

### Radiometric Flat Field Calibration Using Integration Time Dither

#### Tom Chrien and Caden Laisy

**Department of Physics and Astronomy** 

## Motivation for the work

- Calibration has a tangible impact on sensor performance
  - Uncorrected gain and dark offset nonuniformity becomes sensor noise
  - Detection performance of an area array imaging camera is optimal when correctable calibration error is less that the camera's temporal noise floor
  - Sensor calibration attributes can change between ground calibration and launch, and over the mission lifetime in space
- But not all sensors can afford to bring along flat field sources
  - Calibration devices can be expensive, risky, prone to change, tricky to use and drive cost into the space sensor system
- Time critical missions can not afford to take time off to calibrate
  - Sensors that turn away to calibrate are not doing their primary mission
- Commercial users may not have the time or know-how to calibrate

#### Can integration time dither help to remove fixed pattern noise on the fly?

## **Calibration On-the-Fly Examples**

#### Pointing Calibration

- A star camera may be used to detect resident space objects, and use the known stars as points of known RA/Dec reference
- Earth viewing sensors may correlate a new image to an existing well geolocated image

#### Synthetic Dark Signal Correction

- Widenhorn developed synthetic dark signal correction methods for commercial cameras
  - Ralf Widenhorn, Armin Rest, Morley M. Blouke, Richard L. Berry, and Erik Bodegoma, "Computation of dark frames in digital imagers," Sensors, Cameras, and Systems for Scientific/Industrial Applications VIII, Morley M. Blouke, Editor, 650103, SPIE Proceedings Vol. 6501
- Chrien showed that it was possible to continually update dark signal level in a star tracker or SSA sensor, by observing the dark between the stars while tracking detector temperature
  - Chrien and Pepe, "Synthetic Correction of Dark Signal Data in a Space Situational Awareness Sensor," AMOS 2022

#### Absolute Radiometic Calibration

- Lockwood used regular passes over the Sahara to update the radiometric calibration of the ARTEMIS (TACSAT3) sensor
  - Lockwood, Ronald. On-Orbit Calibration and Focus of Responsive Space Remote Sensing Payloads

#### Scene-Based Non-Uniformity Correction

- Scribner used high pass temporal filter and artificial neural network
  - Non-uniformity correction for staring IR FPAs using scene-based techniques, SPIE Vol. 1308, (1990)
- Tong Liu reports use of an adaptive progressive strategy base on Laplacian pyramids
  - Strong NUC algorithm based on spectral shaping statistics and LMS, Optical Express Vol 31 No. 19, (2023)

#### Can we use integration time dither for on-the-fly FPN?

## Area Array Camera Model

- Camera consists of a 2-D array pixels in rows and columns pixel(r,c)
- Each pixel responds to input flux as shown on graph
- Offsets and gains vary on a pixel-to-pixel basis
- Each pixel has a read noise and photon noise contributions
- Int. time: t, det. Temp T



 Dark Offset(r,c,t,T) = Fat Zero + Dark current(r,c,T)\*t + nearfield(r, c)\*t

Signal(r,c,t) = Gain(r,c)\*Flux\*t + offset(r, c)

Modern detector arrays can change integration time frame-by-frame

### **Classic Determination of Flat Field Gain and Offset**



- Calibrated Radiance (Flat field source) consists of a uniformly illuminated screen
- Dark signal (with lens cap on)

• Gain(r,c,t) = 
$$\frac{\text{Signal}_a ve_{FF}(r,c) - \text{dark}_a ve(r,c)}{FF_{Flux} * time}$$

• Flux(r,c,t) = 
$$\frac{Signal(r,c) - dark(r,c)}{Gain(r,c)*t}$$

 Many frames of flat field signal and dark are collected and averaged to suppress calibration noise

## **CMOS** Camera

- MT9P031 Sensor Chip
- DMK27BUP031 Camera
- SharpCap 4.1 Image Capture Software
  - Enables control of:
    - Frame rate
    - Integration time
    - Bit depth
    - Fat Zero offset
    - Window regions
    - File Format

