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ENERGY LOSS OF ELECTRONS BELOW 10 ke V 

Hans Bichsel 

1211 22nd Avenue East 

Seattle, Washington USA 98112-3534 

Telephone: 206-329-2792 

Abstract 

Monte Carlo calculations are used to obtain the energy 
loss and spatial distribution of electrons penetrating mat
ter. For this purpose, reliable cross section for the inelas
tic collisions must be known. As an approximation valid 
for large energy losses, the Coulomb cross section can be 
used. It can be modified in a simple way to account for 
the binding of electrons and for the exchange effect. In 
the Gryzinski model, collisions with moving electrons are 
assumed. In the quantum mechanical Bethe approxima
tion, a- is closely related to the dipole oscillator strength 
(DOS), and its extension to finite momentum transfers, 
the generalized oscillator strength (GOS). Therefore, the 
influence of the state of a material on DOS is shown for 
the example of gaseous and solid silicon. Some details of 
the Bethe model are given for Si. The Bethe asymptotic 
approximation to the stopping power is deri,·ed, and the 
reason for the shell corrections is demonstrated. Collision 
cross sections calculated with three different models are 
compared. In general, models based 011 a detailed knowl
edge of the GOS should be used for applications. 

Keywords:Monte Carlo, electron energy loss, differen
tial collision cross section, silicon, Bethe theory, Gryzin
ski model, moments, stopping power, dipole oscillator 
strength, generalized oscillator strength. 
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Introduction 

The energy loss of low energy electrons and positrons 
(kinetic energy E less than 10 keV) has been discussed 
in many recent papers, e.g. Nieminen (1988), Valkealahti 
and Nieminen (1983, 1984), Schou (1979), Liljequist (1983), 
:\1ills and Wilson (1982). Frequently, their paths are sim
ulated with Monte Carlo calculations. Then a knowledge 
of the doubly differential inelastic collision cross section 
o-( c, 0) is of great importance ( € is the energy loss of the 
incident electrons in each collision, 0 the angle of deflec
tion). The cross section for elastic scattering of the elec
trons by the nuclei, o-e( 0), is equally important, but will 
be discussed elsewhere. The word electrons shall mean 
"electrons and positrons", and the lower limit of the en
ergy of the incident electrons is about 1 keV. 

In general, electrons will suffer many collisions, losing 
in each only a small amount of energy, €, and changing the 
direction of motion by a small amount. An initially nar
row parallel beam will therefore spread into a broad pat
tern, eventually resembling a swarm of mosquitoes (Valke
alahti and Nieminen, 1983, 1984). For most solids, the 
most probable energy loss in a single collision is between 
15 and 25 eV (Ahn and Krivanek, 1983), the mean energy 
loss is about 50 eV. Specifically, for Si, for E < lOkeV, 
< € >;c:; 8.9eV -1n(E/R), where R is the Rydberg energy 
(13.6 eV). Each electron will follow its own path, different 
from that of all others ("straggling"). 

For parallel beams of particles with energies of the or
der of MeV, traversing thin absorbers, the beam emerging 
from the absorber will have a small spread in energy and 
angle, and its average properties can be approximated 
quite well by averages calculated from the moments of 
the cross sections. Results for the moments therefore are 
given here. For low energy electrons, though, a reasonable 
description of the energy loss processes requires detailed 
transport calculations, in particular Monte Carlo calcula
tions may be appropriate (e.g. Valkealahti and Nieminen, 
1983, 1984). These calculations can be designed to repro
duce the sequence of events experienced by the particles 
quite well. 
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maximum energy transfer in collision, Eq. (18) 
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= e2 /mc2, classical electron radius= 2.818-10- 13 cm 
Rydberg energy= 13.6 eV 
speed of electron in atomic orbit 
speed of incident particle 
absorber thickness 
charge number of incident particle 
atomic number of absorber 

=v/c 
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energy loss in an absorber of thickness x 
energy loss of incident particle 
energy of lowest excited state of atom 
maximum energy loss of incident particle 
plasmon energy 
angle of deflection 
complex dielectric function 
mean free path, below Eq. (2) 
average number of collisions in absorber 
index for moment Mv, v = 0, 1, 2, · · · 
Coulomb cross section, Eq. (3) 
collision cross section 
collision cross section differential in energy loss 
and angular deflection 
collision cross section differential in energy loss 
and momentum transfer, Eqs. (8) and (11) 
collision cross section differential in energy loss 
elastic collision cross section differential in 
angular deflection 
asymptotic collision cross section for 
bound electrons, Eq. (5) 
M¢ller cross section differential in energy 
loss, Eq. (6) 
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Since many aspects of the problem will be discussed 
in other contributions to the conference, I shall discuss 
here only the inelastic cross sections. It is easy to de
rive the differential cross section for the collision of an 
electron with a free electron ("Coulomb cross section"). 
Various modifications of the Coulomb cross section have 
been made to include the effect of electron binding. Some 
are described here, and are compared with each other. 
Further examples may be found in Bichsel (1988). First, 
though, some general ideas will be examined. 

