A Simple Time Synchronization Scheme for Satellite Clusters in Formation Flying

Dao Thi Hong Diep

N. Nagarajan

Nanyang Technological University,
Singapore
Objective

• To formulate a time synchronization strategy for satellites in formation.

• Analyze and establish the feasibility by simulation.

Need

• For navigation among satellites in formation.

• For precise electronic steering of the beams of the satellites to synthesize very large antenna structures.
Contents

• Synchronization in Fireflies
• Proposed ‘Transmit & Listen’ method
• Calculation and correction of the clock offsets
• Simulation results by Matlab
• Conclusion
Synchronization in Fireflies

• *Synchronization in Fireflies is a self-organized process.*

• *Fireflies influence each other.*

• *Emit flashes periodically and receptive to flashes from others*
Synchronization in Fireflies...

- **Pulse Coupled Oscillator Model.**

- Synchronization accuracy is governed by the propagation delay in the line-of-sight.
‘Transmit & Listen’ method

- Whenever A wants to synchronize with respect to B, it transmits a pulse which is reflected back by B.
- B also periodically transmits pulses.
‘Transmit & Listen’ method

Counter starts at t_A

\[t_{AA} = n_{AA} T = \frac{2d}{c} \]
\[t_{BA} = n_{BA} T = \tau + \frac{d}{c} \]
\[t_c = t_{AA} / 2 = \frac{d}{c} \]
Calculation and correction of the offsets

The Clock Offset (τ) equals,

$$\tau = \left(n_{BA} - \frac{n_{AA}}{2} \right) T$$

Next transmission of A is delayed (or advanced) by τ or a fraction of it ($k\tau$)
Single step and progressive correction offsets

- **2nd cycle offset:**
 \[
 t_{A,2} = t_A + NT + \tau \\
 = t_A + NT + \left(n_{BA} - \frac{n_{AA}}{2} \right) T
 \]

- **2nd cycle offset:**
 \[
 t_{B,2} = t_B + NT \\
 = t_A + NT + \tau \\
 = t_A + NT + \left(n_{BA} - \frac{n_{AA}}{2} \right) T
 \]

\[\text{Assumption: Clock Frequencies of A and B are same}\]

- **pth cycle offset:**
 \[
 t_{A,p} = t_A + NT + k\tau \\
 t_{B,p} = t_B + NT \\
 = t_A + NT + \tau
 \]

- **2nd cycle offset:**
 \[
 = t_A + NT + \left(n_{BA} - \frac{n_{AA}}{2} \right) T
 \]

- **pth cycle offset:**
 \[
 = t_A + NT + \left(n_{BA} - \frac{n_{AA}}{2} \right) T
 \]

Offset in 2nd cycle is,
\[
(1-k)\tau
\]

Offset in pth cycle is,
\[
(1-k)^{p-1}\tau
\]
Synchronization with Unequal Clock Frequencies

Clock Periods: T for B and $T + \delta$ for A

$$
t_{A,2} = t_A + N(T + \delta) + k\tau \\
t_{B,2} = t_B + NT \\
= t_A + NT + k\tau + N\delta \\
= t_A + NT + \tau
$$

Offset in the n^{th} cycle,

$$
\tau_n = (1 - k)^{n-1} \tau_1 - \left\{ (1 - k)^{n-2} + (1 - k)^{n-3} + \cdots + (1 - k) + 1 \right\} N\delta
$$

This leads to,

$$
\tau_n = (1 - k)^{n-1} \tau_1 - \frac{1}{k} N\delta
$$

Result: Unequal frequencies lead to a fixed offset at the start of each cycle
Synchronization with Unequal Clock Frequencies

1. Initiate synchronization.
2. Calculate the offset (τ) and apply progressive correction by factor k.
3. Repeat step 2 in each cycle and monitor τ.
4. If τ is constant after say 50 cycles, add an **additional correction (i.e. Look-ahead correction)** of $k\tau_n$ (which is equal to $N\delta$) in timing the subsequent pulses of A.
5. This brings the offset to $\tau_n = (1 - k)^{n-1} \tau$, for $n > 50$.

$$\tau_n = (1 - k)^{n-1} \tau$$
Simulation results by Matlab

Typical Formation of 4 nano-satellites around a mother satellite (B)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Clock Period (nSec)</td>
<td>0.1</td>
</tr>
<tr>
<td>Clock freq (GHz)</td>
<td>10</td>
</tr>
<tr>
<td>Initial Offset (Counts)</td>
<td>0</td>
</tr>
<tr>
<td>Node Status</td>
<td>M</td>
</tr>
</tbody>
</table>

Legend: M – Mother, C - Child
Simulation results

Identical Clocks, with only an initial offset

Freq=10GHz, K=0.1

Progressive Correction

<table>
<thead>
<tr>
<th>k</th>
<th>1</th>
<th>0.9</th>
<th>0.8</th>
<th>0.7</th>
<th>0.6</th>
<th>0.5</th>
<th>0.4</th>
<th>0.3</th>
<th>0.2</th>
<th>0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offset</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>9</td>
</tr>
</tbody>
</table>
Simulation results

Unequal Clock Frequencies, AND with an initial offset

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Clock Period (nSec)</td>
<td>0.1</td>
</tr>
<tr>
<td>Clock freq (GHz)</td>
<td>10</td>
</tr>
<tr>
<td>Initial Offset (Counts)</td>
<td>0</td>
</tr>
<tr>
<td>Node Status</td>
<td>M</td>
</tr>
</tbody>
</table>

Legend: M – Mother, C - Child
Conclusion and future work

• ‘transmit and listen’ method formulation is effective to time-synchronize in a formation.

• Feasible to remove the offsets due to initial mismatch and also the clock frequency differences.

• To set up an indoor UWB network with a distance of 10-20 m and conduct the experiments with 10 GHz clock.
Thank You