MODTRAN® In-Band Radiative Transfer

Presented at the 33rd CALCON Technical Meeting Space Dynamics Laboratory, Bennett Laboratory 489 East Innovation Ave, North Logan, UT 84341 10 June 2024

Alexander **(***Lex***)** *Berk*

Spectral Sciences, Inc., Burlington, MA 01803-3304 lex@spectral.com

www.modtran.com

MODTRAN*®* **is a registered trademark owned by the United States Government as represented by the Secretary of the Air Force.**

MODTRAN6 Technical Lecture Presentation Outline

≻ MODTRAN Overview

- Introduction to/Review of Radiative Transfer
- In-Band Radiative Transfer (RT)
	- Line-Of-Sight (LOS) Transmittance [detailed]
	- Correlated-*k* Algorithm [brief]
	- LOS Radiance [brief]
- Sample MODTRAN Simulations
- Backup: Additional/Future Projects

MODTRAN General Description

- Atmospheric Radiative Transfer Model for computing line-of-sight (LOS) UV / Vis / IR / microwave / RF Transmittances, Radiances, Fluxes, …
- *Line-By-Line* (LBL) and *Statistical* Band Model and Correlated-*k* Algorithms
- *Arbitrarily fine*, 0.2, 2.0, 10.0 or 30.0 cm-1 Spectral Resolutions
	- From *LBL* and 0.1, 1.0, 5.0 or 15.0 cm-1 Band Model Bins, respectively
- Stratified Molecular / Aerosol / Cloud Atmosphere
	- Built-in and Auxiliary Molecular Species
	- Built-in and User-Specified Particulate Profiles and Optical Properties
	- Localize Gas Clouds / Warm or Cold Plumes
- Spherical Refractive Geometry
- Solar and Thermal Scattering
	- Pseudo Spherical DISORT Discrete Ordinate N-Stream Model
	- Diffuse Transmittances and Spherical Albedo
- Multiple Spectral Convolution and Filtering Options
- **3** Simulation, Algorithm Development, Climate Forecasting, Sensor Calibration• Many Applications: Remote Sensing, Measurement / Data Analyses, Scene

MODTRAN6 Technical Lecture Presentation Outline

- MODTRAN Overview
- **▶ Introduction to/Review of Radiative Transfer**
- In-Band Radiative Transfer (RT)
	- Line-Of-Sight (LOS) Transmittance [detailed]
	- Correlated-*k* Algorithm [brief]
	- LOS Radiance [brief]
- Sample MODTRAN Simulations
- Backup: Additional/Future Projects

Bouguer – Lambert – Beer *Law Equation* **(***French 1729 – Latin 1760 – German 1852***)**

- attenuation falls off exponentially with opacity: $t_{_{\mathcal{V}}}=\exp(-\,\tau_{_{\mathcal{V}}})$ • *Monochromatic / Line-by-Line* **(***LBL***)** molecular and particulate spectral transmittances t_v obey "Beer's" Law,
- $\tau_v = \int \sigma_v \rho \, d\ell$ • Dimensionless optical depth τ_{ν} is computed from a path ℓ integral over the extinction cross-section σ_{ν} (area) and the extinction source density ρ (number/volume):
- $\sigma_{\rm v} = \sigma_{\rm v}^{\rm abs} + \sigma_{\rm v}^{\rm set}$ *Where do these come from?* • Extinction arises from both absorption and scattering of light
- A fundamental implication of Beer's Law is that segment *monochromatic* (spectral) transmittances are multiplicative
	- Spectral optical depths are additive

$$
t_v^{(A)} t_v^{(B)} = \exp\left[-\left(\tau_v^{(A)} + \tau_v^{(B)}\right)\right] = t_v^{(AB)}
$$
 for contiguous segments A and B

Bouguer – Lambert – Beer *Law Equation* **Derivation**

- Consider a homogeneous collection of particles (molecules, water droplets, aerosols, etc.) encapsulated in a column with cross-sectional area *Axs* and aligned with the incoming photons
- The particle extinction cross-section σ is the cross-sectional area over which a photon (plane wave) interacts with (i.e., is scattered or absorbed by) a randomly oriented particle
	- Note that σ can exceed the particle geometric cross-section, πr^2
- The transmittance *t* is the probability that a photon does not interact with the particles
- If the encapsulating column contains a single particle, the transmittance is

$$
t=1-\sigma/A_{\rm xs}
$$

If the column contains two randomly located particles, the transmittance is the probability that a photon does not interact with either

$$
t = \left(1 - \sigma_1 / A_{\rm xs}\right) \left(1 - \sigma_2 / A_{\rm xs}\right)
$$

Bouguer – Lambert – Beer *Law Equation* **Derivation**

• More generally, if the column contains n_1 particles with extinction cross-section σ_1 , n_2 with cross-section σ_2 , etc., the probability of no interaction is $\left(1 - \sigma_i / A_{\rm xs}\right)^{n_i}$

$$
t=\prod_i \left(1-\sigma_i/A_{\rm xs}\right)^{n_i}
$$

• Optical depth τ is defined as the negative natural logarithm of transmittance, *t*

$$
\tau = -\sum_{i} n_{i} \ln \left(1 - \sigma_{i} / A_{xs} \right)
$$

• Generally, the particle extinction cross-sections σ_i are very much smaller than the medium cross-section A_{xx} , equal to the volume of the column V over the column length ℓ , i.e., $\sigma_i \leq \ell A_{iS} = V/\ell$. It follows that

$$
-\ln t \equiv \tau = \sum_{i} n_{i} \frac{\sigma_{i}}{A_{xs}} \left[1 + O\left(\frac{\sigma_{i}}{A_{xs}}\right) \right] \approx \sum_{i} \frac{n_{i} \sigma_{i}}{A_{xs}} = \ell \sum_{i} \left(\frac{n_{i}}{V}\right) \sigma_{i}
$$

• This is the Bouguer-Lambert-Beer "*Law*" from slide 7

Atmosphere Definition

MODTRAN constituent densities $\rho(z)$ are defined on a grid of altitudes *z* from the ground to the Top-Of-Atmosphere

Spherical

Snell's Law

- (TOA), nominally 100km
- *Most* densities are modeled as varying exponentially with altitude within each atmospheric spherical shell
	- Cloud densities are modeled as varying linearly with altitude
	- (Future: Use linear interpolation for all particulates)
- Path integrals are performed above a *locally spherical Earth*: Defined by the local Earth radius, *R*
- Refractive effects are modeled: The product of
	- a) the real part of the index of refraction n_z at height z_z
	- b) the Earth centered distance $R + z$, and
	- c) the sine of the path zenith angle $\sin\theta$

is a path constant: $n_z(R+z)\text{sin}\,\theta_z$ = $\overline{C}onstant$

– MODTRAN does not model ducting, paths with max tangent heights ₁₀

Particulate **(***Aerosol/Cloud***)** *Cross-Sections*

- MODTRAN includes built-in aerosol and cloud models
- NASA toolkit available for user-defined particulate data

- Aerosols profiles defined in terms of 550 nm *extinction coefficients*, $\kappa_{550 \text{ nm}}(z) = \sigma_{550 \text{ nm}} \rho(z)$, in km⁻¹
- Particulate spectral data not highly structured
	- Allows coarse (5 cm-1) spectral sampling

Rayleigh or Molecular Scattering Cross-Section

-
- Rayleigh scattering falls off, to first order, inversely proportional to the 4th power of wavelength λ

$$
\sigma^{sct}(\lambda) = \frac{\sigma_o^{sct}(\lambda_o/\lambda)^4}{1 + A \Delta \lambda^2 / \lambda^2 + B \Delta \lambda^4 / \lambda^4 + \cdots} \approx \sigma_o^{sct}(\lambda_o/\lambda)^4 \quad ; \quad \Delta \lambda^N = \lambda^N - \lambda_0^N
$$

- The Rayleigh scattering cross-section $σ₀^{set}$ (defined at a reference wavelength λ _o) depends on the relative concentration of atmosphere's molecular constituents
- The Rayleigh scattering phase function $P_{\lambda}(\varphi)$ has the well-known form: 2 *f*

$$
P_{\lambda}(\varphi) = \frac{3\left(1+f_{\lambda}\cos^2\varphi\right)}{4\pi(3+f_{\lambda})} \quad \text{with} \quad f_{\lambda} = \frac{1-\rho_{\lambda}}{1+\rho_{\lambda}}
$$

where ρ_{λ} is the spectral depolarization factor (~0.031) for air), and φ is the scattering angle

