

Calibration Considerations and Scoring the Quality of Calibration

Joe Tansock, Distinguished Calibration Engineer Space Dynamics Laboratory 416 E. Innovation Avenue North Logan, UT 84341 (435) 713-3554 joe.tansock@sdl.usu.edu

Outline

- Introduction to "Guidelines for Radiometric Calibration of Electro-Optical Instruments for Remote Sensing, NISTHB 157"
- Calibration Timeline (calibration should be addressed throughout the sensor lifetime)
- Why calibration is necessary
- Calibration Success Example
- Typical Imaging Radiometer Calibration Parameters
- Calibration lessons learned
- Why is on-board source important to calibration
- On-board calibration source types
- Potential on-orbit calibration sources
- Considerations for scoring the quality of calibration
- Summary

Publication (NIST HB 157)

https://www.sdl.usu.edu/capabilities/testing-calibration/electrooptical-calibration/

https://nvlpubs.nist.gov/nistpubs/hb/2015/NIST.HB.157.pdf

Or perform an internet search on NIST HB 157

- Presents guidelines on conducting a radiometric calibration of an electro-optical (EO) sensor for space-based remote sensing
- Intended as a useful reference for planning and successfully carrying out a sensor calibration
 - Managers, technical oversight personnel, scientists, and engineers
- Represents lessons learned by authors from academic institutions, US government, and industry (22 nationally recognized authors)

Sensor Lifetime Timeline

• Calibration should be addressed throughout the sensor lifetime

SDL

*Guidelines for Radiometric Calibration of Electro-Optical Instruments for Remote Sensing (NIST HB 157)

Why is Calibration Necessary?

- EO sensors require calibration to:
 - Identify and quantify a sensor's response to radiometric sources
 - Characterize interactions and dependencies between the between the optical, electronic components and temps
 - Discover sensor performance dependencies
 - Evaluate systematic errors
 - Verify requirements

Calibration Success Example

- SABER (Sounding of the Atmosphere using Broadband Emission Radiometry)
 - 10-channel radiometer spans range of wavelengths from 1.27 to 17 μm
 - Launched December 7, 2001
- Calibration planning began early in the sensor design¹
 - SABER leadership made the decision early on to build the best calibrated instrument with available resources.
 - This focus on calibration affected many subsequent decisions on parts selection and testing
 - Coordinated with science, instrument, and calibration teams
 - Iterated on calibration approach (strawman plan formulated)
 - Updated sensor design capability to support calibration
 - Drafted uncertainty budget and tracked throughout development process
 - Performed comprehensive ground calibration before launch
- Both pre-and post-launch calibrations were used to minimize uncertainty²
- SABER has been observing infrared radiation since January 2002 and continuing until the present day³
- As of last year 2023 there was >2200 peer-reviewed lifetime publications

¹Tansock et al., SABER Ground Calibration, IJRS. 2003.

²Tansock et al., "An Update of the SABER Calibration."

³Mlynczak et al., "Infrared Radiation in the Thermosphere Near the End of Solar Cycle 24." Geophysical Research letters. 2018.

Courtesy of NASA

CALCON 2024, June 10-13 2024 SDL/24-1427 Rev. -

Typical Calibration Equations and Parameters for Imaging Radiometer

- Radiance Calibration Equation
 - The radiance calibration equation converts sensor response in digital counts into physical units for an extended source $\begin{bmatrix} 1 \\ P \end{bmatrix} \begin{bmatrix} P \\ C \end{bmatrix}$

$$L_{M,k,t} = \frac{1}{\Re_L} r_{k,t} = \frac{1}{\Re_L} \left[\frac{B_k G_I}{F_{NUC,k}} \left[F_{Lin,k} \left(r_{T,k,t} \right) - F_{Lin,k} \left(r_{O,k,t} \right) \right] \right]$$