2 Notes about inelastic collision cross sections 

If a beam of N monoenergetic electrons with kinetic 
energy E ( speed v = f3 • c) passes through an absorber 
with atomic number Z, of thickness dx and with n atoms 
per unit volume, the number of electrons experiencing a 
collision with energy loss c is 

dN(c) = NnZCT(c)dcdx, 

where CT( c) is the collision cross section differential in c; 

it depends on (3. For the sake of simplicity, it is as
sumed that angular deflections can be disregarded. Eq. 
(1) shows how CT(c) is obtained from experimental mea
surements. Here, I discuss theoretical approaches to the 
determination of CT(c). First, some general observations 
are presented. 

Since inelastic collision cross sections show a distinct 
structure near the ionization energies, it is useful to con
sider the cross sections separately for each electron shell. 
It is important to realize that large changes occur in the 
constitution of valence shell electrons if separate atoms 
(or molecules) are compared with the solid of the same 
composition (Fig. 1 ). In single atoms separated by large 
distances, the smallest energy losses are to discrete excited 
electronic states, and ionization begins at the binding en
ergies B; above which electrons are given a kinetic energy 
5 = € - B;. For ionization, energy losses are continuous 
(Fig. 1 ). If atoms are brought closer and closer together 
until they coalesce into a liquid or a solid, their valence 
electrons come under the influence of the cores of many 
atoms. A core is defined to consist of the nucleus and all 
the electrons inside of the valence shell. For carbon or 
oxygen, this would be only two electrons in the K-shell, 
for aluminum or silicon it would contain two electrons in 
the K-shell and eight electrons in the L-shell. For met
als, the valence electrons will form a conduction band in 
which they are free. This means that it will take very 
little energy to move them, if for example an electric field 
is applied. On the other hand, if a charged particle moves 
through the solid, the transfer of very small energies by 
Coulomb interactions with individual electrons is not ob
served, instead, a large number of them is excited in each 
interaction of the particle. For metals this process is called 
a plasmon excitation, for insulators a collective excitation, 
Fig. 1. For most substances the most probable value of 
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Fig. 1. Comparison of the dipole oscillator strength 
spectra for atomic (vertical and dotted lines) and solid 
silicon (solid line). The ordinate is DOS, J( E, 0), in e v- 1 , 

the abscissa the energy loss E in eV. Data for the atom 
were calculated by Dehmer et al. (1975), based on numer
ical calculation with the Herman-Skilman potential and 
ground state wavefunction, and single electron excited 
state wavefunctions. Data for the solid are from Bichsel 
(1988) and were obtained from various experimental and 
theoretical sources. The broad peak at~ 17eV represents 
the collective excitations. ·while the uncertainties of cer
tain features and at some energy losses may exceed 10%, 
the general structures remain well represented. Partin1-
larly notable is the disappearance of the discrete atomic 
excitations in the solid, and the large shift in the peak 
of the continuum excitations for the valence shell (from 
~ 7eV to 17eV). On the other hand, at the L-shell edge 
( ~ l00e V), the shifts in the energies and in the shape of 
the function are relatively small. The I-values, defined in 
Eq. (15), are 131 eV for the atom, 174 eV for the solid. 

the pla5mon excitation energy, Ep, is much larger than the 
energy of the lowest excited state of the atom, E1. For 
example, for Be, E1 = 3.6e V ( calculated by Dehmer et al, 
1975), while the plasmon energy is Ep = 19eV (shown in 
Ahn and Krivanek, 1983). Similarly, for silicon, Fig. 1, 
E1 = 3.6eV (Dehmer et al., 1975), Ep = 16.7 eV (Bichsel, 
1988). 