,

Line-By-Line Calculations

- Calculating molecular transmittance
	- Sum the molecular absorption cross-section from all transitions centered within 25 cm⁻¹ of a given spectral frequency ν
		- Beyond 25 cm⁻¹, H₂O, CO₂ (and CH₄) continua define the absorption
	- Perform the sum for each line-of-sight (LOS) path segment
	- Repeat for a narrow spectral step size, ~ 0.001 cm⁻¹ or smaller
- The calculations are slow!
	- Physics-based methods are available for accelerating LBL calculations, for example adaptive spectral gridding, but **transmittance** calculations remain computationally intensive
	- **Thermal (Planck) emission** calculations are somewhat slower
	- **Solar scatter** calculations can become prohibitive for large spectral regions and variable atmospheric conditions
- Band Models were introduced to alleviate all these computational issues

MODTRAN6 Technical Lecture Presentation Outline

- MODTRAN Overview
- Introduction to/Review of Radiative Transfer
- In-Band Radiative Transfer (RT)
	- Line-Of-Sight (LOS) Transmittance [detailed]
	- Correlated-*k* Algorithm [brief]
	- LOS Radiance [brief]
- Sample MODTRAN Simulations
- Backup: Additional/Future Projects

Statistical Band Model Approach Fundamental/Abstract Concept

- 1. Statistically model the distribution of line positions and strengths within a spectral band using a simple parametric form *f* **(**α**,** β**, …)** [See Goody & Yung, 1989]
- 2. The chosen parametric form for *f* must enable rapid and accurate spectral integration of the transmittance function

16 3. Pre-compute temperature- and pressure-dependent band model parameters α , β , ... for each spectral bin and each species using line strength compilation data, e.g., HITRAN

MODTRAN Molecular Transmittance Components

-
- Since MODTRAN is a narrow band model, a significant fraction **(red)** of the absorption arising from molecular lines centered in each spectral bin fall outside of that bin
- MODTRAN band model partitions molecular absorption contributions into 3 components:

$$
t_{mol} = t_{cen} t_{tail} t_{cont}
$$

- t_{cen} lines centered within the spectral bin
- t_{tail} lines centered outside of the spectral bin but less than 25 cm-1 from line center
- t_{cont} continua, i.e., distant lines, centered > 25 cm⁻¹ from line center

MODTRAN Temperature and Pressure Dependent Line Tails

• Spectra have at most one minimum; *fits are extremely accurate!*

MODTRAN's Line Strength Distribution Ansatz

-
- Statistically model line center absorption for each molecule as arising from *n_s randomly distributed* & identical strong lines of strength S_s and from n_w *randomly distributed* & identical weaker lines of strength S_w
- Define a line-strength weighted average Lorentz half-width $γ$ _{*L*} and the frequency dependent Doppler half-width γ_D at the spectral bin center
- The parameters n_s , S_s , n_w , S_w are determined from 4 moment equations:

MODTRAN's Band Model Parameters

• The traditional temperature-dependent band model parameters are line-spacing parameters, (**1/***d*) [cm], equal to the *effective* number of lines *n* in a spectral bin over the bin width **∆**^ν $Δν$ = *n d* 1

and absorption coefficients, (*S***/***d*) [cm-1/atm], equal to the product of the average line strength and the line spacing parameter

$$
\frac{S}{d} = S\left(\frac{1}{d}\right) = \frac{n S}{\Delta V}
$$

• Following with tradition, MODTRAN stores two pairs of temperature-dependent line center band model parameters

$$
\left(\frac{S}{d}\right)_z = \frac{n_z S_z}{\Delta v} \quad \text{and} \quad \left(\frac{1}{d}\right)_z = \frac{n_z}{\Delta v} \quad \text{for} \quad z = \begin{cases} s \text{ (strong)} \\ w \text{ (weak)} \end{cases} \text{ and}
$$

MODTRAN's Half-Width Band Model Parameters

-
- Doppler half-width at "1/*e*" of maximum [cm⁻¹]: γ_D

$$
\gamma_D = v \sqrt{(2k/c^2)T/m} = 4.30142 \times 10^{-7} v \sqrt{T(K)/m (amu)}
$$

- ν : Spectral Bin Center Frequency (cm-1)
- *k* : Boltzmann Constant
- *c* : Speed of Light
- *T* : Temperature (Kelvin)
- *m*: Molecular Weight (atomic mass units)
- Air-broadened Lorentz half-width at half-maximum [cm⁻¹]: γ_L

$$
\gamma_L = \gamma_L^0 (P/P_0) (T_0/T)^{n_{air}} \quad ; \quad \gamma_L^0 \equiv \sum_i (\gamma_L)_i S_i / \sum_i S_i
$$

- $-$ **T** : Temperature (Kelvin), T_0 = 273K
- $-P$: Pressure (atm), $P_0 = 1$ atm
- n_{air} : HITRAN temperature dependence exponent, $\approx 3/4$
- S_i : Strength (atm⁻¹ cm⁻²) at T_0 of line *i* in current spectral bin
- (4) ^{$\mathbf{r}(t)$ ^{$\mathbf{r}(t)$} $\mathbf{r}(t)$ is $\mathbf{r}(t)$ is $\mathbf{r}(t)$ at $\mathbf{r}(t)$ at $(\mathbf{r}(t)$ ₀, \mathbf{r}_0 of line *i*}

MODTRAN's Line Center Transmittance

• The transmittance *t* from *n* randomly distributed and identical lines of strength *S* in a spectral interval was derived by (Gilbert N. Plass, 1964)

$$
t = \left(1 - \frac{W_{\Delta V}^{sl}}{\Delta V}\right)^n \quad ; \quad t_{sl} \equiv 1 - \frac{W_{\Delta V}^{sl}}{\Delta V}
$$

"*A current theory postulates that carbon dioxide regulates the temperature of the earth. This raises an interesting question: How do Man's activities influence the climate of the future*?" GN Plass, Scientific American, **1959**

where $W_{\Delta V}^{sl}$ *is the <i>finite-bin* Voigt Equivalent Width, i.e., the off-centered Voigt line spectrally-integrated absorptivity (1-transmittance) within the spectral interval; t_{sl} is the *s*ingle-*l*ine spectral bin transmittance.

• MODTRAN line center transmittance for column density *u* is given by

$$
t_{cen} = \left(1 - \frac{W_{\Delta V}^{sl}(S_s u, \gamma_L, \gamma_D)}{\Delta V}\right)^{n_s}
$$

$$
\times \left(1 - \frac{W_{\Delta V}^{sl}(S_w u, \gamma_L, \gamma_D)}{\Delta V}\right)^{n_w}
$$

Carbon Dioxide and Climate Gilbert N. Plass, July 1959

SCIENTIFIC AMERICAN

Caption: "**MAN UPSETS THE BALANCE** of natural processes by adding billions of tons of carbon dioxide to the atmosphere each year. Most of this carbon dioxide is released by the burning of fossil fuels in (cars,) homes and factories, such as these plants in Youngstown, Ohio. Like the smoke in the photograph, the carbon dioxide released in this manner diffuses rapidly throughout the atmosphere."

