau';+\mu) = \overline{l}_{a,q-1}^{m}(\tau,\tau';+\mu) \\ & \overline{l}_{a,\ell}^{m}(\tau,\tau';+\mu) \equiv \overline{l}_{a}^{m}(\tau,\tau,+\mu_{\ell-1}) = \Delta \overline{l}_{a\ell}^{m}(\tau,\tau';+\bar{\mu}_{\ell}) + e^{-\Delta \tau_{\ell}/\bar{\mu}} \\ & \overline{L}_{a,\ell}^{m}(\tau,\tau';+\bar{\mu}_{\ell}) = \\ & \left\{ \begin{array}{c} \left(e^{\delta_{0}k_{g}(\tau_{p-1}-\tau)} C'_{+j\ell} \frac{\tilde{\underline{s}}_{j,\ell}(+\bar{\mu}_{\ell})}{1 - k_{j\ell}\bar{\mu}_{\ell}} \left(1 - e^{(-k_{p}\bar{\mu},-1)\Delta \tau_{\ell}/\bar{\mu}} \right) + \\ & e^{\delta_{0}k_{g}(\tau_{p-1}-\tau)} C'_{-j\ell} \frac{\tilde{\underline{s}}_{j,\ell}(+\bar{\mu}_{\ell})}{1 - k_{j\ell}\bar{\mu}_{\ell}} \left(e^{-\delta_{p}\bar{\Lambda}\tau_{\ell}} - e^{-\Delta \tau_{\ell}/\bar{\mu}} \right) \\ & \left(e^{\delta_{0}k_{g}(\tau_{p-1}-\tau)} \frac{\left(\left[k_{ij\ell}\bar{\mu}_{\ell} \, \bar{\mathbf{g}}_{i,\ell}(+\bar{\mu}_{\ell}) - \left(k_{r,j}\bar{\mu}_{\ell} + 1 \right) \tilde{\mathbf{g}}_{i,\ell}(+\bar{\mu}_{\ell}) \right] \\ & \times \left[s_{j\ell} - \left(1 - e^{(-k_{p}\bar{\mu},+1)\Delta \tau_{\ell}/\bar{\mu}_{\ell}} \right) \cos(k_{ij}\tau_{\ell}) \right] \\ & + \left[\left(k_{i,\ell}\bar{\mu}_{\ell} \, \bar{\mathbf{g}}_{i,\ell}(+\bar{\mu}_{\ell}) + k_{ij,\ell}\bar{\mu}_{\ell} \, \bar{\mathbf{g}}_{i,\ell}(+\bar{\mu}_{\ell}) \right] \\ & \left(e^{\delta_{0}k_{g}(\tau_{\ell}-\tau_{\ell})} \frac{\left(\left[k_{i,\ell}\bar{\mu}_{\ell} \, \bar{\mathbf{g}}_{i,\ell}(+\bar{\mu}_{\ell}) - \left(k_{r,j}\bar{\mu}_{\ell} - 1 \right) \tilde{\mathbf{g}}_{i,j\ell}(+\bar{\mu}_{\ell}) \right] \\ & \times \left[s_{j\ell} + \left(1 - e^{(-k_{p}\bar{\mu},\pi+1)\Delta \tau_{\ell}/\bar{\mu}_{\ell}} \right) \right] \\ & + \left[\left(k_{i,\ell}\bar{\mu}_{\ell} \, \bar{\mathbf{g}}_{i,\ell}(+\bar{\mu}_{\ell}) + \left(k_{i,\ell}\bar{\mu}_{\ell} - 1 \right) \tilde{\mathbf{g}}_{i,j\ell}(+\bar{\mu}_{\ell}) \right) \\ & \left[e^{\delta_{0}k_{g}(t'-\tau_{\ell})} \frac{\left(\left[k_{i,\ell}\bar{\mu}_{\ell} \, \bar{\mathbf{g}}_{i,\ell}(+\bar{\mu}_{\ell}) - \left(k_{r,j}\bar{\mu}_{\ell} - 1 \right) \tilde{\mathbf{g}}_{i,j\ell}(+\bar{\mu}_{\ell}) \right] \\ & + \left[\left(k_{i,\ell}\bar{\mu}_{\ell} \, \bar{\mathbf{g}}_{i,\ell}(+\bar{\mu}_{\ell}) + \left(k_{i,\ell}\bar{\mu}_{\ell} \right) \left(s_{i,\ell}(\bar{\mu}_{\ell}) \right) \right] \\ & \left[e^{\delta_{0}k_{g}(t'-\tau_{\ell})} \frac{\left(\left[k_{i,\ell}\bar{\mu}_{\ell} \, \bar{\mu}_{\ell} \, \bar{\mu}_{\ell} - e^{-\Delta \tau_{\ell}/\bar{\mu}_{\ell}} \right) \\ & \left[\left(k_{i,\ell}\bar{\mu}_{\ell} \, \bar{\mu}_{\ell} \, \bar{\mu}_{\ell} \, \bar{\mu}_{\ell} \right)$$

