Appliqué Sensor Interface Module: An Enabling Technology For Space PnP Systems

15 Aug 2007

Lt Jeffrey Scott
Project Lead, Compact Avionics
Space Electronics Branch,
Space Vehicles Directorate,
Air Force Research Laboratory,
Kirtland Air Force Base, N.M.
Overview

• Background
• ASIM in SPA
• Current Status
• Demonstrations
• Future ASIM Work
Operationally Responsive Space

President’s National Security Presidential Directive/NSPD-40, 6 Jan 2005
“Demonstrate an initial capability for operationally responsive access to and use of space —providing capacity to respond to unexpected loss or degradation of selected capabilities, and/or to provide timely availability of tailored or new capabilities—to support national security requirements;…”

TacSat Demonstration Objectives

Satellites
- Spacecraft recurring cost < $20M
- Less than 1 year development time
- Enable rapid integration of new technologies and payloads (i.e Plug-n-Play capable)
- Payload mass three-times bus mass
- Militarily significant payloads
- Designed for ~ 1 year mission life

Launch
- Launch from call-up < 6 days
- Launch costs < $10M

Checkout, Ops, Theater Integration
- On-orbit check-out < 4 hours
- Theater & global tasking/data dissemination
- Lean ops < 4 people
Responsive Space

1 Day or Less
- Rapid Initialization
 - Autonomous checkout & calibration

2.4 Days
- Launch
 - Satellite/booster integration
 - Pre-launch test

2-3 Days
- User Call Up
 - Design satellite
 - Assemble satellite
 - Integrate payload(s)
 - Test

Information for Warfighter
- Payload(s) to meet identified shortfalls or gaps
- Real-time, Dynamic IP Addressable Tasking
- Focused Real-time Products For Individual Tactical Units
- High Bandwidth Theater Downlink
- Tactical Terminal
Space Plug-and-Play Avionics (SPA)

• Plug – Hardware
 – Data Network
 ➢ USB 1.1 12 Mbps
 ➢ SpaceWire 625 Mbps
 – Power Distribution
 ➢ 4.5 amp monitored with breaker
 – Time Synchronization
 ➢ 1 Hz
 ➢ Accurate clocks
 – Single Point Ground

• Play – Software
 – Self-Forming Networks
 ➢ Spacecraft as a robust network
 – Self-describing components
 ➢ Extensible Markup Language (XML) Transducer Electronic Data Sheet (xTEDS)
 ▪ Data outputs
 ▪ Command inputs
 ▪ Interfaces supported
 ▪ Services provided
 – Machine-Negotiated Interfaces
 ➢ Satellite Data Model (SDM)
 ▪ Query and discovery
 ▪ Distributed processing
 ▪ Peer to peer messaging
 ▪ Help desk for applications
 ➢ Appliqué Sensor Interface (ASI)
Appliqué Sensor Interface Module (ASIM)

SPA Component

Legacy Component

SPA Interface Module (ASIM)

SPA Robust Hub

Self-Defining Data Sheet (xTEDS)
- Data Products
- Commands
- Interfaces
- Services

Common Data Dictionary (CDD)
- Standard data meaning
- Distributed to all interested parties
- Extensible

Component

xTEDS

Satellite Data Model

Data Manager

Application

Self-defining – Data, Commands, Services, & Interfaces
Sidewide to implement the Play side of SPA
Query and Discovery for software that can adjust to differing configurations
"Help Desk" for flight application software
ASIM Capabilities

• Care and feeding of attached device
 – Native commanding – implementation of SPA command
 – Health and status monitoring
 – Thermal control – under limit and over limit

• SPA data interface
 – Data messages
 – Command messages
 – Services

• System interfaces
 – Power
 – Safety

• Hardware In-the-loop (HWIL) interface
 – Initialization message
 – Test Bypass Protocol
Incorporate signal injection capabilities into the core of the ASIM.
Current ASIM Status

- Component style part with small footprint
- Module mounts on a carrier board with instrument specific electronics
- Gen 1 design based primarily on SPA-U although much work is being done to incorporate SPA-S capability
- Core design is intended to serve as a model for a future rad-hard ASIC
Gen 1 ASIM Baseline Code