Carbon Dioxide and Climate Author(s): Gilbert N. Plass

Source: Scientific American, Vol. 201, No. 1 (July 1959), pp. 41-47 Published by: Scientific American, a division of Nature America, Inc. Stable URL: https://www.jstor.org/stable/24940327 **23 23**

Calculating Finite-Bin Single-Line Voigt Transmittance

$$
t_{sl}(Su, \gamma_L, \gamma_D) = \frac{Su}{\Delta V} \left[\frac{V_0^{near}}{2} I_0 \left(\frac{Su}{2} f_{near} \right) + \sum_{n=1}^{\infty} V_n^{near} I_n \left(\frac{Su}{2} f_{near} \right) \right] e^{-\gamma_{2} S u f_{near}} + \frac{near}{\Delta V} e^{-S u f_{near}}
$$

+
$$
\frac{Su}{\Delta V} \left[\frac{V_0^{far}}{2} I_0 \left(\frac{Su}{2} f_{far} \right) + \sum_{n=1}^{\infty} V_n^{far} I_n \left(\frac{Su}{2} f_{far} \right) \right] e^{-\gamma_{2} S u f_{far}} + \frac{far}{\Delta V} e^{-S u f_{D-\Delta}}
$$

-
$$
\frac{2 S u}{\Delta V} \left[\frac{V_0^0}{2} I_0 \left(\frac{Su}{2} f_0 \right) + \sum_{n=1}^{\infty} V_n^0 I_n \left(\frac{Su}{2} f_0 \right) \right] e^{-\gamma_{2} S u f_0}
$$

near = line center to near edge distance [cm⁻¹] *far* = line center to far edge distance [cm⁻¹]

 $f_v \equiv f_v(\gamma_L, \gamma_D)$ = Voigt line shape function [cm]

I_n(*z*) Modified Bessel Function *V*_n∆ Fourier Coefficients

$$
V_n^{\Delta} = \langle f_0 \rangle + n \sum_{k=1}^n \frac{(-4)^k (2k+1)_{n-k}}{(k+1)(n+k)(n-k)!} \langle f_k \rangle - \begin{cases} \frac{2\Delta f_{\Delta}}{n^2-1} & n \text{ even} \\ 0 & n \text{ odd} \end{cases} ; \quad \langle f_k \rangle = \frac{2}{f_{\Delta}^k} \int_{\Delta}^{\infty} f_{\nu}^{k+1} d\nu
$$

A. Berk, Journal of Quantitative Spectroscopy and Radiative Transfer, **118, p. 102-120 (2013)**

Line -by-Line Curve -of-Growth

26

- The Curve-of-Growth (COG) defines the increase in spectral bin absorptivity, *A*, (one minus spectral bin transmittance) with column density, *u* , for a homogeneous path: $COG = A[u] = 1 - t[u]$
- The primary goal of band model theory is to generate COG's that closely match first principle, line -by -line (LBL) COG's

MODTRAN's Curve-of-Growth **(COG)**

- MODTRAN (n_s, S_s) predicts too much absorption near 30 atm-cm for CH_4 lines between 3000.0 and 3000.1 cm⁻¹
	- The 2^{nd} strongest $CH₄$ line is centered very close to bin edge
	- $-$ Too much absorption results from the randomly distributed line assumption

MODTRAN's Modeling of Multiple Molecular Absorbers

-
- MODTRAN assumes narrow band molecular absorption from distinct species is randomly correlated
	- Combined transmittance equals product of individual molecular species transmittances: $t_{cen} = t_{cen} (H_2O) \times t_{cen} (CO_2) \times \cdots$
	- An additional factor in the overall statistical error budget
- Sample Case 0.0010 32 CH₄ lines 0.0008 – Add 30 atm-cm O_3 to the \sim 5 O₃ lines 30 atm-cm CH_4 at 296 K \leq 0.0006 and 0.1 Atm tan^{-1} 0.0004 $-$ O₃ band model data: 0.0002 ine Strength $(n_1, S_1) = (1.1793, 8.9608e-4)$ 1E-5 $\frac{1}{4}$ $(n_2, S_2) = (3.2767, 1.4552e-5)$ $1E-6$ – Statistically, a poor case $1E-7$ $1E-8$ *Dominant O₃ line in region of minimum CH4 absorption* $1E-9$ $1E-9$
3000.00 3000.05 3000.10 *Band model under-predicts* Frequency $(cm⁻¹)$ *LBL absorptivity*

Multiple Molecular Absorbers: MODTRAN Band Model vs. LBL

- **LBL** transmittance is less than random correlation predicts $t_{cen}^{LBL}(\rm CH_{4} + O_3) = \boxed{0.41802} < 0.44368 = 0.56075 \times 0.79123 = t_{cen}^{LBL}(\rm CH_{4}) \times t_{cen}^{LBL}(\rm O_3)$ *LBL cen* t_{cen}^{LBL} $\left(\text{CH}_4 + \text{O}_3 \right) = 0.41802$ $< 0.44368 = 0.56075 \times 0.79123 = t_{cen}^{LBL}$ $\left(\text{CH}_4 \right) \times t$
- MODTRAN result: t_{cen}^{BM} (CH₄ + O₃) = 0.40679 = t_{cen}^{BM} (CH₄) × t_{cen}^{BM} (O₃)

$$
t_{cen}^{BM} (CH_4) = 0.51211
$$

$$
t_{cen}^{BM} (O_3) = 0.79434
$$

- In this case, the excess band model absorption for $CH₄$ is balanced by the anti-correlation of absorption features for O_3 and CH_4
- **Best to degrade to 0.2 cm-1 or coarser**

BM

Transmittance of Inhomogeneous Path Segment **(i.e., within a single layer)**

- Each transmittance calculation path segment is defined by column amounts u , and a path-averaged temperature T_{ρ} and pressure P_{ρ}
- Column amounts are computed as path integrals over altitudedependent molecular densities
- Line center molecular band models vary with *T*; line tail molecular band models are dependent on both *T* and *P*
- It is common practice within LBL models (e.g. MODTRAN6 and LBLRTM) to define path segment temperature T_{ρ} and pressure P_{ρ} as density ^ρ **(**∝ *P***/***T* **)** weighted averages :

$$
T_{\rho} = \frac{\int T(P/T) d\ell}{\int (P/T) d\ell} = \frac{\int P d\ell}{\int (P/T) d\ell} \quad ; \quad P_{\rho} = \frac{\int P(P/T) d\ell}{\int (P/T) d\ell}
$$

- Both pressure and density are modeled as decreasing exponentially with increasing altitude (*not path length*)
- Segment band models are defined using T_{ρ} and P_{ρ}

Failure of Beer's Law for Band Models

- Transmittance Summary
	- Absorption/scattering coefficients for particulates and Rayleigh
	- Attenuation due to molecular absorption is partitioned into continuum, line tail and line center transmittance components
	- *Band model accurately predicts homogenous segment molecular transmittance*
- *Are we done modeling transmittance*? **No!**
	- For Line-By-Line calculations, Beer's Law is used to calculate inhomogeneous path transmittances over multiple segments as the product of the segment transmittances
	- *Beer's Law is not valid for in-band transmittances*:

Band Model Approach for Multiple Segment Paths

-
- Replace multiple segment (*A, B, …*) inhomogeneous path with an "*equivalent"* homogenous path
	- Compute the cumulative path weak-line optical depth

$$
\overline{S_i u_i} = S_i^A u_i^A + S_i^B u_i^B + \cdots \quad ; \quad i = 1, 2
$$

– Compute *Curtis-Godson* (CG) path-averaged strength-weighted line spacing and half-width parameters

$$
\overline{\left(\frac{1}{d}\right)_i} \equiv \left[S_i^A u_i^A \left(\frac{1}{d}\right)_i^A + S_i^B u_i^B \left(\frac{1}{d}\right)_i^B + \cdots \right] / \overline{S_i u_i}
$$

$$
\overline{\gamma} \equiv \left[S_i^A u_i^A \left(\frac{1}{d}\right)_i^A \overline{\gamma^A} + S_i^B u_i^B \left(\frac{1}{d}\right)_i^B \overline{\gamma^B} + \cdots \right] / \overline{S_i u_i} \left(\frac{1}{d}\right)_i
$$

• Total path band model transmittances determined from Curtis-Godson parameters

$$
t_{cen} = t_{cen} \left(\overline{S u}, \overline{1/d}, \overline{\gamma_L}, \overline{\gamma_D} \right)
$$

Higher order CG approach required for O_3

MODTRAN6 Technical Lecture Presentation Outline

- MODTRAN Overview
- Introduction to/Review of Radiative Transfer
- In-Band Radiative Transfer (RT)
	- Line-Of-Sight (LOS) Transmittance [detailed]
	- Correlated-*k* Algorithm [brief]
	- LOS Radiance [brief]
- Sample MODTRAN Simulations
- Backup: Additional/Future Projects

The Correlated-k Approach Motivation

- Modeling *multiple scattering* **(MS)** is hard
	- Photons enter each line-of-sight from all directions
- Most **MS** algorithms, including DISORT in MODTRAN, assume Beer's Law: *additive segment optical depths*
- Goody introduced the Correlated-*k* (C*k*) approach to recast the band model into a Beer's Law compliant method
	- MODTRAN introduced the concept of a *statistical* C*k* method
	- Additional C*k* benefit: *Eliminates the need for Curtis-Godson averaging to model multiple segment path transmittances*