L _{M,k,t}		$F_{Lin,k}(r_{T,k,t})$	
\Re_L	Peak radiance responsivity (counts/Wcm ² sr)	$r_{T,k,t}$	Raw pixel response (counts
r _{k,t}	Corrected pixel response (counts)	r _{O,k,t}	Raw pixel background response (counts)
B _k	Bad pixel mask function (unitless)	t	Time – parameters vary as function of time
G _I	Integration time normalization (unitless)	k	Pixel index – unique to each pixel
F _{NUC,k}	Non-uniformity correction function (unitless)		

- Characterization of parameters requires separation of responsivity domains
 - Radiometric, spatial, spectral, temporal, polarization

Typical Calibration Equations and Parameters for Imaging Radiometer

- The radiometric model consists of additional parameters needed to understand and model instrument performance
- Source characterization parameters

Relative Spectral	Effective Field of	Polarization
Response	View	Sensitivity
Near Angle Scatter	Focus	Point Response Function
IFOV Line-of-Sight	Waveband	Focal Plane Image
Map	Crosstalk	Latency

• Sensor performance metrics

Noise-Equivalent Irradiance or	Noise-Equivalent Radiance
target (NEI,NET)	(NER)
Saturation-Equivalent Irradiance	Saturation-Equivalent Radiance
(SEI)	(SER)
Noise-Equivalent Delta	NUC and Stability (Fixed Pattern
Temperature (NEdT)	noise)
Response Repeatability &	Dark Offset/Background
Response Noise	Repeatability (Dark Noise)
Angle Repeatability & Jitter	1/f Noise
Sensor Time-Stamp Characterization	Sensor Frequency Response
Dynamic Range	Saturation Behavior
On-Board Calibration Source	Any other unique sensor
Characterization	performance parameters

Lessons Learned

- Principles of Effective Calibrations:
 - 1. Calibration planning should begin early
 - 2. Trade-Offs must be made
 - 3. Calibration must be traceable
 - 4. System-Level Testing provides the best representation
 - Both Pre- and Post-Launch calibration are critical to a successful calibration

On-board calibration source is common to both pre-launch and post-launch calibrations

*Guidelines for Radiometric Calibration of Electro-Optical Instruments for Remote Sensing (NIST HB 157)

CALCON 2024, June 10-13 2024 SDL/24-1427 Rev. -

Additional Considerations and Lessons Learned

- Dedicated calibration team throughout the entire mission
- Good communication with sensor vendor, project/science team, flight/mission operation team, and data product developers and users
- Validation/verification via different approaches/independent implementation
- Experience from heritage and other sensors
- Different approaches/strategies for calibration update/adjustment (forward processing) and reprocessing
- Documentation

Why is On-board Source Important to Calibration

- Provides tie between pre-launch (i.e., ground calibration), other launch preparation activities
 - Spacecraft integration and launch readiness
 - On-orbit calibration (after launch)
- Allows for monitoring of sensor repeatability
 - Sensor response, noise, repeatability
- Allows for monitoring of sensor contamination
 - Monitor calibration response degradation due to contamination
 - Potentially quantify type and thickness of contamination (assuming spectral signatures are measured and then combined with degradation response level contamination thickness estimated)

TIMED/SABER

The SABER instrument used two approaches for the in-flight calibration (IFC) source designs:

- Full aperture flat plate cavity enhanced blackbody for MWIR and LWIR bands
- Near-field source lamps integrated into the full aperture blackbody for the near infrared (NIR) and short-wave infrared (SWIR) bands

Calibration benchmarks were performed throughout the mission by rotating the scan mirror to view the blackbody and near-field sources (Tansock 2003).