For molecules, experimental measurements of electron 
energy losses (Killat, 1973), provide information about 
the difference between gas and solid and the structure of 
u(E). For example, for Benzene C6H6, the vapor showed 
distinct structures for excitations to several discrete states; 
in addition a broad peak which to me appears to be equiv
alent to a collective excitation at about 16 eV was seen; 
for the solid, the structures were broadened, and the ma-
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Fig. 2. Comparison of the single collision cross sec
tions u( E) for incident electrons with an energy E = l0ke V, 
calculated with different theories. In order to show the 
structure of the functions clearly, the ordinate is u( E)/ p( E), 
where p(E) is the Coulomb cross section, Eq. (3), the ab
scissa is the energy loss E. The Coulomb cross section (for 
Z = 14 electrons) is represented by the horizontal line 
at 1.0. The functions given by Eqs. (5) and (6) are not 
shown. The solid line was obtained with the Bethe the
ory, Eq. (11), using the data described by Bichsel (1988). 
It includes the Mwller-Mott cross section (Uehling, 1954), 
resulting in the increase at E > 3000e V. The cross sec
tion calculated with the DOS approximation of Eq. (23) 
is given by the dashed line. The dotted line was calcu
lated from the binary encounter theory, Eq. (7), includ
ing K-, L- and M-shell excitations with the parameters 
BK = 1840eV(n = 2), BL = 150eV(n = 8), and BM = 
l 7eV(n = 4). The dashed-dotted line was calculated with 
BK = 1840eV(n = 2), BL = ll2eV(n = 8), and BM = 
8eV(n = 4), used by Valkealahti and Nieminen (1983). 
Clearly, the assumption of an ionization energy for the M
shell at 8 e V differs substantially from the observed plas
mon energy. The Gryzinski expression with Bi= l50eV 
approximates the behaviour of the L-shell not too badly, 
but is quite bad for the M-shell. It may be noted that, 
for the solid line, 80% of the total collision cross section 
accumulates up to 33 eV, while for the dashed-dotted line 
this already occurs at 19 eV. This explains the large val
ues of M 0 for G-8 and G-L in Table L 

jor peak for the collective excitations had shifted to 21 
eV. 

For energy losses well above that of the plasmon or 
collective excitation peak, the collision cross section de
creases smoothly until the ionization energy of the next 
electron shell is reached and a new peak is superimposed 
on the smooth function ( e.g. the K-shell in carbon at 
E ~ 285eV, or the L-shell in silicon at~ lO0eV, Fig. 2; in 
gold, though, the lowest N-shell excitations appear only 
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as a change in slope, but the lowest M-shell produces a 
distinct peak at~ 2200eV, Ahn and Krivanek, 1983). 

While there are large changes in the structure of the 
excitation of the valence electrons as the atoms are co
alesced into a solid (Fig.l), changes are less important 
for the inner shells. The main reason for this is that the 
binding energies of these shells are quite large, while the 
energies associated with the chemical changes are small. 
As an example, consider carbon. For an amorphous, thin 
carbon film, the K-edge occurs at 284 eV (Ahn and Kri
vanek, 1983), and K-shell excitation shows essentially just 
one peak at ~ 296e V. For three molecules important 
in biology: adenine, uracil and thymine, Isaacson (1972) 
found several peaks, all located between 284 and 300 eV. 
Thus there is at most a small change in the energy of the 
K-shell excitation, but the number of peaks as well as their 
locations change considerably. For aluminum, above the 
K-edge (1.56 keV), Pianetta and Barbee (1988) observed 
a structure with several peaks, each separated from the 
previous one by about 40 eV. They describe this structure 
as extended x-ray absorption fine structure (EXAFS); it is 
caused by the presence of nearby cores which backscatter 
the photoelectrons and thus change their wavefunctions. 
The discrete excitations of the atom below the K-edge dis
appear completely. Solid state and chemical effects thus 
are very important for valence shell electrons, less so for 
inner shell electrons. 

While the angular dependence of the differential colli
sion cross sections can be determined from the quantum 
mechanical calculations, it is sufficient for many purposes 
to relate B, the angle of deflection of the incident electron, 
to the energy loss with the simple classical kinematic re
lation B ~ ( c/ E) 112, and to forget about the spread in 
angle. Then it is sufficient to consider the cross section 
a(c) differential in energy loss c only. This approach has 
been used in many studies. The kinematic calculation 
(Nieminen, 1988) has also been used to obtain the angle 
of emission of the secondary electron, but it should only be 
used for large c. For smaller c, an isotropic distribution for 
the secondary electrons might be more appropriate (Kim, 
1983). 

A variety of models have been used to obtain theoret
ical a( c) for bound electrons. Here, four of them will be 
described and compared with each other. They are ex
pressed in terms of a factor modifying the Coulomb cross 
section. First, though, it is useful to define the moments 
ofa(c). 

3 Moments of the differential collision cross 
section a(c) 

The moments of a(c) are defined by (Bichsel, 1988): 

M 0 = j c"a(c)dc (2) 

In general, a( c) will have finite values over a certain range 
of values of c and will be zero elsewhere, thus no limits 
need to be defined for the integral. 
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The moment M 0 is usually called the total collision 
cross section and determines the average numberµ of col
lisions in an absorber of thickness x : µ = x · M 0 . The 
inverse of M 0 , >-, is the mean free path between collisions, 
and is used in Monte Carlo calculations. 

The moment M1 is called the stopping power dE/dx. 

The mean energy loss t:,. in a thin absorber of thickness x 

is t:,. = x · dE / dx. 
The second moment, lvl2 , is related to the width of 

straggling functions. Higher moments are not very useful 
(Bichsel, 1970) except for special applications (Tschaliir, 
1968). 