The Correlated-k Approach k-Distributions

Monochromatically reordering the *k*'s (absorption coefficients) within a spectral interval allows spectral integration with sparse sampling

- Only efficient if *T* and *P* dependent *k*-distributions for each spectral bin can be pre-computed τν, not *^k*^ν
- Molecular *k*-distributions from each species must be combined
- Assuming random correlation between distinct molecules, distributions are combined via a convolution integral

MODTRAN's 18 *k*-distribution

The Correlated-k Approach **C***k In-Band Transmittance*

- Total path optical depths τ_i are computed at each pre-defined cumulative probability, $\bm{g_j}$, grid point
- ∆*gj* interval transmittances *tj* are computed by modeling optical depth τ_{g} as varying exponentially from τ_{i-1} to τ_i
- MODTRAN users select between 2 sets of g_i grids "S" = Slow for 33 ∆*g* intervals "M" = *preferred* Moderate (*fast*) speed for 17 ∆*g* intervals
- Radiance I_g modeled as varying exponentially between I_{i-1} and I_i

MODTRAN Statistical C-k Method k-Distribution Generation

- MODTRAN *k*-distributions computed from summing Voigt lines with Monte-Carlo sampling of line center positions
- Simulates MODTRAN band model of *n* identical lines randomly located in a spectral interval
- Figure illustrates three calculations for $n = 5$ using Lorentz (pressure-

MODTRAN Statistical Ck Method MODTRAN Implementation

-
- 1. For each path segment, compute the combined-species **band model** line-center transmittance: $t_{cen}^{BM} = t_{cen}^{H_2O} \times t_{cen}^{CO_2} \times \cdots$
- 2. Define Optical Depth Weighted Lorentz and Doppler Half-Widths

$$
\gamma = \frac{\gamma^{H_2O} \tau_{cen}^{H_2O} + \gamma^{CO_2} \tau_{cen}^{CO_2} + \cdots}{\tau_{cen}} \quad ; \quad \tau_{cen}^{mol} \equiv \Delta V \left(n_1 S_1 + n_2 S_2 \right) u
$$

3. The number of lines *n* is treated as free-parameter used to select the *k*-distribution which produces a "gas-mixture" *Ck* line-center transmittance equal to the band model value:

$$
t_{cen}^{Ck}(n, \gamma_L, \gamma_D, \tau_{cen}) = t_{cen}^{BM}
$$

- $-$ For a fixed in-band optical depth τ_{cen} , the in-band transmittance decreases $t_{\tiny cen}^{C-k}$ as the number of lines $\bm n$ increases
- 4. Add molecular line tail and continuum, particulate and Rayleigh optical depths to the segment *k*-distribution

MODTRAN6 Technical Lecture Presentation Outline

- MODTRAN Overview
- Introduction to/Review of Radiative Transfer
- In-Band Radiative Transfer (RT)
	- Line-Of-Sight (LOS) Transmittance [detailed]
	- Correlated-*k* Algorithm [brief]
	- LOS Radiance [brief]
- Sample MODTRAN Simulations
- Backup: Additional/Future Projects

MODTRAN Radiance The Band Model Objective/Challenge

- Objective
	- Compute narrow spectral bands (width Δv) at sensor $(\ell = 0)$ line-of-sight radiances:

$$
I_0 \equiv \frac{1}{\Delta v} \int_{\Delta v} I_0(v)
$$

- (My Career) Challenge
	- Formulate algorithm that requires no monochromatic spectral data
- Available quantities
	- Molecular and particle spectral band transmittances from both absorption and scattering, e.g., band model molecular transmittances
	- Spectral band source function: Planck emission function and bandaveraged top-of-atmosphere solar irradiance data
- Quantities that should (can) not be spectrally averaged
	- Molecular absorption coefficients, cross-sections, and optical depths
	- Single scattering albedos, the scattering to extinction spectral cross-section ratio:

$$
\omega_{\ell}\left(\nu\right) = \frac{\sigma_{\ell}^{sct}\left(\nu\right)}{\sigma_{\ell}\left(\nu\right)}
$$

MODTRAN Radiance Three Integral forms for the spectral RTE

• Path length *l* spectral radiant intensity $I_{\rho}(\nu)$ integral to boundary *L*

$$
I_0(v) = \int_0^L k_{\ell}(v) J_{\ell}(v) \exp\left(-\int_0^{\ell} k_{\ell}(v) d\ell'\right) d\ell + I_L(v) \exp\left(-\int_0^L k_{\ell}(v) d\ell\right)
$$

• Spectral optical depth $\tau_{\nu}^{0\rightarrow L}$ spectral radiant intensity $I_o(\nu)$ integral

$$
I_0(\nu) = \int\limits_0^{\tau_\nu^{0\to L}} J_\ell(\nu) \exp\left(-\tau_\nu^{0\to\ell}\right) d\tau_\nu^{0\to\ell} + I_L(\nu) \exp\left(-\tau_\nu^{0\to L}\right); \tau_\nu^{0\to\ell} \equiv \int\limits_0^\ell k_{\ell'}(\nu) d\ell'
$$

• Spectral transmittance $t_v^{0\rightarrow L}$ spectral radiant intensity $I_o(\nu)$ integral

$$
I_0(\nu) = \int\limits_{t_{\nu}^{0\to L}}^{1} J_{\ell}(\nu) d t_{\nu}^{0\to\ell} + t_{\nu}^{0\to L} I_L(\nu) ; t_{\nu}^{0\to\ell} \equiv \exp\left(-\tau_{\nu}^{0\to\ell}\right)
$$

41 *I*_{ℓ} (ν) Spectral radiant intensity [*W cm*⁻² *sr*⁻¹/cm⁻¹] at ℓ in direction of a sensor at ℓ = 0 *J*_{*Spectral source function [<i>W cm*⁻² *sr*⁻¹/cm⁻¹] at *in direction of a sensor at* $*l* = 0$ *}* $k_{\ell}(v) = \rho \sigma_{\ell}(v)$ Spectral extinction coefficient [1/*km*] a distance ℓ along the sensor LOS