- USB and SpaceWire Communications modules
- New subscription driver
- ASIM hardware drivers and application code remain relatively unchanged

![Diagram of ASIM Communication Modules]

<table>
<thead>
<tr>
<th>Main Executive (ASIMFW.C / GLOBAL.H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPA Communication Tasks: USB.C and SDM.C</td>
</tr>
<tr>
<td>Performs all SPA communication. Requests data from the application task.</td>
</tr>
<tr>
<td>Application Task (ASIMAPP.C): Performs sensor specific tasks. Uses communication task exports for communication.</td>
</tr>
<tr>
<td>Debug Task (DEBUG.C): Uses the serial port for printf debugging. Can be removed when not needed.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Communication Driver Modules</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB Device Definitions (UDC.H)</td>
</tr>
<tr>
<td>Spacewire Device Definitions (SDC.H)</td>
</tr>
<tr>
<td>Spacewire Driver (SPACEWIRE.C)</td>
</tr>
<tr>
<td>Subscription Driver (SUB.C)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Application Driver Modules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Application (LCD.C)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hardware Driver Modules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial Port (SERIAL.C)</td>
</tr>
<tr>
<td>Analog Input (ADC.C)</td>
</tr>
<tr>
<td>Analog Output (DAC.C)</td>
</tr>
<tr>
<td>Digital I/O and Power Relay (DIO.C)</td>
</tr>
<tr>
<td>Test Bypass Register File (REGFILE.C)</td>
</tr>
</tbody>
</table>
Re-Entry Structures Experiment I (RESE-1) Suborbital Flight

RESE-1 Suborbital Flight Experiment
- Sounding Rocket: Single-stage Terrier
- Launch Site: White Sands Missile Range, N.M.
- Launch Date: ~ September 2007
- Max Altitude: ~ 200,000 to 250,000 ft
- Duration above 90,000 ft: ~100 sec

RESE-1 Plug-and-Play Experiment on dedicated composite deck with 4 SPA-U spacecraft sensors:

- SPA hardware integrated into controller cards and configured for space in 4 months

SPA hardware:
- Magnetometer
- Tri-axial Accelerometer
- Strain Gauges
- Thermistors

Two controller cards with integrated SPA-U hub and ASIMs integrated on bottom of composite deck
TacSat-3: Spacecraft Avionics Experiment (SAE)

- Launch on TacSat-3 in early 2008
 - Smart Deck with SPA-U host, 4 SPA-U ports, and data handling system
 - MSI’s Intelligent Power & Data Ring (IPDR) with multiple processing nodes
 - SpaceWire/SPA-S link between Sensor Processor and C&DH for backup downlink capability of HSI data
 - SPA-U PnP experiments (2 via Smart Deck, 2 via IPDR): Sun sensor, rate sensor, temperature sensors, AC coupled interconnect
 - Mass: 8.3 kg, Orbital average power: 10W, Dimensions: 10.2” x 9.2” x 5.75”
Plug-and-Play Satellite (PnPSat)

- Modular structure incorporates
 - Locking hinge joints allow panels to rotate about hinge line for easy access
 - Standardized mounting grid (5 cm)
 - SPA mechanical and electrical interfaces for 48 components/payloads on interior/exterior
 - Connectors and harness recessed in panels
 - Inter-panel harness keep electrical network intact throughout assembly, integration and test

- Higher performance PnP components incorporated in successive upgrades

- Payloads will be STP exp’ts that match bus capability

- Planned launch in Oct 2009 as co-manifest with SIV-1 on Minotaur IV

- Spacecraft configuration to be frozen ~6 months prior to launch to complete final integration and test
Interior of Panel

- Electronics infrastructure is internal to panel
 - Electronics boards and inter-board harnessing
 - Provides power and data services to each of eight payload endpoints per panel
 - Networked to all panels through inter-panel harnessing across specific joints
Future ASIM Work

• Small number of very high performance ASIMs (Tier 4)

• Current implementation includes the middle two Tiers: SPA-S for high data rate components, and SPA-U for low data rate components

• Tier 1 may include the largest number of components, but has the lowest data rate
Roadmap for Future ASIM Work

