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 

Abstract— Introduction: The oxyhemoglobin 

dissociation curve describes the relationship between the 

partial pressure of oxygen and the percent of hemoglobin 

saturated with oxygen.  This relationship is a sigmoidal 

shaped curve.    The oxyhemoglobin dissociation curve  

varies from patient to patient.  If patient variability could 

be determined patient specific oxygen flow rates could be 

delivered.  We have developed a model for characterizing 

patient specific variations in SpO2.  Our model predicts 

saturation by generating a patient-specific oxyhemoglobin 

dissociation curve.  The purpose of this study was to 

determine the effectiveness of our patient-specific model.  

Methods: We Probed SpO2 level at various oxygen 

inhalation amounts to provide input to our model.  We 

linearized the relationship between SpO2 and EtO2 for 

each participant.  We then fit a line to those linearized 

data points.  We used model fit error techniques to show 

the ability of the model to fit volunteer and patient SpO2.  

Fit results were generated by using the fitted patient 

specific curve shift to estimate oxygen concentrations.  Fit 

errors were used to assess the model’s ability to fit SpO2 

and to make an accurate patient specific oxyhemoglobin 

dissociation curve .  Results: Thirty subjects participated 

in our volunteer study.  The nominal average line is quite 

close to the standard curve.  The cumulative density plot of 

the model fit error for the entire data set in our volunteer 

study and the average for each volunteer had greater 

accuracy than the standard fit.  Sixty patients participated 

in our clinical trial.  The nominal average line is quite 

different than the standard curve.  The cumulative density 

plot of the model fit error for the entire data set in our 

clinical study and the average for each patient both had 

greater accuracy than the standard fit.  Discussion: This 

study has shown that our model is able to fit patient 

saturation values with higher accuracy compared to using 

the standard oxyhemoglobin dissociation curve.  We have 

also shown that the variability of the ODC from patient to 

patient is quite large, making predicting patient saturation 

quite difficult.  We have developed and tested a model for 
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fitting the oxyhemoglobin dissociation curve to patients.  

We have shown improved fit when compared to the 

standard oxyhemoglobin dissociation curve.  This model 

could potentially be used to predict time to desaturation 

specific to a patient. 

Index Terms—Oxyhemoglobin Dissociation, Model Fit 

Validation, Patient-specific Modeling 

I. INTRODUCTION 

he oxyhemoglobin dissociation curve (ODC) 

describes the relationship between the partial 

pressure of oxygen and the percent of hemoglobin 

saturated with oxygen [1].  This relationship is a 

sigmoidal shaped curve that typically reaches a 

plateau at a partial pressure of oxygen (PO2) of 70 

mm Hg and then slowly approaches 100% 

saturation [2].  Below 70 mmHg the ODC has a 

sharp decline (Figure 1).  The plateau of the ODC 

means for that portion of the curve large changes in 

PO2 result in small changes in saturation while the 

sharp decline means that small changes in PO2 result 

in drastic changes in saturation, which can be life 

threatening (Figure 2). 

Monitored anesthesia care can result in drug-

induced respiratory depression and subsequent 

desaturation [3].  For this reason, supplemental 

oxygen is often given to increase PO2.  However, 

too much supplemental oxygen can delay the time 

until respiratory depression is noticed.  Recognition 

that high levels of oxygen may impair detection of 

hypoventilation by pulse oximetry has led to the 

recommendation by some that oxygen should not be 

administered during monitored anesthesia care [4-

6].  While this may be effective, low levels of 

oxygen can lead to frequent hypoxic episodes and 

decrease the alveolar oxygen reserve available at 

the time of a patient emergency.   

Oxygen saturation is measured using pulse 

oximetry.  Pulse oximeters determine oxygen 

saturation based on differences in light absorption 

in tissues and both venous and capillary blood [2].  
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The characteristics of the ODC mean that at higher 

values PO2 can drop for several minutes without any 

indication by pulse oximetry.  Then as PO2 

continues to drop to lower values pulse oximetry 

drops abruptly. 

The ODC varies from patient to patient depending 

on the values of different parameters (pH, T, PCO2, 

[DPG]) and these variations affect the position of 

the ODC but not the shape (Figure 3) [7].  The 

effect on position changes the PO2 at which the 

ODC plateau transitions to the sharp curve.  Thus 

patient-to-patient variability adds difficulty in 

determining at which PO2 a patient’s saturation will 

begin to decline rapidly. 

Patient variability and limitations to pulse 

oximetry make measuring saturation using existing 

methods difficult.  Maintaining sufficient levels of 

saturation is challenging because the response of a 

given individual to a particular oxygen flow rate is 

unpredictable.  The accuracy of pulse oximetry, 

which ranges from ±2% to 4%, limits its utility as 

an indicator of alveolar oxygen concentration [8].  