MODTRAN Radiance Absorption and Scattering Transmittance RTE • Both emissive and scattering source functions are defined • Scattering is only a loss mechanism for the emissive source, and absorption is only a loss mechanism for the scattering source • For the band model spectral bin of width Δv , one obtains $\mathcal{L}\left(\nu\right)=\left\lceil1-\omega_{\ell}\left(\nu\right)\right\rceil J_{\ell}^{em}\left(\nu\right)+\omega_{\ell}\left(\nu\right)J_{\ell}^{sct}\left(\nu\right),\quad\omega_{\ell}\left(\nu\right)=\frac{\sigma_{\ell}^{sct}\left(\nu\right)}{\sigma_{\ell}^{sct}}.$ $\left[1\!-\!\varpi_{\ell}\left(\nu\right)\right] \!J_{\ell}^{\emph{em}}\left(\nu\right)\!+\varpi_{\ell}\left(\nu\right) \!J_{\ell}^{\emph{set}}\left(\nu\right),\quad \varpi_{\ell}\left(\nu\right)\!=\!\frac{\left(\nu\left(\nu\right)\right)}{\sigma_{\ell}\left(\nu\right)},\quad J_{\ell}^{\emph{em}}\left(\nu\right)\!=\!B\!\left(\nu,\mathit{T}_{\ell}\right)$ $\mathcal{L}\left(\nu\right)=t_{\nu}^{0\rightarrow\ell\rightarrow sun}F_{\nu}^{sun}\,p_{\ell}\left(\Omega_{\ell},\Omega^{sun};\nu\right)+\int_{4\pi}I\left(\Omega';\nu\right)_{\ell}\,p_{\ell}\left(\Omega_{\ell},\Omega';\nu\right)$ $and \quad J_{\ell}^{sct}\left(\nu\right)=t_{\nu}^{0\rightarrow\ell\rightarrow sun}F_{\nu}^{sun}p_{\ell}\left(\Omega_{\ell},\Omega^{sun};\nu\right)+\int_{4\pi}I\left(\Omega';\nu\right)_{\ell}p_{\ell}\left(\Omega_{\ell},\Omega';\nu\right) d\nu$ *sct* $J_{\rho}(\nu) = \left[1-\omega_{\rho}(\nu)\right]J_{\rho}^{em}(\nu) + \omega_{\rho}(\nu)J_{\rho}^{sct}(\nu), \quad \omega_{\rho}(\nu) = \frac{\omega_{\ell}(\nu)}{\omega_{\ell}(\nu)}, \quad J_{\rho}^{em}(\nu) = B(\nu, T)$ $\sigma_{\scriptscriptstyle e}^{\scriptscriptstyle \rm sc}$ (ν $V = \left(1 - \omega_{\ell}(V) \right) J_{\ell}^{(m)}(V) + \omega_{\ell}(V) J_{\ell}^{(m)}(V), \quad \omega_{\ell}(V) = \frac{1}{\ell} \left(1 - \frac{1}{\ell} \left(1 - \frac{1}{\ell} \right) \right)$ $\mathcal{I} = \Bigr[1 - \varpi_{\ell} \left(\nu \right) \Bigr] J_{\ell}^{\textit{em}} \left(\nu \right) + \varpi_{\ell} \left(\nu \right) J_{\ell}^{\textit{sct}} \left(\nu \right), \quad \varpi_{\ell} \left(\nu \right) = \frac{\varpi_{\ell} \left(\nu \right)}{\sigma_{\ell} \left(\nu \right)}, \quad J_{\ell}^{\textit{em}} \left(\nu \right) = \frac{\varpi_{\ell} \left(\nu \right)}{\sigma_{\ell} \left(\nu \right)} \, .$ $\mathcal{L}_{\mathcal{V}}(\nu) = t_{\nu}^{0\rightarrow\ell\rightarrow sun} F_{\nu}^{sun} p_{\ell} \left(\Omega_{\ell},\Omega^{sun};\nu\right) + \int_{4\pi} I\left(\Omega';\nu\right)_{\ell} \, p_{\ell} \left(\Omega_{\ell},\Omega';\nu\right) d\Omega'$ $\ell(\nu)$ $\begin{bmatrix} 1 & \omega_{\ell} & \nu \end{bmatrix}$ $\begin{bmatrix} \nu & \nu & \nu \end{bmatrix}$ $\begin{bmatrix} \omega_{\ell} & \nu & \nu \\ \nu & \nu & \ell & \nu \end{bmatrix}$ $\begin{bmatrix} \nu & \nu & \nu \\ \nu & \nu & \nu & \nu \end{bmatrix}$ ℓ ℓ (*v*) $-\ell_{\nu}$ ℓ_{ℓ} ℓ_{ℓ} \leq ℓ_{ℓ} , \leq $-\ell$ ℓ \leq $-\ell$ ℓ ℓ ℓ ℓ ℓ $\mathcal{L}(\mathcal{V}) = \int_{\mathcal{U}} (\mathcal{V}) dt_{V}^{0\rightarrow \ell} + t_{V}^{0\rightarrow L} I_{L}(\mathcal{V}) ; t_{V}^{0\rightarrow \ell} \equiv t_{abs}^{0\rightarrow \ell} (\mathcal{V}) t_{sct}^{0\rightarrow \ell} (\mathcal{V})$ $\mathcal{L}\left(V\right)J_{\ell}^{em}\left(\nu\right)dt_{abs}^{0\rightarrow\ell}\left(\nu\right)+\left.\left|-\right.t_{abs}^{0\rightarrow\ell}\left(\nu\right)J_{\ell}^{sct}\left(\nu\right)dt_{sct}^{0\rightarrow\ell}\left(\nu\right)+t_{\nu}^{0\rightarrow L}I_{L}\left(\nu\right)\right|$ 0 $t_{abs}^{0\rightarrow L}$, $t_{cct,v}^{0\rightarrow L}$ 1 $0 \rightarrow \ell$ \rightarrow $0 \rightarrow L$ I $(\cdot,)$ \rightarrow ℓ \rightarrow $0 \rightarrow \ell$ \rightarrow $(\cdot,) \rightarrow 0$ $J_{\varrho}\left(\nu\right)=\left.\int_{\ell}\left(\nu\right)dt_{\nu}^{0\rightarrow\ell}+t_{\nu}^{0\rightarrow L}I_{L}\left(\nu\right)\right);$ 1 $0 \rightarrow \ell$ (i) I^{em} (i) $J^{0} \rightarrow \ell$ (i) $I^{0} \rightarrow \ell$ (i) $I^{0} \rightarrow \ell$ (i) I^{sct} (i) $J^{0} \rightarrow \ell$ (i) I^{0} *L* $L \longrightarrow L$ *L* $L(V)$, v_V $-v_{abs}$ $(V) v_{sct}$ *t em* $\left(\frac{1}{2}L\right)$ $d\tau^{0\rightarrow \ell}$ $\left(\frac{1}{2}L\right)$ $\left[\frac{1}{2}L\right]$ $\left(\frac{1}{2}L\right)$ $\left[\frac{1}{2}L\right]$ $d\tau^{0\rightarrow \ell}$ $\left(\frac{1}{2}L\right)$ $\left[\frac{1}{2}L\right]$ $f_{sct}^{0\rightarrow \ell}\left(\nu\right)J_{\ell}^{em}\left(\nu\right)dt_{abs}^{0\rightarrow \ell}\left(\nu\right)+\int\limits_{abs}^{0\rightarrow \ell}\left(\nu\right)J_{\ell}^{sct}\left(\nu\right)dt_{sct}^{0\rightarrow \ell}\left(\nu\right)+t_{\nu}^{0\rightarrow L}I_{L}\left(\nu\right)$ $I_0(V) = \int_{\ell}^{\infty} (V) dt_{V}^{0\rightarrow \ell} + t_{V}^{0\rightarrow L} I_L(V)$; $t_{V}^{0\rightarrow \ell} \equiv t_{abs}^{0\rightarrow \ell}(V) t_{V}$ ν $V = \int_{V} J_{\ell}(V) dt_{V} + t_{V} - t_{L}(V)$; $t_{V} = t_{abs} (V) t_{sct} (V)$ \rightarrow $\rightarrow L$ $=\int\limits_{\mathbb{R}^d}J_{\ell}\left(v\right)dt_{\nu}^{0\rightarrow\ell}+t_{\nu}^{0\rightarrow L}I_{L}\left(v\right)\;;\;\;\;t_{\nu}^{0\rightarrow\ell}\equiv t_{abs}^{0\rightarrow\ell}\left(v\right)t_{sct}^{0\rightarrow\ell}$ $=\int_{\mathbb{R}}t_{\text{Sct}}^{0\rightarrow\ell}(v)J_{\ell}^{\text{em}}(v)\,dt_{\text{abs}}^{0\rightarrow\ell}(v)+\int_{\mathbb{R}}t_{\text{abs}}^{0\rightarrow\ell}(v)\overline{J_{\ell}^{\text{Sct}}}(v)\,dt_{\text{Sct}}^{0\rightarrow\ell}(v)+t_{\nu}^{0\rightarrow\ell}$ ℓ ℓ (*v*) $u \iota_{abs}$ (*v*) $u \iota_{abs}$ (*v*) ℓ (ν) $0 \rightarrow L$ 1 1 $0 \rightarrow \ell$ rem $J \star 0 \rightarrow \ell$ for ℓ and $J \star 0 \rightarrow \ell$ for $J \star 0 \rightarrow \ell$ for ℓ $0 - \lambda$ λ λ μ ¹ 0 1 *L* $\longrightarrow L$ *abs* screen and ι_{scat} *em* $d \tarrow 0 \rightarrow 0$ **f** $d \tarrow 0 \rightarrow 0$ **f** $f \circ ct \tarrow d \tarrow 0 \rightarrow 0$ **f** $f \circ c \tarrow d \tarrow d \tarrow 0 \rightarrow L$ *sct abs abs sct L* $t_{abs}^{0\rightarrow L}$ t $I_0 \equiv \frac{1}{\Lambda_{12}} \int_{\Delta V} I_0 \left(V \right) = \int t_{sct}^{0 \to \ell} J_{\ell}^{em} \, dt_{abs}^{0 \to \ell} + \int t_{abs}^{0 \to \ell} J_{\ell}^{sct} \, dt_{sct}^{0 \to \ell} + t^{0 \to L} I_{\ell}^{0 \to \ell}$ $\mathcal V$ $V \stackrel{\bullet}{\rightarrow} V$ \rightarrow ℓ τ em $J \star 0 \rightarrow \ell$ τ \rightarrow ℓ τ \rightarrow ℓ \rightarrow ℓ \rightarrow ℓ \rightarrow ℓ \rightarrow ℓ \rightarrow ℓ \rightarrow ℓ ∆ $\equiv \frac{1}{\Delta V}\int_{\Delta V}I_{0}\left(V\right)=\int\limits_{\rho\to L}t_{sct}^{0\to\ell}\,J_{\ell}^{em}\,dt_{abs}^{0\to\ell}+\int\limits_{\rho\to L}t_{abs}^{0\to\ell}\,J_{\ell}^{sct}\,dt_{sct}^{0\to\ell}+$ ℓ $u \iota_{abs}$ $d \iota_{abs}$ $d \iota_{abs}$ $d \iota_{abs}$ *What happened to* ^ω*^ℓ* (ν)? *How is this Determined?*

