GLAMR Calibration as an Absolute Radiometric **Calibration Approach**

Zhipeng (Ben) Wang, Kurtis Thome, Brian Wenny, and Raviv Levy

Science Systems and Applications Inc. NASA Goddard Space Flight Center

June 10, 2024

team and GLAMR team

Courtesy of NASA Landsat calibration

Outline

- The uncertainty associated to the traditional sourcebased RadCal method is assessed at 2+% for radiance measurement in the reflective solar (RS) region.
- The requirement for CLARREO Pathfinder (CPF) is 0.3%.
- Detector-based RadCal using tunable laser, like GLAMR, as light source could meet this calibration requirement.
- To demonstrate and assess the capability of the GLAMR RadCal as an absolute RadCal approach, the data from Landsat-9 OLI-2 pre-launch instrument-level spectral test using GLAMR is re-visited.
- Absolute GLAMR RadCal was conducted for CPF HySICS, the first for an operational instrument.

Detector-Based Absolute Radiance Calibration using GLAMR

- Goddard Laser for Absolute Measurement of Radiance (GLAMR) is a tunable laser source, that scans the RS range of 350-2500 nm.
- GLAMR RadCal has two steps: sphere Cal to derive GLAMR detector coefficients to calculate its output radiance; instrument Cal to measure instrument detector's responsivity
- The detector's responsivity is

$$ASR_k = \frac{S(\lambda_k)}{L(\lambda_k)}$$

S: detector's response in DN

L: GLAMR laser radiance.

ASR: Absolute Spectral Response function

■ The "band"-integrated gain is

$$g_{BI} = \sum_{k=1}^{k_{\text{max}}} \frac{ASR_k + ASR_{k-1}}{2} [\lambda_k - \lambda_{k-1}]$$

LAMR) is a nm. R detector al to measure

Detector-Based RadCal: Improved Accuracy

Detector-based GLAMR RadCal uncertainty budget (partially) instrument dependent)

	UV	VIS	NIR	NIR	SWIR	S
Wavelength (nm)	350-400	400-950	950-1350	1350-1500	1500-1800	180
RSS Combined	0.24%	0.20%	0.38%	0.88%	0.45%	1.

Typical uncertainty values for existing RS instruments, calibrated by source-based approach

Instrument	Platform	Launch Year	UC Specified
MODIS	Terra/Aqua	1999/2002	2% (R*) 5% (L)
VIIRS	S-NPP/NOAA-20/21	2011/2017/2022	2% (R)
OLI	Landsat-8/9	2013/2021	3% (R) 5% (L)
OLCI	Sentinel-3 A/B	2016/2018	2% (R)

* R: reflectance. L: radiance

Case Study: Landsat-9 OLI-2 GLAMR RadCal

- Pre-launch radiometric, spectral and spatial characterizations were conducted under a coordinated testing environment CATS for OLI-2
- GLAMR is required ONLY for instrument-level spectral characterization
- Official OLI-2 absolute RadCal is source-based, using a lampilluminated integrating sphere (DSS) as light source

OLI-2 spectral bands overview

	Band Nama	Center Wavelength	Bandwidth	GSD	SND	
		(nm)	(nm)	(m)	SINK	
GLAMR	Coastal/Aerosol	443	20	30	130	
	Blue	482	65	30	130	
	Green	562	75	30	100	
	Red	655	50	30	90	
	NIR	865	40	30	90	
	SWIR1 *	1610	100	30	100	
	SWIR2 *	2200	200	30	100	
	Pan	590	180	15	80	
	Cirrus *	1375	30	30	50	
	Notes: * SWIR Bands. All other bands are Visible/NIR.					

NAS

Knight, E.J., "Overview of the Operational Land Imager (OLI-2) pre-launch characterization and calibration." (2019)

GLAMR Data Collected: Samples

- Sample data for in-band measurements of NIR band (845-885 nm)
- GLAMR was operated with OPO-NIR laser
- Four segments of measurements circled

GLAMR Wavelength

Sample ASRs from GLAMR RadCal

• At each GLAMR wavelength λ_k , the ASRs of all detectors/bands are derived. This wavelength may correspond to the "in-band" region of some bands and "out-of-band" region of other bands.

developed to process CPF GLAMR RadCal data.

DSS Gain vs GLAMR Gain: Absolute-Scale at Pixel-Level

NAS

DSS Gain vs GLAMR Gain: Absolute-Scale at Pixel-Level

DSS Gain vs **GLAMR** Gain: Band-Averaged Values

- The uncertainty of DSS RadCal is assessed at $\sim 2\%$ (k=1) for all bands
- The GLAMR/DSS gain deviation in SWIR region is ~7%

2250

Comparison of OLI-2 Reflectance/Radiance RadCal: DSS Gain

Comparison of OLI-2 Reflectance/Radiance RadCal: GLAMR Gain

NASA

Preliminary Results from CPF HySICS GLAMR RadCal

- CPF's main payload HySICS is an Offner-Chrisp imaging spectrometer
- GLAMR RadCal of HySiCS was conducted in 2023 as part of the CPF pre-launch Independent calibration efforts
- Typical ASRs and R_{BI} measured from the calibration are shown

Summary

NASA

- One realization of the detector-based, absolute RadCal has been successfully achieved at NASA GSFC with the GLAMR laser system as light source.
- The uncertainty of GLAMR RadCal has been assessed to be smaller than the traditional source-based approach.
- Pre-launch calibration of OLI-2 provides an opportunity to compare these two approaches. Deviations between the derived detector gain coefficients range from ~0 for the cirrus band to $\sim 7\%$ for the SWIR bands.
- The root cause of these deviations is to be investigated.