#### Table 1. KEY PERFORMANCE PARAMETERS

| Parameter                       |                                | Value                                                                            |
|---------------------------------|--------------------------------|----------------------------------------------------------------------------------|
| Optical Format                  |                                | 1/2.5-inch (4:3)                                                                 |
| Active Imager Size              |                                | 5.70 mm (H) x 4.28 mm (V)<br>7.13 mm Diagonal                                    |
| Active Pixels                   |                                | 2592 H x 1944 V                                                                  |
| Pixel Size                      |                                | 2.2 x 2.2 μm                                                                     |
| Color Filter Array              |                                | RGB Bayer Pattern                                                                |
| Shutter Type                    |                                | Global Reset Release (GRR),<br>Snapshot Only<br>Electronic Rolling Shutter (ERS) |
| Maximum Data Rate / Pixel Clock |                                | 96 Mp/s at 96 MHz (2.8 V I/O)<br>48 Mp/s at 48 MHz (1.8 V I/O)                   |
| Frame Rate                      | Full Resolution                | Programmable up to 14 fps                                                        |
|                                 | HDTV (640 x 480, with binning) | Programmable up to 53 fps                                                        |
| ADC Resolution                  |                                | 12-bit, On-chip                                                                  |
| Responsivity                    |                                | 1.4 V/lux-sec (550 nm)                                                           |
| Pixel Dynamic Range             |                                | 70.1 dB                                                                          |
| SNR <sub>MAX</sub>              |                                | 38.1 dB                                                                          |
| Supply Voltage                  | I/O                            | 1.7–3.1 V                                                                        |
|                                 | Digital                        | 1.7-1.9 V (1.8 V Nominal)                                                        |
|                                 | Analog                         | 2.6-3.1 V (2.8 V Nominal)                                                        |
| Power Consumption               |                                | 381 mW at 14 fps Full Resolution                                                 |
| Operating Temperature           |                                | -30°C to +70°C                                                                   |
| Packaging                       |                                | 48-pin iLCC, Die                                                                 |

#### We used these cameras in teaching PHYS3440/A -Applied Optics at CPP

### Example Dark Offset From CMOS Camera



## Flat Field Calibration Example



- Single Frame collected at 3 ms, dark subtracted
- Percent noise: 7.36%



- Flat Fielded (4 ms gain)
- Percent noise: 2.03%
- (~temporal noise floor)

#### **Can Integration Time Dither Be Used Recover Offset?**



 $S_{t+\Delta t}(r,c) = Gain(r,c)*Flux(r,c)*(t+\Delta t) - Offset(r,c)$ 

Offset(r,c) =  $S_t(r,c) - {\Delta S(r,c)^*/\Delta t}^*t$ 

### **Calibration Using a Complex Cloud Image**



## Dither Dark Compared To Measured Dark



Dark offset patterns are recoverable, but are noisier, due to added signal noise

### How does dither dark correction compare?



Ratio of Raw Signal to Dark corrected signal

- Left: Dither dark from the ave of 30 sets of dithers
- Right: Traditional measured dark, ave of 30 frames Bottom: cross-track of corrected scene (measured dark)

Dither dark would require 1000's of sets to suppress noise level to measured dark levels





# Target Detection Algorithms already Provide Some Calibration Correction

If the task at hand is to detect and missile against a cluttered Earth background, there are a number of existing algorithms

#### Frame differences suppress background and fixed pattern noise as the same time, while increasing contrast on a moving target

• Tends to remove fixed pattern noise by frame differencing

#### **Principal Components Background Suppression**

- Also helps to remove jitter-enhanced clutter
- J.A. Kirk, "Principal Component Background Suppression," 1996 IEEE Aerospace Applications Conference Proceedings

## Integration Time Dither Assessment

#### Can be used to estimate offset correction, However

- Offset Noise is higher due to higher scene photon noise
- Dark current signal is a function of integration time
  - Must be known or small
- Near field signal is a function of integration
  - Must be known or small
- Previous works shows that these maybe modeled separately, but that requires time to characterize dark and near field signal
- It does appear to be possible to use time dither to recover the gain term
- It is difficult to assess improvement due to offset correction
  - Noise assessment is easier on a flat field