• Terms without spectral dependence are band model averages

MODTRAN Radiance Eliminating ^ω*ℓ(*^ν *) from Path Thermal Emission*

• Insert the path thermal emission source function, $B_{\nu}(T_{\ell})$

$$
I_0^{Em}\left(\nu\right)=\intop_{t_{\nu}^{0\to L}}^{1}\left[1-\omega_{\ell}\left(\nu\right)\right]B_{\nu}\left(T_{\ell}\right)dt_{\nu}^{0\to\ell}\quad;\quad\omega_{\ell}\left(\nu\right)=\frac{\sigma_{\ell,\nu}^{sct}}{\sigma_{\ell,\nu}}
$$

• The path thermal emission can be re-expressed as a t_{abs}^0 ^{0→*ℓ*}(ν) integral:

$$
I_0^{Em}(\nu) = \int\limits_{t_{abs}^{0\to L}(\nu)}^1 t_{sct}^{0\to \ell}(\nu) B_{\nu}(T_{\ell}) dt_{abs}^{0\to \ell}(\nu) ; \quad B_{\nu}(T) = \frac{c_1 \nu^3 / \pi}{\exp(c_2 \nu / T) - 1}
$$

Here, c_1 and c_1 are the first and second radiation constants

• Conversion from dependent variable $t_{abs}^{0\rightarrow \ell}(\nu)$ to dependent variable $t_v^{0\rightarrow \ell}$:

$$
\frac{t_{\rm sct}^{0\to\ell}(\nu)dt_{\rm abs}^{0\to\ell}(\nu)}{t_{\rm abs}^{0\to\ell}(\nu)} = \frac{t_{\rm v}^{0\to\ell}}{t_{\rm abs}^{0\to\ell}(\nu)}dt_{\rm abs}^{0\to\ell}(\nu) = t_{\rm v}^{0\to\ell}d\ln t_{\rm abs}^{0\to\ell}(\nu) = -t_{\rm v}^{0\to\ell}d\tau_{\rm abs}^{0\to\ell}(\nu) = t_{\rm v}^{0\to\ell}d\left(-\int_{0}^{\ell}\sigma_{\ell,\nu}^{\rm abs}\rho\,d\ell'\right)
$$

\n
$$
= -t_{\rm v}^{0\to\ell}\sigma_{\ell,\nu}^{\rm abs}\rho\,d\ell = -t_{\rm v}^{0\to\ell}\left(\frac{\sigma_{\ell,\nu}^{\rm abs}}{\sigma_{\ell,\nu}}\right)(\sigma_{\ell,\nu}\rho d\ell) = t_{\rm v}^{0\to\ell}\left(\frac{\sigma_{\ell,\nu}-\sigma_{\ell,\nu}^{\rm sct}}{\sigma_{\ell,\nu}}\right)d\left(-\int_{0}^{\ell}\sigma_{\ell',\nu}\rho\,d\ell'\right)
$$

\n
$$
= -t_{\rm v}^{0\to\ell}\left[1-\omega_{\ell}(\nu)\right]d\tau_{\rm v}^{0\to\ell} = \left[1-\omega_{\ell}(\nu)\right]t_{\rm v}^{0\to\ell}\,d\ln t_{\rm v}^{0\to\ell} = \left[1-\omega_{\ell}(\nu)\right]dt_{\rm v}^{0\to\ell}
$$

MODTRAN Radiance The Discrete Ordinate Solution

Nobel Laureate Chandrasekhar laid out the foundation of the discrete-ordinate method for solving the thermal and solar plane-parallel atmosphere integro-differential radiative transfer equation (1950):

- Requires additive optical depths (Beer's Law)
- Converges to exact solution
- Implemented in software (DISORT) by Knut Stamnes *et al*. in the 1980's
- *For each atmospheric layer, a general solution is defined applicable for any pair of viewing zenith and relative solar azimuth angles*

Quote from KC Wali, "Chandra", p. 190

S. Chandrasekhar Radiative Transfer

44 of the subject" by further additions."My research on radiative transfer gave me the most satisfaction. I worked on it for five years, and the subject, I felt, developed on its own initiative and momentum. Problems arose one by one, each more complex and difficult than the previous one, and they were solved. The whole subject attained an elegance and beauty which I do not find to the same degree in any of my other work. And when I finally wrote the book *Radiative Transfer*, I left the area entirely. Although I could think of several problems, I did not want to spoil the coherence and beauty

MODTRAN Radiance DISORT Standard Inputs and Outputs

• Geometry Inputs ^µ Cosine of path zenith ^µ*sun* Cosine of solar zenith **Relative solar azimuth** Nadir extinction OD ^τ↓*sct* Nadir scattering OD *p* Scattering phase function Legendre Expansion • Environment Inputs *Fsun* Solar irradiance ρ Surface reflectance *p*1 p_2 *pi* **Emission** p_L **Reflection** ${\sf Solar Bean}\left(F^{\textit{sun}}\right)$ **Surface Inputs** $T_0, \, \tau_0^{\!\star}, \, \tau_0^{\!\star}$ $\frac{1}{\sqrt{2}}$ sct $T_1, \tau_1^{\downarrow}, \tau_1^{\downarrow}$ *sct* T_{i-1} , τ_{i-1} , τ_{i-1} *sct* T_i , τ_i^{\downarrow} , τ_i^{\downarrow} *sct* T_L , τ_L^{\downarrow} , τ_L^{\downarrow} sct **Outputs** I_0 , F_0 I_1, F_1 I_{i-1}, F_{i-1} I_i $, F_i$ *IL*, *FL* ↓ ↓ ↓ ↓

Surface

• Profile Outputs *I* Solar/thermal radiances to ground or space from all levels at view angle μ

• Profile Inputs

T Temperature

F Up/Down Diffuse Flux

MODTRAN Radiance DISORT to MODTRAN Challenges

- MODTRAN is a spherical refractive geometry atmosphere model while DISORT models the atmosphere as plane-parallel
- DISORT is a monochromatic model that depends on additive segment optical depths; the MODTRAN band model does not obey Beer's Law
	- Solutions: Correlated-*k* or LBL

MODTRAN Radiance MODTRAN Upgraded DISORT I/O

Spherical Earth Upgrades

- Upgraded Geometry Inputs
	- μ , Cosine of path zenith for each LOS path segment ^µ*sun* Cosine of solar zenith
	- ^ϕ *^l* Relative solar azimuth for each LOS path segment
- Same Profile Inputs
- Same Environment Inputs
- Upgraded Outputs
	- ΔI_I^{sct} **Thermal and solar** scattered segment radiances
	- *F* Downward and upward diffuse flux at each altitude level

MODTRAN6 Technical Lecture Presentation Outline

- MODTRAN Overview
- Introduction to/Review of Radiative Transfer
- In-Band Radiative Transfer (RT)
	- Line-Of-Sight (LOS) Transmittance [detailed]
	- Correlated-*k* Algorithm [brief]
	- LOS Radiance [brief]
- ▶ Sample MODTRAN Simulations
- Backup: Additional/Future Projects

AVIRIS Next Gen Channels - Transm GUI Main Page

AVIRIS Next Gen Channels- Transm RT Options Tab

AVIRIS Next Gen Channels - Transm Atmosphere Tab

Save As New Case

Model: Mid-latitude winter

H₂O: 0E0

 $CO₂: 4E2$

Os:

 $0E0$

View profile

Aerosol RH: 0.00

Planetary Mass: 0.00

Allow relative humidity to

Include trace molecular sp

Q

Air Molecular Weight: 0.00

OK

CCI

Cancel

AVIRIS Next Gen Channels - Transm Molecular Species Scale Factors

AVIRIS Next Gen Channels - Transm Clouds & Aerosols Tab

AVIRIS Next Gen Channels - Transm Geometry Tab

AVIRIS Next Gen Channels - Transm Line Of Sight (LOS) Editor

AVIRIS Next Gen Channels - Transm Spectral Options Tab

AVIRIS Next Gen Channels - Transm Spectral Options Tab

AVIRIS Next Gen Channels AVIRIS_NG08nov2017.flt

 1 | 1 | Read | Ovr | B

59

AVIRIS Next Gen Channels - Transm Output File Options Tab

AVIRIS Next Gen Channels - Transm Full Domain Spectral Transmittance

AVIRIS Next Gen Channels - Transm CH4 Band Spectral Transmittance

AVIRIS Next Gen Channels - Transm Channel File Output

AVIRIS Next Gen Channels - Rad GUI Main Page

6.0.2.5-2304.19

AVIRIS Next Gen Channels - Rad RT Options Tab

AVIRIS Next Gen Channels - Rad Surfaces Tab

AVIRIS Next Gen Channels - Rad Spectral Options Tab

AVIRIS Next Gen Channels - Rad Output File Options Tab

AVIRIS Next Gen Channels - Rad Full Domain Spectral Radiance

- Total Radiance(1.S) - Total Radiance(2.S) - Total Radiance(3.S) - Total Radiance(4.S)

AVIRIS Next Gen Channels - Rad CH4 Band Spectral Radiance

- Total Radiance(1.S) — Total Radiance(2.S) — Total Radiance(3.S) — Total Radiance(4.S)

SSI

AVIRIS Next Gen Channels AVIRIS_NG08nov2017.flt

71

AVIRIS_NG – 1000 PPM-m CH4 Plume GUI Main Page – Band Model Calculation

AVIRIS NG - 1000 PPM-m CH4 Plume **Atmosphere Tab - Band Model Calculation**

٧

 \rightarrow

Cancel

OK

 \Box

 \times

AVIRIS NG - 1000 PPM-m CH4 Plume **Custom Atmosphere Profile - Band Model Calc W** Custom Atmospheric Profile

Fill table with model: Mid-latitude winter OK \checkmark **∞** Localized Chemical Cloud **Atmospheric Profiles** lNew Atm Profile Browse Profile Units Laver 1 Laver₂ Laver 5 Laver 7 Laver 3 Laver 4 Laver 6 Laver 8 6.0 ROF_ALTITUDE UNT_KILOMET... 0.0 1.0 2.0 3.0 5.0 4.0 17.0 ROF PRESSURE UNT PMILLIBAR 1018.00494 897.2996 789.69745 693.7974 608.1003 531.3017 462.7006 401.60138 ROF TEMPER... UNT TKELVIN 272.2 268.7 265.2 261.7 255.7 249.7 243.7 237.7 2088.0 3454.0 2788.0 824.1 510.3 232.1 ROF H₂₀ UNT DPPMV 4316.0 1280.0 ROF CO₂ UNT_DPPMV 330.0 330.0 330.0 330.0 330.0 330.0 330.0 330.0 ROF 03 UNT DPPMV 0.02778 0.028 0.02849 0.032 0.03567 0.0472 0.07891 0.05837 0.32 ROF N2O UNT DPPMV 0.32 0.32 0.32 $|0.32|$ $|0.32|$ $|0.32$ 0.32 ROF_CO 0.1399 $|0.1349$ 0.1247 UNT DPPMV 0.15 0.145 0.1312 0.1303 0.1288 CH4* UNT UNKNOWN 0.0 $|0.0$ 0.0 0.0 0.0 0.0 0.0 0.0

≺

AVIRIS_NG – 1000 PPM-m CH4 Plume <rootname>.rng file – Band Model Calculation

AVIRIS NG - 1000 PPM-m CH4 Plume **RT Options Tab - Correlated-k Calculation**

AVIRIS NG - 1000 PPM-m CH4 Plume **Band Model and Correlated-k Calculations**

SSI

AVIRIS NG - 1000 PPM-m CH4 Plume **Band Model <rootname>.chn Output File**

 \checkmark

AVIRIS_NG - 1000 PPM-m CH4 Plume Correlated-k <rootname>.chn Output File

MODTRAN6 Technical Lecture Presentation Outline

- MODTRAN Overview
- Introduction to/Review of Radiative Transfer
- In-Band Radiative Transfer (RT)
	- Line-Of-Sight (LOS) Transmittance [detailed]
	- Correlated-*k* Algorithm [brief]
	- LOS Radiance [brief]
- Sample MODTRAN Simulations
- **▶ Backup: Additional/Future Projects**

MODTRAN LBL Calculations

- MODTRAN solves the LBL problem in disjoint, contiguous 0.1 cm-1 steps
	- *Line center* term defined to include all transitions centered within a narrow 0.2 cm-1 bin
	- *Line tail fits* are computed off-line
- **Challenge**

– Ensure that spectral discontinuities do not arise at bin edges, even though the *line center* and *line tail* components are themselves discontinuous

Line-by-Line (LBL) MODTRAN Motivation

- Difficult to isolate sources of discrepancies when validating MODTRAN against independent LBL models
	- Requires consistent inputs and methods
		- \checkmark Pressure, temperature and density profiles
		- \checkmark Column density calculations
		- **Continuum** and particular data
		- \checkmark Spectral convolutions
		- *…*
	- Internal LBL option provides *"common elements"*
- Many benefits
	- Quantification of band model accuracy
	- Insight into approaches for refining the band model
	- Laser/Lidar application simulations

Spectrally Universal Lineshape

MODTRAN LBL Conclusions & Continuing Activities

-
- Fidelity of MODTRAN LBL validated against LBLRTM
	- *Successfully eliminated bin edge discontinuities*
	- Microwave line tail fits must be upgraded
	- Will use modified Gross-Doppler line shape function
- Many model updates resulting from validation efforts
	- Provide option to use the LBLRTM lines file
	- For BAND MODEL
		- Eliminate line center displacement to avoid bin edges
		- Include line shift correction in band model line tail calculations
		- Update line tail pressure interpolation algorithm
		- Add self-broadening correction

Radiometric MODTRAN6 Radiance **DISORT Expression for Segment Radiance**

$$
\Delta I_{\sigma} = \Delta I_{l_{\sigma}}(\mu, \phi; \tau_{\sigma-1} \Rightarrow \tau_{\sigma}) = \sum_{m=0}^{2M-1} \Delta I_{l_{\sigma}}^{m}(\mu; \tau_{\sigma-1} \Rightarrow \tau_{\sigma}) \cos m\phi \n\begin{Bmatrix}\n\text{Solar} \\
\text{Particular} \\
\text{Solution} \\
\Delta I_{l_{\sigma}}^{m}(\mu; \tau_{\sigma-1} \Rightarrow \tau_{\sigma}) = \begin{bmatrix}\n\frac{\sin n}{\cos n} - \frac{\sin n}{\cos n} \exp\left(-\frac{\tau_{\sigma} - \tau_{\sigma-1}^{\downarrow}}{\mu}\right) & \frac{Z_{l_{\sigma}}^{m}(\mu)}{1 + \mu/\mu} \end{bmatrix} \\
+ \delta_{m0} \left\{\n\begin{bmatrix}\n1 - \exp\left(-\frac{\tau_{\sigma}^{\downarrow}}{\mu} - \frac{\tau_{\sigma-1}^{\downarrow}}{\mu}\right) & \frac{Z_{l_{\sigma}}^{m}(\mu)}{1 + \mu/\mu} & \frac{Z_{
$$