On-board Calibration Source (Types)

- Tungsten filament lamps (often in an integrating sphere, near-field or Jones source arrangement)
- Infrared thermal sources (glow bars, heated filaments in transistor cans, etc.)
- Blackbodies (care must be taken to not have the blackbody output be dependent on environmental surroundings)
- Solar diffusers (Jack Ziong reference)
- Ejected calibration sources (used on SPIRIT III)
- Custom calibration source assemblies (Spatial and spectral radiometric source assemblies)
- Emerging LED sources (emerging calibration source, 2022 launch of EnMAP)
- Quantum Cascade Laser (QCL) (preliminary qualification testing by PNNL and USU is promising but has not been baselined for flight – to my knowledge)

CALCON 2024, June 10-13 2024 SDL/24-1427 Rev. -

On-orbit Calibration Sources

Name	Description
On-board sources	Radiance and/or spectral reference sources that are contained within an EO sensor's optical path, are moved in or out of the sensor's optical path, or are viewed by means of a scan mirror while on orbit
Ejected sources	Sources that are ejected from the payload (Price et al. (2004) provides a discussion on the ejected reference spheres during the MSX mission.)
Stars	A limited number of stars that are in the IR spectral region and also have stable intensity with proven/measured stability of $\leq \approx 3$ % (Russell et al., 2012)
Moon	Natural Earth satellite with stable surface reflectance and no atmosphere (spatially and temporally variable, modeled at shorter wavelengths – USGS robotic Lunar Observatory (ROLO) project (Kieffer and Stone 2005)
Other celestial objects	Sun, planets, galaxies, nebulae, dark space scenes
Vicarious	Natural or artificial sites on the surface of the Earth (Czapla-Myers, 2011; Blonski et al., 2012; Schiller and Silny 2010)
Cross-calibration of on-orbit instruments	Comparison to a calibrated sensor in another orbit viewing the same Earth scene at the same time
Solar diffusers	On-board reflective surface that attenuates solar radiance to match sensor dynamic range (Xiong 2012; Guenther 2012)
Pseudo-invariant calibration sites (PICS)	Sites on Earth's surface (typically desert regions) that have repeatable radiant properties

Considerations for Scoring the Quality of Calibration

Dor	nain				
	Radiometric				
	Responsivity				
	Radiance Responsivity				
	Irradiance Responsivity				
	Bad pixel characterization and replacement				
	Gain or integration time normalization settings				
	Pixel non-uniformity and Stability (fixed pattern noise)				
	Background/Dark				
	Dynamic Range				
	On-Board Calibration Source Characterizations				
	Spatial				
	Point response function (response of sensor to PSF)				
	Modulation transfer function				
	Line spread function				
	Pixel line-of-sight knowledge (including distortion corrections/knowledge)				
	Pixel Instantaneous Field-Of-View and effective-field-of- view				
	Focus				
	Sensor Field-Of-View				
	Cross-talk (optical and electrical) artifacts				
	Near angle scatter (within FOV)				
	Large angle scatter (outside FOV)				

• (1) Identify calibration parameters in preparation for scoring

omain				
Spectral				
Waveband Characterizations				
In-Band Relative Spectral Response per waveband				
Out-of-band Relative Spectral Response per waveband				
Resolution				
Cut-on and cut-off characterization				
Bandwidth				
Temporal				
Response repeatability				
Angular repeatability and jitter				
1/F noise				
Sensor Frequency Response				
Sensor time-stamp				
On-board Calibration Source Response Repeatability				
Polarization				
Polarization sensitivity characterization				

Other Factors that Should be Considered When Scoring

- Is the calibration parameter affected by sensor temperature variations?
 - If so, has the characterization been bounded by maximum temperature swings of operation?
- Is the calibration parameter traceable to NIST or other standards?
- Overall Calibration
 - What was the rigor placed on various calibration phases? For example, planning, prelaunch, and post-launch calibrations.
- Documentation
 - Does sufficient documentation exists to document calibration plan, as-run procedures, and results?

