Model-Based Anomaly Management for Small Spacecraft Missions

Dr. Christopher Kitts, Director, Robotic Systems Laboratory

Mr. Mike Rasay, Research Staff / Ph.D. Candidate, Robotic Systems Laboratory
Model-Based Anomaly Management for Small Spacecraft Missions

- Introduction
- Model Based Reasoning for Anomaly Management
- Application to Small Spacecraft Missions
- Ongoing and Future Work
Space System Anomaly Management

- **Health analysis and anomaly detection**
 - On-orbit operations can typically consume 25-60% of mission lifecycle costs
 - "Constant" telemetry filtering - a significant fraction of operations costs
 - Typically based in predominantly *experiential* techniques
 - Detection of an anomaly kicks off additional management tasks

- **Experiential reasoning**
 - Based on human-based experience in working with the system
 - Informal knowledge based which is often loosely organized
 - Design information intertwined with control information
 - Human-executed reasoning – leads to “standing armies” of mission controllers
 - Automated reasoning – typically implemented as an “expert system”
 - Production rules with experiential data

- **A useful technique, but improvements can be made**
Model-Based Fault Detection and Diagnosis

- **Model-Based Reasoning (MBR)**
 - “First principles” reasoning based on fundamental design information
 - Models of “structure and behavior”

- **Fault Detection & Diagnosis**
 - Detection: consistency of real outputs vs. modeled outputs
 - Diagnosis: identify model misbehaviors to explain real, faulty outputs

- **Heritage**
 - Formal MBR theory ~20 yrs old
 - Applied to circuit evaluation, copy machines, automobiles, spacecraft, etc.
 - Extensions: optimal active diagnosis, time-varying behavior, empirical probabilities, etc.
Our Extended Conceptual Framework

- **Motivation**
 - “Non-fault” anomalies exist – define & address via a common reasoning approach

- **Expanded Theory and Reasoning System**
 - Several formally-defined “classes” of anomalies: all are violated assumptions
 - **Fault** – violation of an assumed behavior
 - **Hazard** – violation of an assumed operating constraint
 - **Mis-configuration** – violation of an assumed configuration value
 - Several management tasks: common reasoning framework, distinct from models
 - **Detection** – Identify a “symptom,” an inconsistent observation from the real system
 - **Diagnosis** – Identify assumptions whose violation explains the symptom
 - **Resolution** – Identify actions to re-establish consistency
Model-Based Reasoning - Composability

Component Descriptions
Inputs, Outputs, States, Behaviors, Constraints
System Composition
Inputs, Outputs
Connectivity
Constraints

Component Descriptions
Inputs, Outputs, States
Behaviors, Constraints
Model-Based Reasoning - Composability

Mission Description
- Requirements
- Environment
- Constraints

System Composition
- Inputs, Outputs
- Connectivity
- Constraints

Component Descriptions
- Inputs, Outputs, States
- Behaviors, Constraints
Model-Based Reasoning - Anomaly Management

Mission Description
- Requirements
- Environment
- Constraints

System Composition
- Inputs, Outputs
- Connectivity
- Constraints

Component Descriptions
- Inputs, Outputs, States
- Behaviors, Constraints

Anomaly Management Theory

→ Anomaly Management Conjectures
Model-Based Reasoning – Other Capabilities

Mission Description
- Requirements
- Environment
- Constraints

System Composition
- Inputs, Outputs
- Connectivity
- Constraints

Component Descriptions
- Inputs, Outputs, States
- Behaviors, Constraints

Anomaly Management
- Theory
 - Anomaly Management
 - Conjectures
 - Functional Analysis
 - Design Validation
 - Trade-off Analysis
 - Command Planning
 - ...

2007 AIAA/USU Conference on Small Satellite, C. Kitts, Santa Clara University
Our Reasoning Framework

- **Theory**: Definitions of engineering system, operational system, anomalies, tasks, etc.
- **Implementation**: Algorithms & software for automation & decision support
- **Experimentation**: Verification/validation with real, operational, end-to-end systems
- **Context**: Configuration management of distributed space systems
- **Formulation**: Detection (residual), Diagnosis (estimation), Resolution (Control)
Our Reasoning Framework

- **Theory:** Definitions of engineering system, operational system, anomalies, tasks, etc.
- **Implementation:** Algorithms & software for automation & decision support
- **Experimentation:** Verification/validation with real, operational, end-to-end systems
- **Context:** Configuration management of distributed space systems
- **Formulation:** Detection (residual), Diagnosis (estimation), Resolution (Control)
Our Reasoning Framework

- **Theory**: Definitions of engineering system, operational system, anomalies, tasks, etc.
- **Implementation**: Algorithms & software for automation & decision support
- **Experimentation**: Verification/validation with real, operational, end-to-end systems
- **Context**: Configuration management of distributed space systems
- **Formulation**: Detection (residual), Diagnosis (estimation), Resolution (Control)
Our Reasoning Framework

- **Theory:** Definitions of engineering system, operational system, anomalies, tasks, etc.
- **Implementation:** Algorithms & software for automation & decision support
- **Experimentation:** Verification/validation with real, operational, end-to-end systems
- **Context:** Configuration management of distributed space systems
- **Formulation:** Detection (residual), Diagnosis (estimation), Resolution (Control)
Our Reasoning Framework

- **Theory**: Definitions of engineering system, operational system, anomalies, tasks, etc.
- **Implementation**: Algorithms & software for automation & decision support
- **Experimentation**: Verification/validation with real, operational, end-to-end systems
- **Context**: Configuration management of distributed space systems
- **Formulation**: Detection (residual), Diagnosis (estimation), Resolution (Control)

![Diagram showing the relationship between operators, systems, anomaly manager, resolutions, simulations, diagnoses, and detections.]

