A Model Based Toolset for Supporting Rapid Integration and Verification of Spacecraft Electronics

Anand S Madhusoodanan
Brandon Eames
Electrical and Computer Engineering
Utah State University

Wednesday, August 29, 2007
Overview

- Motivation: Self-verification in rapidly integrated systems
- Approach: Domain Specific Modeling + Rapid Code Generation
- Modeling Devices, Device Communication
- Generating System Self Test
Rapid Spacecraft System Integration

- Responsive Space Initiative: SPA-U (USB) based plug-n-play electronics
 - Online device discovery and integration
 - "Intelligent" devices
 - xTED: Electronic Data Sheet
 - Middleware for dynamic device integration, data routing

Question: How to verify the integrated system?
- Were the proper devices "plugged in"?
- Does the system have all the necessary components?
Approach

- Visual Modeling
- Virtually capture devices, system prior to building system
- Automatic code generation
 - Communications middleware API
 - On-board self test to check integrated system health
The Generic Modeling Environment

- Tool Infrastructure for implementing Domain-Specific Modeling Languages (DSMLs)
- High-level interfaces for interpreter creation: “compiler” for the visual language
- Translate the captured diagrams into “something useful”
Modeling Device Communication

- Device-specific message sequences
- Facilitate determining health status of device
Modeling Spacecraft Electronics
Test Platform

- Technologic Systems TS 7260
 - ARM based processor
 - Linux

- DLP Sensor
 - Temperature Sensor
 - USB-Serial Interface

- Libusb library
 - User-space device drivers
Summary of Work

- Address the problem to verification of rapidly integrated spacecraft systems
- Visual design tool
- Rapidly generate glue code that acts as middleware
- Generation of test suites
 - Probe each connected device for device health
 - Assure all devices are present