$$\begin{split} & \underbrace{\mathsf{Up}\,\mathsf{Look}}_{j_{q-1} \leq \tau \leq \tau_{p}} : \tau_{\ell} \operatorname{replaced} \operatorname{by} \tau \ for \ \ell = p \\ & [\tau_{q-1} \leq \tau' \leq \tau_{q} : \tau' < \tau : 1 \leq q \leq p \leq L : \tau_{\ell-1} \operatorname{replaced} \operatorname{by} \tau' \ for \ \ell = q \\ & \Delta \tau_{\ell} \equiv \tau_{\ell} - \tau_{\ell-1} : c_{\ell} \equiv 2 \operatorname{cos}(k_{\ell})_{\ell} \Sigma \tau_{\ell}/2) \operatorname{sin}(k_{\ell})_{\ell} \Delta \tau_{\ell}/2) \\ & \Sigma \tau_{\ell} \equiv \tau_{\ell} + \tau_{\ell-1} : s_{\ell}\ell \equiv 2 \operatorname{sin}(k_{\ell})_{\ell} \Sigma \tau_{\ell}/2) \operatorname{sin}(k_{\ell})_{\ell} \Delta \tau_{\ell}/2) \\ & \Sigma \tau_{\ell} \equiv \tau_{\ell} + \tau_{\ell-1} : s_{\ell}\ell \equiv 2 \operatorname{sin}(k_{\ell})_{\ell} \Sigma \tau_{\ell}/2) \operatorname{sin}(k_{\ell})_{\ell} \Delta \tau_{\ell}/2) \\ & = \tau_{\ell} + \tau_{\ell-1} : s_{\ell}\ell \equiv 2 \operatorname{sin}(k_{\ell})_{\ell} \Sigma \tau_{\ell}/2) \operatorname{sin}(k_{\ell})_{\ell} \Delta \tau_{\ell}/2) \\ & = \tau_{\ell} + \tau_{\ell-1} : s_{\ell}\ell \equiv 2 \operatorname{sin}(k_{\ell})_{\ell} \Sigma \tau_{\ell}/2) \operatorname{sin}(k_{\ell})_{\ell} \Delta \tau_{\ell}/2) \\ & = \tau_{\ell} + \tau_{\ell-1} : s_{\ell}\ell = 2 \operatorname{sin}(k_{\ell})_{\ell} \Sigma \tau_{\ell}/2) \operatorname{sin}(k_{\ell})_{\ell} \Delta \tau_{\ell}/2) \\ & = \tau_{\ell} + \tau_{\ell-1} : s_{\ell}\ell = 2 \operatorname{sin}(k_{\ell})_{\ell} \Sigma \tau_{\ell}/2) \operatorname{sin}(k_{\ell})_{\ell} \tau_{\ell}/2) \\ & = \tau_{\ell} + \tau_{\ell-1} : \tau_{\ell} + \tau_{\ell-1} : \tau_{\ell} + \tau_{\ell-1} : \tau_{\ell}\ell + \tau_{\ell-1} + \tau_{\ell-1}/2) \operatorname{sin}(k_{\ell})_{\ell} \tau_{\ell}/2) \\ & = \tau_{\ell} + \tau_{\ell-1} : \tau_{\ell} + \tau_{\ell-1} : \tau_{\ell}\ell + \tau_{\ell} + \tau_{\ell} + \tau_{\ell}\ell + \tau_{\ell} + \tau_{\ell}$$