2007 AIAA/USU Conference on Small Satellite, C. Kitts, Santa Clara University
RF Behavior: If operating nominally, power is good, and temperature is within operating constraints, the output will be a (Mode) RF broadcast at (Power) with a (Freq), with (Info) modulated in the (Packet) format with a (Rate).
End-to-End Experimental Space Systems

GeneSat-1 Space System
- Launched 2006
- NASA Ames (academic partners)
- Biological lab tech demo
- 2.4 GHz cmd/tlm, amateur beacon
- SRI stn, Ames MMOC, internet ground CDH
- Operations ongoing

Sapphire Space System
- Launched 2001
- Student-based university mission
- MEMS & automation tech demo
- Amateur cmd/tlm/beacon
- OSCAR stn network, SCU MOC, internet
- Operated through 2005
Examples of Managed Anomalies

- Scale of anomaly management:
 - **Modeling**: 10’s to 100’s of components → 1000-10,000’s constraints
 - **Management**: Detection < 1 sec; Diagnosis 1-10’s sec, Resolution 10-1000’s sec

- Fortunately (unfortunately?), we’ve had many anomalies...
 - Satellite CPU reset due to low batteries during eclipse
 - Overheating of transmitter amplifier
 - Power outage at communication station
 - Networking outages
 - Communication antenna servomotor failure
 - Equipment misconfigurations (TNC and transmitter settings)
 - Software misconfigurations (time, KEPS, IP, etc.)
 - Physically restrained antennae
Example - Sapphire

Requirement – collect real-time IR sensor data
Symptom – invalid sensor data
Diagnosis – 3 valid single-case anomalies
Resolution – 2 resolutions (reconfigure or de-scope mission)

Decision Support
Complete AM ~3.5 sec
Contact objectives met
Lessons Learned

- **MBR anomaly management a powerful tool for configuration control**
 - Use of simple, symbolic models provides:
 - Appropriate resolution of diagnosis and resolutions for real-time operations
 - Limited computational complexity permitting near-realtime performance

- **Room for improvement for application to more sophisticated systems**
 - Optimization of algorithms
 - Iterative hierarchical analysis
 - Compilation of algorithms
 - Parallel processing

- **Performance of human operators using the technique improves**
 - They adopt an MBR style of reasoning
 - Their experiential knowledge based improves

- **Need tools for model composition and transparency of reasoning**

- **Complements other techniques – hybrid approaches desired**
Future Work

- **Improvements**: theoretical extensions, improved efficiency, etc.
- **Implementations**: on-board processing, hierarchical decomposition, etc.
- **Auxiliary applications**: composition tools, design analysis tools, etc.
- **Application to new systems**: motivating several extensions…

NASA PharmaSat Space System
Future Work

- **Improvements**: theoretical extensions, improved efficiency, etc.
- **Implementations**: on-board processing, hierarchical decomposition, etc.
- **Auxiliary applications**: composition tools, design analysis tools, etc.
- **Application to new systems**: motivating several extensions…
Summary and Conclusions

- **Model-Based Reasoning**
 - Systematic reasoning approach based on fundamental system information
 - Computational demands addressed through abstraction and hierarchy

- **Our MBR Framework for Anomaly Management**
 - Formal reasoning framework for computing anomaly conjectures
 - Algorithms developed for multiple symptom / multiple anomaly situations
 - Matlab / Simulink functions and toolboxes implement algorithms
 - Successful application to several missions for configuration control:
 - Demonstrated completeness and accuracy of resulting conjectures
 - Superior speed of reasoning compared to expert operators
 - Demonstrated applicability for simple small satellite missions

- **Development Continues**
 - New theoretical extensions
 - New and diverse systems
 - Broadened analytic scope
 - Hybrid reasoning systems
QUESTIONS
Simple Component-Level Example

-20°C < T < 80°C

If the component is nominal, the power is applied and the temperature is within operating specifications, the output should be the sum of the two signal inputs

\[\neg AB(b_{Adder}) \land Pwr(Adder)=ON \land T(b_{Adder}) \geq -20°C \land 80°C \geq T(b_{Adder}) \]

\[\Rightarrow OUT(Adder) = SUM[IN1(Adder), IN2(Adder)] \]
Simple Component-Level Example

If the component is nominal, the power is applied and the temperature is within operating specifications, the output should be the sum of the two signal inputs.

\[\neg AB(b_{\text{Adder}}) \land Pwr(\text{Adder})=\text{ON} \land T(b_{\text{Adder}}) \geq -20^\circ C \land 80^\circ C \geq T(b_{\text{Adder}}) \supset OUT(\text{Adder}) = \text{SUM}[IN1(\text{Adder}), IN2(\text{Adder})] \]
If the component is nominal, the power is applied and the temperature is within operating specifications, the output should be the sum of the two signal inputs.

$$\neg AB(b_{Adder}) \land Pwr(Adder) = ON \land T(b_{Adder}) \geq -20^\circ C \land 80^\circ C \geq T(b_{Adder}) \supset OUT(Adder) = SUM[IN1(Adder), IN2(Adder)]$$
Simple Component-Level Example

If the component is nominal, the power is applied and the temperature is within operating specifications, the output should be the sum of the two signal inputs:

\[-20^\circ C < T < 80^\circ C\]

\[\neg AB(b_{adder}) \land Pwr(Adder)=ON \land T(b_{adder}) \geq -20^\circ C \land 80^\circ C \geq T(b_{adder}) \Rightarrow OUT(Adder) = SUM[IN1(Adder), IN2(Adder)]\]
Example – GeneSat-1 Comm Station Diagram

2007 AIAA/USU Conference on Small Satellite, C. Kitts, Santa Clara University
Example - GeneSat-1 Simulink Comm Stn Model