It must be kept in mind that for incident electrons, 
because of multiple scattering, these moments are useful 
only if one follows the paths of different electrons and 
averages over energy loss along these paths. 

4 Coulomb cross section and simple derived 
models 

Since the inelastic interactions of electrons with mat
ter are mainly clue to collisions with electrons in the ma
terial, it is useful to write clown the cross section for the 
collision of a charged particle with a free electron at rest. 
This ( nonrelativistic) Coulomb cross section p( €) for an 
energy loss € in the collision of a charged particle with 
charge ze, rest mass Jvf and speed v with a free electron 
with charge -e and rest mass m, in the laboratory system 
is given by (Evans, 1967; Bichsel, 1968; Inokuti, 1971): 

21r z 2 e4 k 
p(c) = --

2
-

2 
= (J

2 2 
with 

1Tl.V € € 
(3) 

r0 = e2 /mc 2 the classical electron radius, (J = v/c and c 
the speed of light. Since the secondary electron receives all 
the energy c lost by the incident particle, the momentum 
transfer K is determined by E = J{ 2 /2m. p( c) does not 
depend on M, and gives a good approximation for the 
collisions with bound electrons if the energy transfered to 
these electrons greatly exceeds their binding energy (Fig. 
2). 

For electrons bound in matter with binding energy B, 
average kinetic energy U and an average speed u, a useful 
approximation for the cross section follows from binary 
encounter theory: 

4U 
aL(E) = p(c) · (1 + 3~ ). (5) 

It is valid for v ~ u and E > lOU (Inokuti, 1971), and 
agrees well with quantum mechanical calculations (Bich
sel, 1988). 

For collisions of electrons with electrons, the exchange 
effect must also be taken into account. This can be achieved 
with the Moller formula (Uehling, 1954). For free elec-



Energy Loss of Electrons Below 10 keV 

trons, the nonrelativistic expression is given by: 

The exchange effect is small for small€, and CJM will coun
teract CJL with increasing€; for example, with B = 16eV, 
€ = 160eV, and E = lkeV, the increase of CJL over p 
is approximately equal to the decrease of CJ M, while for 
E = l0keV, the decrease of CJM is small. Kim (1975) gave 
an expression combining Eqs. (5) and (6). The Bhabha 
cross section for the scattering of positrons on electrons 
is also given in Uehling (1954). 

It appears advisable to compare any cross section based 
on given theoretical assumptions with the asymptotic cross 
sections CJ L and CJ M ( e.g. at E= 10 or 20 ke V). Further
more, since p(c) has a very simple functional form (p ~ 
c 2

), it will be useful to plot the ratio CJ(€)/ p( €) for a cross 
section CJ(€) (Fig. 2). 

Gryzinski's binary encounter model 
By considering the orbital speeds of electrons in a mate
rial, and using classical mechanics and the Coulomb cross 
section, Gryzinski (1965) was able to refine Eq. (5) and 
obtain total collision cross sections Mo and stopping pow
ers lvl, which agreed quite well with experimental data. 
The following expression is a modification of the equation 
which has been used by Valkealahti and Nieminen (1983) 
to describe the Gryzinski cross section: 

{ 
B 4B [ E-€,]} (1 - ___.:)+ _ _:In 2.7 + (-~)2 
E 3 c B, 

(7) 

where Eis the energy of the incident electrons, and n; the 
number of electrons in the shell i, with binding energy B;. 
For energy losses below B;, the approximation given by 
these authors is used: for c < B;, CJ(€) = CJ(B;) (this is 
their model MC-2). Note that for large energies of the 
electrons, we have 1 + (B,/ E)--+ 1, [1- (€/ E)] 8 f(,+B)--+ 1 
and 1 - (B,/ E) --+ 1, and then Eq. (7) is the same as Eq. 
(5), except that the logarithm is greater than 1. 

As an example, values of CJ(€) and its moments were 
calculated for silicon, with two sets of parameters for 
the binding energies and the number of electrons in each 
shell. The first set was chosen to give peaks in a(€) where 
they appear in the Bethe model: BK = 1840eV, n1, = 
2,BL = 150eV,nL = 8,BM = 17eV,nM = 4. The sec
ond set was used by Valkealahti and Nieminen (1983): 
Bg = 1840eV,BL = 112eV,BM = 8eV, with the same 
number of electrons in each shell. These cross sections, 
calculated for 10 keV electrons, are shown in Fig. 2; and 
moments for three different electron energies are shown 
in Table I. The moments for the model MC-1 (where 
CJ(€)= 0 for c < B;) of Valkealahti and Nieminen (1983) 
arc also given. Clearly, in Eq. (7), the choice of the small
est B; (for silicon, this is for the M-shell), influences the 
value of Mo greatly, it is of lesser importance for M 1 or 
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Table I. Moments of CJ(€) 

