Multi-Evaporator Hybrid Two-Phase Loop Cooling System for Small Satellites

David Bugby

ATK Space
Beltsville, MD

21st Annual AIAA/USU Conference on Small Satellites
Where do things stand today with respect to two-phase loop cooling of spacecraft?

Is there an alternative to a CPL or an LHP?

Single-Evaporator CPLs
... A Few Flying (e.g., HST/NCS)

Single-Evaporator LHPs
... 100+ Flying on Commsats

Multiple-Evaporator Hybrid Loop Heat Pipe (ME-HLHP)

Ground Testing of ME-HLHP Based Cooling Systems for...
- Smallsats (NASA ST-8)
- Five Additional Applications
 > Laser Diode/Crystal
 > Compact Laser
 > Large Spacecraft
 > Electronics
 > Instruments

Multiple-Evaporator CPLs
... CAPL-3 Flew in 2001, None flying

Multiple-Evaporator LHPs
... None have flown
Key Contributors from ATK Space

Matt Beres
Pete Cologer
Jessica Kester
Dmitry Khrustalev
Steve Krein
Ed Kroliczek
Chuck Stouffer
Dave Wolf
Kim Wrenn
James Yun
OUTLINE

- INTRODUCTION
- BACKGROUND
- RATIONALE
- CONCEPT
- DESIGN
- TESTING
- APPLICATIONS
- CONCLUSION
OBJECTIVE: Develop two-phase loop thermal management system (TMS) to replace the traditional "cold-biasing plus heater power" approach, to enable ...

- Flexibility in component placement
- Reduced mass / heater power / volume
- Improved power resource efficiency
- Scalability from 150 kg, 200 W nominal size

... NASA ST-8 requirements
(for future missions especially those with extended eclipses and limited power)

PAPER / BRIEFING: Describes a two-phase loop based cooling system for smallsats developed during a 6-month ST-8 study and 5 subsequent ground tested cooling systems for lasers, spacecraft, electronics, and instruments.
BACKGROUND

An advanced weapon and space systems company

- **Requirements (ST-8)**
 - enable component placement flexibility
 - minimize power/mass/volume
 - improve power resource efficiency
 - scalable from 150 kg, 200 W nominal size

- **Needed Functionalities**
 - multi-evaporator bus
 - heat load sharing (HLS)
 - miniaturized components
 - thermal diode action
 - multiple condensers
 - set-point controllability
 - high conductance

- **Two-Phase Loop Architectures**
 - capillary pumped loop (CPL)
 - loop heat pipe (LHP)
 - hybrid loop heat pipe (HLHP)

CPL
- controllability
- expandability

LHP
- instant-on
- metal wicks

HLHLP
- CPL advantages
- LHP advantages
RATIONALE

<table>
<thead>
<tr>
<th>FEATURE</th>
<th>WHAT IT DOES</th>
<th>WHY IT’S GOOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-Evaporator Bus</td>
<td>Decouples structure and thermal design process so component placement is more flexible</td>
<td>Simplifies Design, Reduces Mass</td>
</tr>
<tr>
<td>Heat Load Sharing</td>
<td>Keeps environmentally exposed instruments warm when not "ON"</td>
<td>Reduces Heater Power, Improves Efficiency</td>
</tr>
<tr>
<td>Miniaturized Components</td>
<td>Reduces weight</td>
<td>Expands Packaging Options</td>
</tr>
<tr>
<td>Thermal Diode Action</td>
<td>Isolates payload/components from extreme environments</td>
<td>Expands Mission Options</td>
</tr>
<tr>
<td>Multiple Condensers</td>
<td>Reduces need to adjust attitude for thermal control</td>
<td>Increased Time Available for Science</td>
</tr>
<tr>
<td>Set-Point Controllability</td>
<td>Reduces payload/component temperature fluctuations</td>
<td>Minimizes Temperature Cycling, Lengthens Life</td>
</tr>
<tr>
<td>High Conductance</td>
<td>Enables centralized component mounting configurations</td>
<td>Shorter Electrical Harnessing, Simpler Structure, Reduced Mass</td>
</tr>
</tbody>
</table>
Multi-Evaporator Hybrid Two-Phase Loop Cooling System for Small Satellites
Multi-Evaporator Hybrid Two-Phase Loop Cooling System for Small Satellites
• **RESULTS:** With ammonia as the working fluid, 21 tests were carried out with the ST-8 ME-HLHP test loop resulting in:

- quad-evaporator transport of 8-280 W
- single-evaporator transport of 2-100 W
- power cycling from 50-200 W
- maximum heat flux of 30 W/cm²
- conductance of 5-8 W/K per evaporator
- heat load sharing greater than 95%
- condenser switching
- freeze-tolerant condenser
- set-point control to +/- 0.25 K
- rapid start-up
- sweepage evaporator power of 4W
- diode action/loop isolation
- Teflon evaporator 233-353 K cycling

• **STATUS:** All 21 tests successful ... key accomplishment was the development of a 5 μm miniaturized Teflon wick evaporator. Despite success, dual-evaporator LHP with TEC reservoir cold-biasing selected for flight experiment. Concerns ...

 - the risk of expanding beyond two evaporators
 - the impact of TEC failure on loop temperature controllability

Diode Action

Power Cycling

Heat Load Sharing

Set-Point Control

Miniaturized Al Body Teflon Wick Evaporator

Wick 0.63 cm OD
5 micron pore size
LASER DIODE/CRYSTAL COOLING
Quad-Evap., Diode 50 W/cm², Crystal 30 W/cm² (tested w/ laser)

COMPACT LASER COOLING
Dual-Evap., Two-Sided Heat Input, 50 W/cm², Mechanical Pump

APPLICATIONS
An advanced weapon and space systems company

Multi-Evaporator Hybrid Two-Phase Loop Cooling System for Small Satellites

1. Mechanical Pump
2. Filter
3. Calorimeter
4. Evaporator 1
5. Evaporator 2
6. Evap 1-2 Liquid Line
7. Vapor Line
8. Condenser
9. Reservoir
10. Sweepage Valve
11. Reservoir Chiller/Shunt
12. Chiller Path 2
13. Chiller Path 2
14. Chiller Path 1
15. Chiller Path 1
16. DP Transducer
17. Fill Tube
APPLICATIONS

An advanced weapon and space systems company

HIGH POWER SPACECRAFT COOLING
6-Evap., 10 kW, Mech./Capillary Pumping ... AFRL DUS&T

RACK ELECTRONICS COOLING
Navy SBIR with TA&T, 3-Evap. ME-HLHP, 300 W, Water

3 Evaporators 2m Above Condenser

Elevation Control Hinges/Flex Lines

3 Evaporators 1m Below Condenser

Multi-Evaporator Hybrid Two-Phase Loop Cooling System for Small Satellites

21st Annual AIAA/USU Conf. on Small Satellites
INTERMITTENT-POWER INSTRUMENT COOLING

Dual-Cascaded Loop, 0-400 W 4-Evap. Instrument Side ME-HLHP, 100 W Avg. 1-Evap./2-Condenser Radiator Side HLHP

APPLICATIONS

An advanced weapon and space systems company

ADDITIONAL TECHNOLOGIES DEMONSTRATED ON THIS PROJECT
1. Integral Condenser/TSU
2. DTE-TSW Reservoir Shunt
3. Liquid Cooled Shield (LCS)
4. TEC Reservoir Cold-Biasing
5. Parallel or Series Plumbing

Multi-Evaporator Hybrid Two-Phase Loop Cooling System for Small Satellites
SUMMARY OF ME-HLHP GROUND TESTING

