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Figure 4. Experimental specular beam energy loss 
spectrum (49] obtained at the 880 diffraction conditions 
in GaAs with 100 keV electrons. The broken curves are 
computed for a trajectory A with exponential depth 
penetration (decay depth = 3.3 nm), for a trajectory D 
reflecting at the surface and for trajectories traveling 
along the surface for 82 nm (E 1) and for 120 nm (E2) as 
shown in the inset. 

if they use experimentally determined Ew values. For 

x;;; 10 nm the use of relativistic corrections yields better 

agreement than when the nonrelativistic formula Eq. 21 
is used. 

In several papers (27,31-34], workers at the 
Cavendish Laboratory have analyzed data taken in 
Reflection High Energy Electron Diffraction (RHEED) 
and Reflection Electron Microscopy (REM). They 
treated grazing trajectories as a series of short segments 
parallel to the interface and at different distances from it 
and have included relativistic and finite aperture effects 
as well as some penetration of the crystal before 
reflection. They find that simple dielectric theory seems 
to allow fitting of the data in absolute terms. Figure 4 
shows typical reflection energy loss spectra [32] obtained 
with a GaAs surface as compared with calculations using 
dielectric theory. They have also developed a 
quasi-planar approximation to the excitation of 
geometrically complex dielectrics (32]. 
Excitation of Dielectrics in Other Geometries 

Analytical solutions have been obtained for the 
excitation produced by a fast classical electron passing 
near a spherical dielectric body. When the electron 
passes at distance b from the center of a sphere of radius 
a<b, the excitation probability per unit energy range is 
given by (35,36] 
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where 

The nonrelativistic theory leadin& to Eq.24 has been 
extended to oxide-coated spheres [36] as well as to the 
case where the trajectory passes through the sphere (13]. 
The results are in qualitative agreement with experiment 
[36-39], but more work is needed here. 

Excitation functions for dielectric bodies bounded 
by more elaborate coordinate systems have been found. 
These include some allowance for the effect of the 
support of a spherical particle (38,39] and for interactions 
between closely-spaced pairs of spherical particles 
(40,41]. A spheroidal dielectric has been studied (42]. 
Solutions found for a cylindrical wedge (43,44] have 
relevance to the case of a fast electron passing near a 
corner of a cube. 

Results for excitation of a dielectric by a fast 
electron passing through a cylindrical cavity in the 
medium have also been obtained (45--47]. It has been 
possible to interpret in considerable detail [47] the energy 
loss spectra obtained experimentally in this geometry. 

Spatial Resolution in Energy Loss Spectroscopy 

An estimate of the effective distance from the 
track of a swift electron at which excitation of an 
electronic transition with energy transfer 1i,w will occur 
can be made on the basis of the duration of the electric 
impulse experienced at a given impact parameter by a 
struck electron. This yields the "cutoff' impact 
parameter bc=v/w. For a 15 eV-loss with 100-keV 

electrons this comes to ,..,7 nm. 
Cheng (48] has pointed out that this figure is 

considerably larger than the spatial resolution of 0.4 nm 
that has been achieved in some experiments (49] using 
the 15-eV loss in Al. He identifies the resolution found 
with the distance traveled by the plasmon before it 
decays and gets quantitative agreement between his 
theory and experiment using reasonable estimates of the 
plasmon group velocity and lifetime. In our view, this 
explanation is suspect. It is important to realize that be 

is an upper estimate of the impact parameter 
corresponding to zero scattering angle and thus zero 
momentum transfer perpendicular to the initial velocity. 
Larger values of momentum transfer are associated with 
smaller interaction distances. The strength of the 
excitation at a given energy loss is in general determined 
by an integral over momentum transfer and ultimately 
depends on some function of wb/v, such as the function 
K

0 
(2wb/v) in the case of a planar interface (Eq. 20 

above) or the function K
0

2(wb/v)+K/(wb/v), which is 

appropriate in the dipole limit for a very small sphere. 
Recent success [50] in the high spatial resolution band 
gap spectroscopy oi defects in semiconductors lends some 
support to the latter expression. The function K

0
(wb/v) 

varies quite rapidly with wb/v as its argument increases, 
particularly in the interval wb/v<l. Thus we suggest 
that the observed high spatial resolution in (49] may be 
due to the relatively large momentum components 



Plasmons in STEM Electron Spectra 

available in the excitation spectrum of the plasmon. 3 This 
point is discussed below in connection with secondary 
electron emission in SEM. 