Moments of the singly differential collision cross sec
tion spectrum CJ(€), for electrons with initial energy E(keV) 
in silicon, calculated with different theories of CJ(€). Mo is 
given in units of number of collisions per µm, M1 is the 
slopping power in MeV /cm, M2 is the moment related to 
straggling, in units of keV 2 /cm. The mean energy loss 
per collision, < € >, is given by M 1/M 0 , and is in units 
of eV. Sources for the calculations are: Si - Bethe model, 
described in section 5; DOS - model of Eq. (23); G-17 -
Gryzinski model, Eq. (7), with BM = 17 eV, n=4 for the 
M-shell, BL = 150 eV, n=8 for the L-shell, Bi, = 1840 eV, 
n=2 for the K-shell; G-8 is calculated with the parame
ters used by Valkealahti and Nieminen (1983) (BM = Se V, 
BL = 112 eV, Bi, = 1840 eV). For G-L, the K-shell was 
excluded. For G-0, the contribution for c < Ea was ex
cluded (model MC 1 of Valkealahti and ieminen, 1983, 
but the K-shell contribution is included again), and the 
changes in M 0 and M1 are very large. For comparison, the 
stopping power given in ICRU-37 (1984) is also shown. 

E source Mo M, M2 <€> 

100 Si 0.105 7.51 27,600 71.3 
G-8 0.237 8.43 32,000 35.6 
ICRU 7.61 

10 Si 0.646 37.5 24,100 58.1 
DOS 0.707 39.5 25,200 55.9 
G -17 0.749 41.1 28,200 54.8 
G -8 1.502 44.6 27,500 29.7 
G-L 1.5 42.9 23,800 28.6 
G-0 0.642 34.5 26,200 53.8 
ICRU 39.4 

5 Si 1.15 60.8 23,500 52.8 
G -8 2.74 74.5 26,700 27.2 

M2 . The inclusion of the K-shell electrons influences M 0 

very little, but changes M 1 by :::::: 5% and M2 by 15%. 

5 Bethe model of cross sections 

Using the first Born approximation, Bethe (1930) de
rived a quantum mechanical expression for CJ{€). In its 
nonrelativistic form it can be written as the Coulomb 
cross section modified by a factor ( ca.lied the "inelastic 
form factor"), which represents the probability of excit
ing the atomic electrons (Fa.no, 1963; Inokuti, 1971 ): 

where K is the momentum transferred from the incident 
particle to the absorber, I F( €, K) I the transition matrix 
element for the excitation, and Q = ( liK) 2 /2m. Q is 
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the energy which would be given to a free electron with 
momentum K. For an atom with Z electrons, I F(c,K) I 
is defined for the transition from the ground state I 0 > 
to an excited state I n >, with energy transfer c and 
momentum change hK (Inokuti, 1971) by: 

z 
F(c,K) =< n I I>xp(iK · rj) IO>. (9) 

j=I 

If we assume that the atoms are oriented at random or 
that the ground state is spatially symmetric, I F( c, K) 1

2 

is a function of the scalar variable K. The cross section 
differential in c is obtained by integrating Eq. (8) over 
Q. In our current understanding, this approach to the 
calculation of O'( €) is closest to reality. 

Frequently, F( c, K) is replaced by the generalized os
cillator strength (GOS) f( c, K), defined by 

/( €, K) = ~ I F( €, K) 12, thus (10) 

d( Q) =~J(c,K)dQd (11) 
(J' €, f32 € Q €. 

Extensive studies have been made of the GOS for atoms 
with hydrogenicelectron orbits (Bethe, 1930; Walske, 1952, 
1956; Khandelwal, 1982; Bichsel, 1983), and these data 
should be used as a baseline for comparison with other 
calculations. A model of f( c, X) for H-atoms is shown 
in Fig. 10 of Inokuti (1971). Further numerical calcu
lations of GOS, Eq. (10) have been made with wave 
functions approximating real atoms more closely than the 
hydrogenic functions. For example, for aluminum and sil
icon, the ground state functions and the atomic poten
tial were taken from the Herman-Skillman calculations, 
while for the continuum states, numerical integrations of 
the Schrodinger equation were performed (Manson, 1972; 
Bichsel, 1988). For silicon, for a few values of€, results of 
these calculations are compared with hydrogenic calcula
tions in Fig. 3. A detailed study of O'( c, Q) for all shells 
of solid silicon has been made by Bichsel (1988), and O'( c) 
calculated with Eq. (11) for 10 keV electrons is shown in 
Fig. 2. Moments are given in the Table. I believe that 
with the inclusion of the shell corrections, Eq. (21) be
low, these calculations should give adequate cross sections 
for energies as low as 1 ke V. This has not been done so 

far, though. In order to get O'(c), it is necessary to calcu
late the complete functions for the generalized oscillator 
strength. Problems related to the valence electrons (Bich
sel, 1988) have been solved with the methods proposed by 
Ritchie, who will discuss them at this conference. I esti
mate that for E > lOke V the calculation of O'( €) for Si 
with Eq. (11) is accurate to ±5% or better for most €, 
while the moments are accurate to about ± 1 % (Bichsel, 