Considerations for Scoring the Quality of Calibration

- Assign weighting to each calibration parameter
 - The weighting is chose depending on importance of application
- Calculate weighted average to estimate overall score

$$\mathsf{E}(\mathsf{Score}) = \frac{\sum_{k=0}^{n} W_k Score_k}{\sum_{k=0}^{n} W_k}$$

Where				3		
VIIIoro	Not	Not	Basic	Intermediate	Good	Excellent
Score. =	Assessed	Assessable	Dusic	mediate	0000	Execution
Coolo _k	0	1	2	3	4	5
and						
	Not	Moderatly				
$Weight_k (W_k) =$	Important	Important	Importa	int		
	0	0.5	1.0			

Example/Mock Calibration Scoring

Overall				
Score	W,	Score _k	Calibration Parameter	Note
	0	0	Radiance Responsivity	Not Required
	0	0	Irradiance Responsivity	Not Required
	1	5	Bad pixel characterization and replacement	Required for imaging
	0	0	Gain or integration time normalization	Not Required
	1	4	Pixel non-uniformity and Stability (fixed pattern noise)	Measured during pre-launch
	1	4	Background/Dark	Measured and method of correction verified pre-launch
	0.5	4	Dynamic Range	Measured pre-launch
	1	4	On-Board Calibration Source Characterizations	Characterization of on-board source, for imaging used to assess/monitor/update NUC
	1	4	Point response function (response of sensor to PSF)	Can be processed to assess imaging figures of merit
	1	3	Modulation transfer function	Imaging figure of merit
	0	0	Line spread function	Not Required
	1	3	Pixel line-of-sight knowledge (including distortion corrections/knowledge)	Measured during pre-launch
	1	3	Pixel Instantaneous Field-Of-View and effective-field-of-view	Measured during pre-launch
	1	3	Focus	Measured/verified during pre-launch calibration and verified on-orbit
	1	4	Sensor Field-Of-View	Measured/verified during pre-launch calibration and verified on-orbit
5.5	0.5	3	Cross-talk (optical and electrical) artifacts	Assessment of pre-launch calibration measurements but not extensive
	0.5	2	Near angle scatter (within FOV)	Not measured pre-launch but assessment with optical analysis and measurement geometry
	0.5	3	Large angle scatter (outside FOV)	Component and system level optical analysis assessment
	1	2	In-Band Relative Spectral Response per waveband	Characterized pre-launch verified post-launch
	0.5	1	Out-of-band Relative Spectral Response per waveband	Assessed with component measurements
	0.5	3	Resolution	Resolution of RSR
	0.5	4	Cut-on and cut-off characterization	Cut-on and cut-off of RSR
	1	4	Bandwidth	FWHM of RSR
	0.5	3	Response repeatability	Assessed with external and internal on-board source
	0.5	3	Angular repeatability and jitter	Assessment
	0.5	3	1/F noise	Measured but minimal analysis
	0.5	2	Sensor Frequency Response	Not measured but estimated based on system evaluation
	0.5	3	Sensor time-stamp	Measured but minimal analysis
	1	4	On-board Calibration Source Response Repeatability	Measured with moderate analysis
	0.5	2	Polarization sensitivity characterization	Not measured but optical analysis was performed

SDL

Assumed application is an imaging system without absolute calibration

CALCON 2024, June 10-13 2024, SDL/24-1427 Rev. -

Summary

- Consider "Guidelines for Radiometric Calibration of Electro-Optical Instruments for Remote Sensing, NISTHB 157" when planning calibration
 - Calibration should be addressed throughout sensor lifetime to include design, prelaunch and post-launch
 - Be mindful of lessons learned
 - On-board sources are important to calibration
 - As much as possible, take advantage of available on-orbit sources
- Proposed method of scoring calibration
 - Identify calibration parameters in preparation for scoring
 - Assign score and weight (i.e., importance) to each calibration parameter
 - Overall calibration score is then calculated using a weighted average of calibration parameters including weights
 - Allowing for the overall calibration score to be influenced by calibration parameters that are most important to the application