Secondary Electron Generation Processes 
and their Degree of Localization 

The secondary electron (SE) signal has long been 
recognized in scanning electron microscopy as the most 
useful indicator of surface topography. Recent work in 
STEM [51,52] has shown that it is possible to obtain SE 
signals with 1-nm spatial resolution and 1-eV energy 
resolution and that reflection SE images of oxidized Cu 
show oxide islands and details of their interaction with 
surface steps. The generation of secondary electrons by 
fast incident electrons is quite complex, involving 
electron cascade processes created by fast secondaries and 
the slowing--<lown of the resulting knock-ons as well as 
the decay of inner-shell vacancies and collective states in 
the valence band. The relative importance of these 
different excitation processes has been considered by a 
number of authors but less attention has been paid to 
assessing their degree of localization, i.e., the relevant 
impact parameter or distance from the electron beam 
where the secondary is generated. 

Elaborate calculations have been made for Al 
[53,56] indicating that plasmon excitation followed by 
decay into electron-hole pairs makes the dominant 
contribution to the SE signal. Monte Carlo calculations 
by Luo and Joy f57] show that the majority of 
secondaries originate horn plasmon decay. Others [51,52] 
question whether plasmon decay is sufficiently 
well-localized to explain their measured high spatial 
resolution. 

To extract a spatial representation from the 
quantal expression for the probability of energy transfer 
to a condensed medium from a swift charged particle, we 
have considered three alternative formulations [58,59] 
that we now describe. 

The Impact Parameter Representation (IPR) 

The problem of visualizing quantal collisions in 
the space (and perhaps time) variable has been faced by 
several workers over the years [60-u3]. The lack of a 
comprehensive theory of an impact parameter 
representation for collisions in condensed matter has been 
noted long ago [63]. We approach this problem by using 
an expression for the probability of interaction of a fast 
electron with a medium whose response is specified in 
terms of a dielectric function fk that depends on energy ,w 
transfer, Ttw, and the magnitude of the momentum 
transfer, Ttk, to the medium. A more general formulation 
in terms of the dielectric matrix of the medium is 
possible but we have not yet done this. We write for the 
differential inverse mean free path (DIMFP) for energy 
and momentum transfer to the medium by the electron 

(26) 

3Theoretical determinations of the probability of 
excitation of a surface plasmon by a STEM electron as a 
function of distance from a planar dielectric are being 
carried out by Zabala and Echenique. These account for 
plasmon damping and dispersion and still show good 
spatial resolution. 
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where Ti,x; is the momentum transfer perpendicular to the 
electron direction. The magnitude of the total 

momentum Ttk=Tt(x;2 + w2/v2)1/2. 
The Chang-Raman Transform 

In the context of theoretical high energy physics, 
Chang and Raman [64] have employed a mathematical 
transformation from momentum to a space-like variable. 
It has been advocated for use in radiation physics [63]. 
Following their lead one transforms variables from x; to 
impact parameter b. This may be done by first 
integrating Eq. 26 over w to obtain 

d2A-l e2 oo dw [ -1 ] I 12 
~=2.2f ~Im -€- = a(x;) 
d K 1r Ttv o k k, w 

where the second equality is allowed because Im(- 1) is a 
€ 

positive definite quantity. We now seek to eliminate x; in 
favor of a spatial variable that will be interpreted as an 
impact parameter. Thus 

The integrand of this equation is now set equal to 
the DIMFP in impact parameter space, viz., 

2 -1 
d ACR e2 I J 2 . 
~ = ~ d K exp(1"• b) 

d b 47r Ttv 

x{foo~lm(!-)}1/212. (27) 
o k k,w 

One may easily apply this to analytical forms for fk of 
,w 

an electron gas. However, for reasons given elsewhere 
[65], the transformed function described next is preferable 
to that found using the Chang-Raman method. 
The Energy-Transfer Transform 

We have made a more general approach [65] by 
employing a transform different from, but related to, that 
of Chang and Raman. We write 


