Assessing Bias in Lunar Irradiance Model Outputs Using Nighttime Aerosol Optical Depth Retrievals

Thomas C. Stone

U.S. Geological Survey, Flagstaff AZ

Natalia Kouremeti

Physikalisch-Meteorologisches Observatorium Davos, World Radiation Center, PMOD/WRC

Saulius Nevas

Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany

CALCON 2024 Technical Meeting

12 June 2024

Lunar Calibration Basics

The lunar surface is an ultra-stable diffuse reflector of sunlight

- the Moon target is available for viewing by all Earth orbiting satellites
- no intervening atmosphere when viewed from orbit

The Moon's observed brightness is continuously changing

- phase angle dependence and non-Lambertian reflectance

Requires using a model for the calibration reference

- to generate the lunar brightness for any observation conditions
- the lunar surface reflectance is invariant to 10⁻⁸/year
- stability means a lunar reflectance model can achieve sub-tenths percent uncertainty

The most common lunar calibration quantity is spatially integrated spectral irradiance

- avoids the need to spatially co-register Moon images with the reference (model)
- used in development of the original lunar calibration system: ROLO, ca. 2003
- other, more recently developed models: LIME (ESA), SLIM (H. Kieffer), Miller-Turner

There is a recognized need to improve the absolute accuracy of the lunar irradiance reference

- Current ROLO model has estimated 5–10% uncertainty
 - known low bias in irradiance outputs, wavelength dependent
- New measurements are needed to specify the absolute lunar irradiance scale

Characteristics of new lunar irradiance measurements

- high accuracy, with SI traceability
- spectrally resolved

pmod wrc

- ample coverage of phase angles and lunar librations
- fiducial reference measurements (e.g. air-LUSI)

Capabilities enabled by high-accuracy lunar calibration

- transfer of pre-launch calibration to on-orbit operations
- additional opportunities for lunar views; reduced time for calibration convergence
- bridging a gap in an otherwise continuous observation record
- application to satellite constellations

Ground-based application — aerosol optical depth retrievals at night

For nighttime retrievals, variations in I_0 with time (phase angle and distance) need to be accounted

• exactly the quantity generated by the ROLO lunar irradiance model.

pmod wrc PR

Given acquisitions over a range of airmasses, Langley analysis can produce ground-based measurements of exo-atmospheric irradiance (solar or lunar).

PMOD Precision Filter Radiometer description

Filter radiometer with 4 channels in a 2x2 grid
Interference filters :
Lunar version: 412 nm , 500 nm, 675 nm, 862 nm
FWHM: ~5 nm

Optimized for Direct Irradiance Measurements

• Reference Plane: the precision aperture

pmod wrc PB

- Temperature stabilized photodiodes
- Purged with nitrogen
- FOV: 1.2° plateau, 0.7° slope angle, homogeneity in plateau > 99.5%
- The PFR signal (V) is provided by a 22-bit data acquisition system (SACRAM) specifically designed for the PFR.
- SACRAM Linearity checked against a reference source calibrated at Metas

TUnable Lasers In Photometry (TULIP) setup at PTB

- ps-OPO system
- Fully automated system (230 nm to 2030 nm)
- Wavelength scale: Laser Spectrum analyser (LSA)
- Homogenized beam
- Reference detector: 3-element trap detector and equipped with a calibrated aperture, giving an uncertainty better than 0.1 %

Characterization Measurements

pmod wrc PB

- Reference plane
- Spectral responsivity (s)
- PFR Gain

Lunar-PFR Characterisation

Spectral responsivity uncertainty < 0.3%			10 ⁻⁰ 10 ⁻² CW=861.75 nm,FWHM=5.21 nm CW=501.39 nm,FWHM=4.65 nm
	TULIP - 2021		E 10 ⁻⁴ CW=411.95 nm,FWHM=4.43 nm CW=675.39 nm,FWHM=5.15 nm
λ (nm)	<i>s</i> (μV.W ⁻¹ m ²)	U _s (%,k=2)	Be of Best of the Rest of the
861.75	12.96	0.26	10 ⁻¹⁰ <u>I I I I I I</u> 300 400 500 600 700 800 900 1000 11
501.39	9.78	0.25	wavelength /(nm)
411.95	10.88	0.27	Gain uncertainty 0.3%
675.39	6.80	0.18	TULIP
			2021

Uncertainty components

- spectral power responsivity of the trap detector: current measurements, aperture area, temporal stability and the homogeneity of the laser irradiance field
- Field of view of the PFR and of the trap detector,
- laser wavelength,
- positioning of the detectors,
- electronic noise of the PFR

Gain

Laboratory: 0

Lunar: 3

U=0.3%

1.0

934.6

4451.4

25164.0

Lunar Photometry Campaign — September 2022

pmod wrc PB

≈USGS

Izaña observatory (28.3° N, 16.5° E, 2.4 km) 4.5 4 .861.75 nm 501.39 nm 3.5 411.95 nm 675.39 nm (z m/w z.5 Irradiance (2 1.5 1 0.5 0 09/12 09/14 09/16 09/04 09/06 09/08 09/10 Date

Lunar Langley analysis

Izaña Observatory (IZO): 28.3° N 16.5° W 2401 m.a.s.l.

Lunar Langley analysis

USGS pmod wrc **PB**

Izaña Observatory (IZO): 28.3° N 16.5° W 2401 m.a.s.l.

Remarks on the aerosol photometry application

Nighttime AOD retrievals are derived at each measured point.

- retrievals are very sensitive to bias in the lunar model results
- AOD processing requires corrections to the model outputs, equivalent to forcing the Langley intercepts to 0.0
- corrections are validated by continuity with daytime AODs

pmod wrc PR

Remarks on the Langley analysis

Linear regressions show remarkably good fits

- validates the measurement uncertainties and the relative accuracy of ROLO model outputs
- indicative of high-quality observing conditions at the Izaña site

Other Langley plots show consistent intercepts over the phase range of the Sept 2022 campaign

• the intercepts give an estimate of bias in the ROLO model

Summary and Conclusions

Improving the accuracy of the lunar calibration reference is a recognized need

 using the Moon as a common calibration target has important implications for inter-calibration, particularly for satellite constellations

New lunar measurements are necessary to specify the absolute irradiance scale

• to overcome the limitations of existing datasets currently used as the basis for modeling

Ground-based lunar irradiance measurements have been acquired by the calibrated, stabilized Precision Filter Radiometer (PFR) of PMOD

- operated for measuring aerosol optical depth at night in 4 bands
 - this application is highly sensitive to bias in lunar model outputs

Langley analyses have provided an evaluation of ROLO model bias

• successful regressions validate the PFR calibration and the relative accuracy of ROLO outputs

Future work:

Lunar measurements with the PMOD QASUME (Quality Assurance of Spectral Ultraviolet Measurements in Europe) instrument

• Spectrally resolved lunar irradiance acquisitions and Langley analysis

Thank You!