Polarimetric MODTRAN7 Stokes Parameters

VDISORT Expression for Segment Radiance

Down Look	$\tau_{p-1} \leq r' \leq \tau_p$; τ_{i-1} replaced by τ for $\ell = p$
$\tau_{q-1} \leq r' \leq \tau_q$; $\tau < r'$; $1 \leq p \leq q \leq L$; τ_t replaced by τ' for $\ell = q$	
$\Delta \tau_t = \tau_t - \tau_{t-1}$; $C_{jt} = 2 \cos(k_{tjt} \Sigma \tau_t/2) \sin(k_{tjt} \Delta \tau_t/2)$	
$\overline{\tau}_{\alpha,q}^n(\tau, \tau'; + \mu) = \overline{\tau}_{\alpha}^n(\tau', + \mu_q)$; $\mu_q = \mu(\tau')$; $\overline{\tau}_{\alpha}^n(\tau, \tau'; + \mu) = \overline{\tau}_{\alpha,p-1}^m(\tau, \tau'; + \mu)$	
$\overline{\tau}_{\alpha,t-1}^n(\tau, \tau'; + \mu) = \overline{\tau}_{\alpha}^n(\tau_{t-1}, + \mu_{t-1}) = \Delta \overline{\tau}_{\alpha,t}^n(\tau, \tau'; + \overline{\mu}_{t-1}) + e^{-\Delta \tau_t/\overline{\mu}_t}$ $\overline{\tau}_{\alpha,t}^n(\tau, \tau'; + \mu_{t-1})$	
$\Delta \overline{\tau}_{\alpha,t}^n(\tau, \tau'; + \overline{\mu}_t) =$	
$\Delta \overline{\tau}_{\alpha,t}^n(\tau, \tau'; + \overline{\mu}_t) =$	
$\begin{bmatrix}\n e^{\delta_{\alpha}k_{\alpha}(\tau_{\gamma-1})} C'_{\alpha\beta} \frac{\tilde{\mathbf{g}}_{\gamma,t}(\tilde{\mathbf{g}}_{\gamma,t}(\tilde{\mathbf{g}}_{\gamma,t}) - e^{-\Delta \tau_t/\overline{\mu}_t} \frac{\tilde{\mathbf{g}}_{\gamma,t}(\tilde{\mathbf{g}}_{\gamma,t}(\tilde{\mathbf{g}}_{\gamma,t})}{1 - k_{\gamma,t}\overline{\$	

$$
\begin{bmatrix}\n\text{Up} \text{Look} & \overline{r_{p-1} \leq r \leq r_{p}} & \overline{r_{\ell}} \text{ replaced by } \tau \text{ for } \ell = p \\
\overline{r_{q-1} \leq r' \leq r_{q}} & \overline{r} \cdot \overline{r \leq r_{q}} & \overline{r}_{\ell} \cdot \overline{r_{\ell}} \text{ replaced by } \tau' \text{ for } \ell = q \\
\Delta \tau_{\ell} = \overline{r_{\ell}} - \tau_{\ell-1} & \overline{r}_{\ell} \leq \Delta \tau_{\ell} \geq 2 \cos \left(k_{ij} \sum r_{\ell}/2 \right) \sin \left(k_{ij} \Delta \tau_{\ell}/2 \right) \\
\sum \overline{r}_{\ell} = \overline{r_{\ell}} + \overline{r_{\ell-1}} & \overline{r}_{\ell} \leq 2 \cos \left(k_{ij} \sum r_{\ell}/2 \right) \sin \left(k_{ij} \Delta \tau_{\ell}/2 \right) \\
\sum \overline{r}_{\ell} = \overline{r_{\ell}} + \overline{r_{\ell-1}} & \overline{r}_{\ell} \leq \overline{r_{\ell}} \sin \left(k_{ij} \sum \overline{r}_{\ell}/2 \right) \sin \left(k_{ij} \Delta \tau_{\ell}/2 \right) \\
\sum_{a,a=1}^{m} (\tau, \tau'; - \mu) = \overline{1}_{a}^{m} (\tau, \tau, - \mu_{\ell}) = \Delta \overline{1}_{a\ell}^{m} (\tau, \tau'; - \overline{\mu}_{\ell}) + e^{-\Delta \tau / \overline{\mu}_{\ell}} \overline{\tau}_{a\ell}^{m} (\tau, \tau'; - \mu) = \overline{1}_{a,\nu}^{m} (\tau, \tau'; - \mu) \\
\Delta \overline{1}_{a\ell}^{m} (\tau, \tau'; - \overline{\mu}_{\ell}) = & \left(e^{\delta_{ij} k_{ji} (\tau_{ij} - \tau)} C'_{\ell} \frac{\overline{g}_{ij} (\overline{-\mu}_{\ell})}{1 - k_{ji} \overline{\mu}_{\ell}} \left(1 - e^{-\left(k_{ji} \mu + 1 \right) \overline{g}_{\ell-j}^{\prime} (\overline{-\mu}_{\ell})} \right) + \right) \\
\sum_{j=1}^{N} \left\{ \begin{bmatrix} k_{ij} \overline
$$

91

MCScene: MODTRAN in 3D Introduction

- Hyper-Spectral Image (HSI) Simulator
	- –First principles 3D **spectralbin** reverse Monte-Carlo radiative transfer model
	- –Solar scatter and thermal emission (0.2 to >1000 *µ*m)
	- –MODTRAN transmittances and optical properties
	- –Imports HSI reflectance data
	- –Reflections and emission from topographic terrain
	- –Scattering/emission by and through 3D cloud fields
	- –Embedded 3D objects
	- –Twilight simulations

92 embedded Landsat cloud field (RGB)South Australia Landsat with 39x18 km2

MCScene: MODTRAN in 3D Photon Trajectories

- Follow reverse path photon trajectories from sensor
- Full thermal path radiance summed along each direction (0-5)
- Solar radiances summed at each scattering/reflection event
- Importance sampling selects most significant trajectories
	- Required for convergence
	- E.g., preferentially reflect and scatter towards sun
	- Weight trajectories to compensate for biasing
- Distance traveled to scatter is $\tau_c = -\ln(\beta)$ where β is a random number on (0, 1), ^τ *^c* is "continuum" optical depth

(excludes molecular absorption)

MCScene: MODTRAN in 3D MODTRAN Generated Molecular Transmittances

- Spectral bin data bases
	- Depend on sensor altitude, elevation and solar zenith
	- Direct and L-shaped solar paths
	- Column amounts scaled from 0 to 10000
- Application
	- a. Compute trajectory molecular columns
	- b. Compute transmittance to minimum altitude
	- c. Compute transmittance derivative to trajectory end point matching transmittance from b.

Photon Trajectory Used to compute u_m , molecular column amounts

Transmittance Path Compute transmittance, $t_m = t_m[u_m; z_{sen}, z_{min}]$

Emission Coef Path Solve $\dot{t}_m = t_m[\tilde{u}_m; z_{sen}, z_{end}]$ for \tilde{n}_m and then compute $d\vec{t}_m/d\,\tilde{n}_m$

MCScene: MODTRAN in 3D Test Problem 1: Volcanic Andesite Ash Cloud

• Question: What errors are introduced by ignoring 3D radiative transfer effects for nadir satellite thermal simulations?

MCScene: MODTRAN in 3D Test Problem 4: Twilight Simulations

MCScene: MODTRAN in 3D Test Problem 5: Antisolar Twilight Sky **(***ATS***)**

ATS light passes through clear sky originating from the opposite direction sun a few degrees below the horizon

- GoPro time-lapse video
	- ‒ Oceano, CA: Sun 1° below horizon
	- ‒ 07:04:25 PST, 31 Dec 2015
	- ‒ 120° horizontal FOV
	- -1 sec of video $= 1$ min real time

- MCScene simulation
	- -180° solar azimuth
	- ‒ MLS atm, no aerosols
	- ‒ Black terrain
	- ‒ Ground sensor with $60^\circ \times 60^\circ$ FOV
		- (1° to 61° elevation)
	- ‒ Brightness auto scaled

Twilight MODTRAN

Technical Course Summary

- This lecture has covered the main elements of MODTRAN's radiative transfer
	- Monochromatic Transmittance
	- MODTRAN Band Model Transmittance
	- Correlated-*k* Algorithm
	- MODTRAN Statistical Correlated-*k* Approach
	- Thermal and Solar Radiance
	- MCScene: MODTRAN in 3D
	- MODTRAN LBL Method
- Given the breadth of MODTRAN, many details had to be skipped or only touched upon
- My hope is that you have gained an appreciation for the complexity and beauty of the MODTRAN methods
- *Thank you for your attentiveness and interest!*