1988). 
Bethe derivation for the first moment 
In order to get the moments Mv, Eq. (2), from dO"(c,1{) 

of Eq. (11 ), it is necessary to perform double integrals for 
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each particle speed (e.g. Walske, 1956). Bethe showed 
that for large particle speeds it is not necessary to know 
GOS in order to get the stopping power, Mi. Instead, 
sum rules can be used. Bethe et al. (1950) noted that 
·the GOS, J(c, K), is constant near K = 0 (Fig. 3), and 
they used the following clever approach to simplify the 
calculation. With Eq. (11), the integral over Q, used to 
obtain the singly differential cross section O'(c), is divided 
into three parts: 

(12) 

with Qm ~ c2 /2mv 2 • Qi is chosen such that the GOS at 
Ki differs little from that at I( = 0 (Fig. 3). Frequently, 
the collisions with Q < Qi are referred to us "distant", 
those with Q > Q 1 as "close". 

The first integral can be evaluated directly, and is 
equal to: 

and contains the particle speed, v, explicitly. The contri
bution to Mi from the distant collisions, i.e. the integral 
over c of Eq. (13) therefore is 

k J /3
2 

f ( €, 0) In( Q1 · 2mv 2 
/ c2 )dc 

k J /3
2 

ln(Q 1 · 2mv 2
) /(c,0)dc 

k J 2 /3
2 

f ( €, 0) In cdc. (14) 

For the integral over f( c, 0), the sum rule for DOS pro
vides the value Z (see Eq. (17)), and the last integral 
defines the average logarithmic excitation energy, I: 

Zlnl= j /(c,0)lncdc. (15) 

Therefore we can write 

k 2 k Qi· 2mv 2 

dMi = /3
2

[Zln(Q1 · 2mv )-2Zlnl] = /3
2

Zln 12 
(16) 

The contribution to M1 from close collisions is given by 
the integral over c of the second integral in Eq. (12), it is 
independent of particle speed. The sumrule 

f 0 

f(c, Q)clc = Z (Bethe, 1930; Inokuti, 1971) (17) 

simplifies the calculation of this integral greatly, we can 
change the order of integration and get: 
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where we had to replace the upper limit oo of the integral 
over Q by QM= EM, the maximum energy loss; for elec
trons, EM = E/2, for heavier ions, EM = 2mv 2 (further 
details in Fano, 1963). Thus the contribution cM1 from 
close collisions is: 

(19) 

In the third integral of Eq. (12), for small Qm, the lower 
limit can be replaced by zero because f( E, A-) differs little 
from f( E, 0) (see Fig. 3; I<handelwal, 1982; Peek, 1983). 
With the change in the order of integration, the integral 
over E is zero. Then the total stopping power is 

(20) 
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Fig. 3. Generalized oscillator strength (GOS) func
tions f( E, ]{)(in Ry- 1

) for longitudinal excitations of the 
2p-shell of silicon atoms (with a binding energy BL = 
8Ry). The abscissa represents the momentum transfer I( 

(in atomic units) occurring in the collision. For compari
son, the function calculated with the hydrogenic approx
imation is also given (broken line). Functions are given 
for E = 18Ry, Fig. 3a; E = 48Ry, Fig. 3b; and E = 108Ry, 
Fig. 3c. If K 1 a0 [corresponding to Q1 in Eq. (12)] is cho
sen to be equal to 1, the third integral of Eq. (12) will be 
very small for E = 108Ry, but larger for smaller E. Note 
that the maxima off ( E, K) are located at (I( a0 )

2 
;:::, E-B L · 

In the DOS model, Eq. (23), the GOS is replaced by a 
5-function at Kao= E112 and by DOS for O < Ka 0 < E

I 12
. 

This model is shown in Fig. 3b (the 5-function is shown 
schematically). 

which is the well known asymptotic Bethe result. It must 
be understood clearly that the approximation made in the 
derivation of this equation is that the integral 

(QM dQ 
lo [f( E, K) - f( E, O)]Q (21) 

added to Eq. (12) (by replacing Qm by zero, see below Eq. 
(19)) is negligibly small. Whenever this is not the case, 
M 1 of Eq. (20) will be too large, and the contribution 
from Eq. (21) produces a reduction of M1 , known as the 
"shell correction". A further correction term related to 
the behaviour of the function in the neighbourhood of 
Q = EM (see Eq. (18)) was discussed by Fano (1963), and 
is also considered to be part of the shell corrections. 