<table>
<thead>
<tr>
<th>Year</th>
<th>SPA-1</th>
<th>SPA-U</th>
<th>SPA-S</th>
<th>SPA-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td><10kbps</td>
<td><1Mbps</td>
<td><1Gbps <150Mbps (Lite)</td>
<td><10Gbps</td>
</tr>
<tr>
<td>2008</td>
<td></td>
<td>Gen 1.2b 8-bit</td>
<td>Gen 1.3b 32-bit</td>
<td>Gen 2.4a HiPer-CASM</td>
</tr>
<tr>
<td>2009</td>
<td>Gen 2.1a ASIM</td>
<td>Gen 1.2c 8-bit</td>
<td>Gen 1.3c 8-bit</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>Gen 2.1b ASIM</td>
<td>Gen 1.2d 8-bit (Lite)</td>
<td>Gen 1.3d 8-bit (Lite)</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>0.1mw, 1 cm²</td>
<td>10mw, 2.5 cm²</td>
<td>10mw, 2.5 cm²</td>
<td><5W, 12cm²</td>
</tr>
<tr>
<td>future</td>
<td>~1W, 6.5cm²</td>
<td>500mw, 6.5cm²</td>
<td>50mw, 2.5 cm²</td>
<td><5W, 12cm²</td>
</tr>
</tbody>
</table>
Conclusion

• Plug-and-play modularity can dramatically cut cost and schedule, insert latest technology, and increase mission flexibility

• Appliqué Sensor Interface Modules (ASIMs) are simplifying the transition from legacy to plug-and-play components and enable successful implementation of SPA by providing:
 – Single point/standard electrical interface
 – Self-describing components
 – Machine negotiated interfaces

• Series of flight demonstrations are proving out the technology

• Family of ASIMs envisioned to meet various power and performance requirements
Questions?
Standardization of Hardware and Software Interfaces

- Work proceeding under an approved AIAA Committee on Standards (CoS)
- Documents under development
 - SPA-U standard (USB)*
 - SPA-U guideline (USB)*
 - SPA-S standard (SpaceWire)**
 - SPA-S guideline (SpaceWire)**
 - xTEDS schema standard**
 - xTEDS guideline**
 - Applique Sensor Interface Module (ASIM) guideline**
 - Satellite Data Model (SDM) guideline**
 - Push-button toolflow guidebook**
- Technical Committee (TC) with five working groups
 - Gen0 hardened parts
 - Gen1 Intellectual Property development
 - Software
 - Testbed
 - Technology
- Meetings Held 3-4 times/yr

*Drafts in coordination
**Drafts in work
Vertically Layered Software Model

Satellite Data Model (SDM)
- Enables flight software to be plug-and-play aware

Flight Software
- Modular and adaptable
- Reusable modules
- Autonomous
- Smart and fault tolerant
- Written prior to s/c design

Mission Code / Scripts
- Application #1
- Application #2
- Application #i
- Application #N

Task Manager
Data Manager
Sensor Manager (SM)

Processor Manager

RF

CPU
Automated Mission and Spacecraft Design

- Type of sensor
- Target locations
- Collection duty cycle
- Theater downlink

Mission Capture → Orbit Design → Spacecraft Design → Design Verification

Configurability + Design Automation = Speed

3D Design → Flight Verification

- Bill of materials
- Assembly instructions
- Software load
- Ground console

Hardware-in-the-loop testbed with full 6 degrees of freedom physics simulation
Space Plug-n-Play USB & SpaceWire (SPA-U & SPA-S)

- Take standard USB & SpaceWire and add:
 - 28V DC s/c power & ground (power return)
 - +/- Synch pulses (RS-422, 1 pps)
 - User-definable chassis or single-point ground

- SPA-U
 - 9-pin single point connector
 - 12 Mbps, to 3 Amps 28V DC
 - USB (1.1 or 2.0) for data transport
 - USB Lines: +/- Data, 5V DC, Ground

- SPA-S
 - 13-pin single point connector
 - 675 Mbps, to 20 Amps 28V DC
 - SpaceWire for data transport
 - SpaceWire Lines: +/- Xmit Data, +/- Xmit Clock, +/- Rx Data, +/- Rx Clock, Ground