<table>
<thead>
<tr>
<th>Loop Feature</th>
<th>1a</th>
<th>1b</th>
<th>2</th>
<th>3a</th>
<th>3b</th>
<th>4</th>
<th>5a</th>
<th>5b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Evaporators</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>6</td>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Wick OD (cm)</td>
<td>0.64</td>
<td>1.2</td>
<td>1.2</td>
<td>1.9</td>
<td>1.9</td>
<td>1.3</td>
<td>0.8</td>
<td>1.8</td>
</tr>
<tr>
<td>Saddle Width (cm)</td>
<td>2.5</td>
<td>n/a</td>
<td>1.0</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Evaporator Length (cm)</td>
<td>5</td>
<td>23</td>
<td>7.5</td>
<td>46</td>
<td>23</td>
<td>2.5</td>
<td>8.9</td>
<td>23</td>
</tr>
<tr>
<td>Wick Material</td>
<td>Teflon</td>
<td>Ti</td>
<td>Ti</td>
<td>Ti</td>
<td>Ti</td>
<td>Ti</td>
<td>Ti</td>
<td>Ti</td>
</tr>
<tr>
<td>Max Loop Heat Load (W)</td>
<td>280</td>
<td>2000</td>
<td>600</td>
<td>880</td>
<td>2000</td>
<td>10000</td>
<td>300</td>
<td>400</td>
</tr>
<tr>
<td>Max Evap Heat Load (W)</td>
<td>100</td>
<td>500</td>
<td>150</td>
<td>440</td>
<td>1500</td>
<td>2800²</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Max Heat Flux* (W/cm²)</td>
<td>30³WA</td>
<td>50³IS</td>
<td>30²IS</td>
<td>55²A</td>
<td>17³WA</td>
<td>32³WA</td>
<td>30³WA</td>
<td>14³WA</td>
</tr>
<tr>
<td>Transport Length (cm)</td>
<td>1</td>
<td>2</td>
<td>0.5</td>
<td>0.5</td>
<td>3</td>
<td>6</td>
<td>0.13</td>
<td>0.5</td>
</tr>
<tr>
<td>Adverse Elevation (m)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1 to 2</td>
<td>-1 to 2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Evaporator Body Material</td>
<td>Al</td>
<td>Al</td>
<td>Al</td>
<td>Al</td>
<td>Al</td>
<td>Al</td>
<td>Cu</td>
<td>Al</td>
</tr>
<tr>
<td>Working Fluid</td>
<td>NH3</td>
<td>NH3</td>
<td>NH3</td>
<td>NH3</td>
<td>NH3</td>
<td>Water</td>
<td>NH3</td>
<td>NH3</td>
</tr>
</tbody>
</table>

* Heat flux based on: saddle area (SA) at max evap. heat load, projected wick area (WA) at max evap. heat load (2 = 2-sided heating), or heat source (HS) heat flux.

**P = parallel, S = Series, TSW = thermal switch, TSU = thermal storage unit, TEC = thermoelectric cooler, LCS = liquid cooled shield, MP = mechanical pump.
CONCLUSION

- **OVERALL:** This briefing has described the development and testing of a multi-evaporator two-phase loop based cooling system for small satellite thermal control.

- **TECHNOLOGY BASIS:** Multi-evaporator hybrid loop heat pipe (ME-HLHP), a two-phase loop cooling system with CPL and LHP underpinnings, but with key advantages over each.

- **PRIMARY APPLICATION:** Cooling system designed/built/ground-tested as part of the NASA ST-8 Phase A study from Jan-Jun 2004. At that time, it was the first-ever ground test of a miniatuized ME-HLHP cooling system.

- **ADDITIONAL APPLICATIONS:** The design and successful ground testing of five subsequent ME-HLHP based cooling systems -- in the areas of laser, spacecraft, electronics, and instrument cooling -- were also described.

- **FLIGHT EXPERIMENT:** The ME-HLHP architecture has clearly been proven through extensive ground testing for a variety of applications ... to fully validate it for future smallsat missions, an ME-HLHP flight experiment is needed!

NOTE: Paper Was Originally a Backup for Session X, so its file name on the Proceedings CD is SSC07-X-11.pdf