General structure of the equation for stopping 
power, M1 

Fano (1963) showed that the shell corrections are pro
portional to v- 2 , in first order. For Si and lighter ele
ments, this approximation should give reliable values of 
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M1 for E > 3keV, while for lkeV < E < 3keV, cor
rections of the order of 10 % must be expected. Thus 
if a parameter fit to experimental stopping power data 
is attempted, a function with the structure including the 
major dependence on v, derived from Eq. (20), should be 
used, i. e. 

(22) 

where g, h and j are parameters which are adjustable 
within reasonable limits. In particular, g, which for large 
particle speeds is proportional to the atomic number Z 
can be chosen to include a factor Zeff < Z in consid~ 
eration of the fact that, for smaller speeds, some of the 
atomic electrons do not contribute to the energy loss. For 
gold, for example, the K- and L-shell electrons only con
tribute to the energy loss for incident electrons with en
ergies exceeding about 15 ke V ( or protons with energies 
above 25 MeV), and one could choose Zeff= 69 in calcu
lating g. Correspondingly, h would be reduced from the 
Bethe value, and the approximation with v- 2 for the shell 
corrections would be appropriate to lower speeds. 

Next we consider an approximate model for u( €) which 
does not require the calculation of the GOS. 

Model approximating the Bethe ridge with a 
delta function 
Allison and Cobb (1980) and Liljequist (1983) approxi
mated the GOS of Fig. 3 by placing a delta function at 
Q = € and by replacing the GOS f( €, Q) for Q < € by the 
dipole oscillator strength f( €, 0) (see Fig. 3b ). Then the 
integral over Q of Eqs. (11) and (12) extends from Qm to 
€ rather than to Q1 . Sum rules were used to obtain the 
residual contribution for the delta functions. The collision 
cross section then is given by (for € < €M ): 

(Allison and Cobb, 1980; relativistic terms are omitted); 
for€> €M, u(€) = 0. For large €,j(€,0) ~ c 3 ·5 , thus the 
first term in the bracket decreases rapidly with increas
ing€, the integral--> Z, and we get u(€) ~ Zp(€). This of 
course is only true for€~ B1,. This model has the advan
tage that it is only necessary to determine the DOS f( €, 0) 
for the absorber, or, equivalently, the imaginary part of 
the inverse of the complex dielectric function, Im( -1/ ,-). 
Data for " can be extracted from a variety of optical mea
surements. In particular, Im(-1/ 11:) can be obtained from 
electron energy loss measurements (Raether, 1980). The 
cross section calculated with this model is given in Fig. 
2. It differs by as much as 50% from the Bethe result 
but the moments differ by at most 10% (Table). It give~ 
a closer approximation to the Bethe model than does the 
Gryzinski approximation. 
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6 Conclusions and recommendations 

The choice of an appropriate differential collision cross 
section for applications in transport theory is of great im
portance. Especially for Monte Carlo calculations the 
structure of the cross section for the valence electr;ns is 
relevant because it influences the moment M 0 and there
fore the number of collisions per unit pathlength greatly. 
This is evident from the comparisons shown in Fig. 2 
and in the Table. The most reliable method to obtain 
theoretical u(€) is that described by Eq. (11). If this ap
proach is too time consuming, the approximation defined 
in Eq. (23) will give much better results than the Gryzin
ski approach, Eq. (7). Clearly, accurate data for DOS a.re 
important in this construction of u(e). While the param
eters in Eq. (7) can easily be adjusted to give the correct 
stopping power, this is not readily done for the differential 
collision cross section. No attempt has been made here 
to achieve this. In general, it appears advisable to first 
evaluate any proposed theoretical or semi empirical u( e) 
for 10 keV electrons in Si and compare it to Fig. 2 before 
calculations a.re made for other substances. 

It clearly is desirable to perform transport calculations 
with several models of u(e) in order to assess the sensi
tivity of the results to the properties of the model ( e.g. 
Valkealahti and Nieminen 1983; Bichsel, 1988). 
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Discussion with Reviewers 

J. Schou: How is the agreement between the stopping 
power that you calculated, and that from Tung, Ashley 
and Ritchie (e.g. Surf. Science 81, 427 (1979)? 

Bichsel: I am comparing these results with my data 
in this table: 

E(keV) M1(MeV/cm) M0 ( collisions/ µm) 

Tung Bichsel Tung Bichsel 
1 198 160 4.69 4.18 

2.5 110 96 2.24 2.04 
5 66.6 60.9 1.26 1.15 
10 39.2 37.5 0.69 0.646 

It must be noted that Tung et al. used the Lindhard 
statistical model for their calculations. My calculation 
for protons with energies above 5 MeV agree with the 
Janni (1982) data to better than 1 %. 