91

MCScene: MODTRAN in 3D Introduction

- Hyper-Spectral Image (HSI) Simulator
 - First principles 3D spectralbin reverse Monte-Carlo radiative transfer model
 - Solar scatter and thermal emission (0.2 to >1000 μm)
 - MODTRAN transmittances and optical properties
 - -Imports HSI reflectance data
 - Reflections and emission from topographic terrain
 - Scattering/emission by and through 3D cloud fields
 - -Embedded 3D objects
 - -Twilight simulations

South Australia Landsat with 39x18 km² embedded Landsat cloud field (RGB) 92

MCScene: MODTRAN in 3D Photon Trajectories

- Follow reverse path photon trajectories from sensor
- Full thermal path radiance summed along each direction (0-5)
- Solar radiances summed at each scattering/reflection event
- Importance sampling selects most significant trajectories
 - Required for convergence
 - E.g., preferentially reflect and scatter towards sun
 - Weight trajectories to compensate for biasing
- Distance traveled to scatter is $\tau_c = -\ln(\beta)$ where β is a random number on (0, 1), τ_c is "continuum" optical depth (excludes molecular absorption)

MCScene: MODTRAN in 3D MODTRAN Generated Molecular Transmittances

- Spectral bin data bases
 - Depend on sensor altitude, elevation and solar zenith
 - Direct and L-shaped solar paths
 - Column amounts scaled from 0 to 10000
- Application
 - a. Compute trajectory molecular columns
 - b. Compute transmittance to minimum altitude
 - c. Compute transmittance derivative to trajectory end point matching transmittance from b.

Photon Trajectory Used to compute *u_m*, molecular column amounts

Transmittance Path Compute transmittance, $\dot{t}_m = t_m[u_m; z_{sen}, z_{min}]$

Emission Coef Path Solve $\dot{t}_m = t_m[\tilde{u}_m; z_{sen}, z_{end}]$ for \tilde{u}_m and then compute $d\tilde{t}_m / d\tilde{u}_m$

MCScene: MODTRAN in 3D Test Problem 1: Volcanic Andesite Ash Cloud

• Question: What errors are introduced by ignoring 3D radiative transfer effects for nadir satellite thermal simulations?

MCScene: MODTRAN in 3D Test Problem 4: Twilight Simulations

Sensor

slant angle, 20 km

45°

sun,

Boulder setting

MCScene: MODTRAN in 3D Test Problem 5: Antisolar Twilight Sky (ATS)

ATS light passes through clear sky originating from the opposite direction sun a few degrees below the horizon

- GoPro time-lapse video
 - Oceano, CA: Sun 1° below horizon
 - 07:04:25 PST, 31 Dec 2015
 - 120° horizontal FOV
 - 1 sec of video = 1 min real time

- MCScene simulation
 - 180° solar azimuth
 - MLS atm, no aerosols
 - Black terrain
 - Ground sensor with $60^{\circ} \times 60^{\circ}$ FOV
 - $(1^{\circ} \text{ to } 61^{\circ} \text{ elevation})$
 - Brightness auto scaled

Twilight MODTRAN

Solar Declination Angle (deg)

Technical Course Summary

SSI

- This lecture has covered the main elements of MODTRAN's radiative transfer
 - Monochromatic Transmittance
 - MODTRAN Band Model Transmittance
 - Correlated-*k* Algorithm
 - MODTRAN Statistical Correlated-k Approach
 - Thermal and Solar Radiance
 - MCScene: MODTRAN in 3D
 - MODTRAN LBL Method
- Given the breadth of MODTRAN, many details had to be skipped or only touched upon
- My hope is that you have gained an appreciation for the complexity and beauty of the MODTRAN methods
- Thank you for your attentiveness and interest!