Schou: Is it straightforward to extend your treatment 
to other elements? 

Bichsel: To achieve reasonably accurate results (5-
10% in O"( e), 2% in M 0 and Mi), a complete evaluation 
of the GOS of Eq. (10) must be made. This work is 
straightforward but time consuming. A detailed descrip
tion of such an evaluation for silicon is given in Bichsel 
(1988). 

As a first step, the DOS should be determined ac
curately. The major problem will be to find the func
tion for the valence electrons. It could be obtained from 
absorption measurements with synchrotron radiation or 
from electron spectroscopy experiments. Then the ap
proximation described by Eq. (23) may be used to get 
preliminary results for O"( e), with uncertainties of up to 
50% in O"(e), but maybe 5% in Mo and M 1 . 

R. Bonham: Eq. (6) certainly is correct for an elec
tron scattered by atomic hydrogen. For electron scatter
ing by He or a hydrogenic atom excited to a quartet state 
I am not so sure. For elastic scattering from He the cross 
term may have to be multiplied by 2? The expression is 
correct as written if one assumes the factorization approx
imation which assumes that the cross-section can be writ
ten as a product of a form factor and the electron-electron 
scattering cross section. If, on the other hand, one starts 
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from the first Born approximation, including exchange, 
and works out all the spin couplings, say for an L-S cou
pling model for atomic scattering, to obtain the correct 
expression for the cross section and then uses a high en
ergy approximation to relate the Born-Oppenheimer ex
change matrix element to the matrix element for direct 
scattering, I am not so sure the answer will be the same. 
I have been trying to do this in a general way but have 
run afoul of horrendous angular momentum algebra. 

Bichsel: Eq. (6) is meant to demonstrate the general 
nature of the exchange effect; it is valid for the scattering 
of electrons on free electrons. The problems you mention 
must certainly be considered for any of the more complex 
situations. I do not know how serious problems would be 
for solids as compared to atoms. 

Bonham: The comment below Eq. (6) "(e.g. at 
E = 10 or 20 keV)" is a good one, but the suggested 
energies may have to be higher; see Phys. Rev. A 38, 
654 (1988). I am personally a little suspicious of this work 
as my preconceived idea was that the experiment should 
approach the theory at a lower energy or at least show 
signs of moving in that direction by 5 keV. Of course we 
don't know whether the problem is due to the elastic or 
the inelastic part. I suspect that most of the problem is 
in the elastic part. 

Bichsel: My major concern is with the validity of 
different theoretical models. What I am suggesting is that 
the structure of a model should show the behaviour of 
Eqs. (5) and (6) for the appropriate values of energies 
and the parameters. For example, it must be noted that 
Eq. (7) does not show the exchange effects of Eq. (6)! As 
you point out, in a comparison of experiment and theory, 
it will be necessary to explore carefully which aspects of 
either could be faulty. 

Bonham: About benzene. I don't believe any plasma 
or collective excitations in free molecules have ever been 
documented although there have been papers predicting 
such effects. The author should make it clear whether 
or not the prediction that the feature in gaseous benzene 
at 16 eV is his own prediction or someone elses. This is 
a very interesting observation and our next experiment 
will be to study the momentum transfer dependence of 
this feature to determine whether or not it is actually a 
collective excitation. 

Bichsel: I am judging by appearances. Readers should 
study Bonham's suggestions in given applications and let 
us know their conclusions. This raises the question how 
big the molecule is in the two phases. Maybe this could 
be determined from the Van-de-Waals terms. 

156 

Bonham: Wouldn't a particle in a box model suggest 
greater delocalization in the solid than in the gas and 
suggest that the collective excitation should lie at lower 
energy loss rather than higher in the solid case? 

Bichsel: One might argue that more electrons would 
be involved in the collective motion in the solid than in 
the gas, therefore more energy would be needed for the 
excitation. 

P. J. Schultz: Powell has done extensive comparisons 
of inelastic cross sections (e.g. Rev. Mod. Phys. 48, 33 
(1976)). Please comment on the conclusions and degree 
to which they do or do not agree. 

Bichsel: Powell's work certainly must be studied and 
used if cross sections for various substances are to be de
termined. I do not believe that Powell made measure
ments for Si, therefore a direct comparison with my data 
is not possible. In the ref. mentioned above, Powell was 
discussing total collision cross sections (i.e. M0 ) for inner 
shell excitations. He did find good agreement with the 
Bethe theory (without shell corrections) with parameters 
fitted to experiments for electron energies greater than 
4 • B;. His procedure is essentially the same as the one I 
used for Si, thus we agree on the procedure, and I would 
expect agrement on the data. 
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