Because of this error combined with the nature of 

the ODC, high SpO2 could indicate a wide range of 

PO2, and give no indication as to how close to the 

steep portion of the curve a patient’s saturation is 

(Figure 4).  

If patient variability could be determined, and a 

patient specific ODC could be generated, the 

transition from plateau to sharp curve could be 

characterized and patient specific oxygen flow rates 

could be delivered and thus prevent saturation.  

Patient-specific model-based oxygen delivery could 

prevent hemoglobin desaturation while maintaining 

low enough oxygen levels for pulse oximetry to 

provide warning of respiratory depression.  One 

possibility for determining patient variability is to 

create a model which can use a subset of saturation 

values to fit a patient specific ODC.  We have 

developed such a model based on an oxygen 

delivery system we have developed and tested 

previously [9, 10].  

We have developed a model for characterizing 

patient specific variations in SpO2.  We have 

identified patient specific variations by 

characterizing a patient specific ODC.  Determining 

a patient specific curve relying solely on SpO2 

 
Figure 1: The oxyhemoglobin dissociation curve, a 

sigmoidal shaped curve which reaches a plateau and 

slowly approaches 100% saturation typically at a partial 

pressure of oxygen of 70 mmHg.  Below 70 mmHg the 

ODC has a sharp decline. 

 
Figure 2: The plateau of the ODC means for that portion 

of the relationship large changes in Po2 (ΔA) result in 

small changes in hemoglobin saturation while the sharp 

decline means that small changes in Po2 (ΔB) result in 

drastic changes in hemoglobin saturation. 

 
Figure 3: The ODC varies from patient to patient 

depending on the values of 4 parameters: concentration of 

the hydrogen ion (pH), temperature (T), partial pressure of 

carbon dioxide (PCO2), and concentration of 2,3-

diphosphoglycerate ([DPG]).  These variations affect the 

position of the ODC but not the shape.  The effect on the 

position changes the location of the transition from the 

ODC plateau to the sharp curve. 
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could add value to pulse oximetry and provide a 

non-invasive way to determine a patient’s curve. 

Our model predicts saturation by generating a 

patient-specific oxyhemoglobin dissociation curve.  

The model automatically adapts to patient    

variability.  Such a model could also help determine 

the minimum amount of oxygen necessary to 

maintain satisfactory oxygenation as considerable 

hyperoxia also has negative effects in some patients 

[11].  

The purpose of this study was to determine the 

effectiveness of our patient-specific model.  A 

model-based and patient specific approach to 

supplemental oxygen delivery could characterize 

patient variability and thus provide oxygen delivery 

specific to a patient’s needs [12].  This approach 

would provide the ability to keep a patient saturated 

sufficient enough to provide time for intervention 

while still reducing fire hazard.  

II. METHODS 

Study approval and risk determination came from 

the University of Utah Institutional Review Board.  

All volunteers and patients participated in this study 

with written informed consent. 

A. Theory 

The ODC is described using Hill’s equation: 

 

𝑆𝐻𝑏𝑂2 =  
(

𝑃𝑂2

𝑃50
)

𝑛

1 + (
𝑃𝑂2

𝑃50
)

𝑛 

 

Where P50 is the PO2 at which 50% of hemoglobin 

are saturated and where n is 2.7 in normal human 

blood.  The ODC can be linearized using natural 

logarithms as follows: 

 

𝑥 = 𝐿𝑛[𝑃𝑂2];  𝑦 = ln [
𝑆𝐻𝑏𝑂2

1 − 𝑆𝐻𝑏𝑂2
] 

 

We used this method to linearize the relationship 

between SpO2 and EtO2 for each participant.   

For each participant, the values of expected PAO2, 

measured SpO2, and measured expired oxygen 

concentration values were used to establish the 

framework for a specific ODC.  To establish a 

specific ODC, we fit a line to linearized data points 

and transformed that linear fit back into a patient 

specific ODC. 

B. Volunteer Study 

During the study, our prototype system delivered 

oxygen flows between 0 and 10 L/min.  Each flow 

rate and mode combination was delivered for two 

minutes.  At the end of each two-minute period, 

oxygen flow was turned off and the expired oxygen 

was sampled for three breaths. 

C. Clinical Study 

Supplemental oxygen was given using a nasal 

cannula throughout the procedure.  The protocol 

called to deliver varying flow rates from 0.4 L/min 

to 5 L/min.  Each flow rate was delivered for 2 

minutes.  At the end of each two-minute period, 

oxygen flow was turned off and the expired gas was 

analyzed using for 3 breaths.   

D. Model Validation 

We used model fit error techniques to show the 

ability of the model to fit volunteer and patient 

SpO2.  Fit results were generated by using the fitted 

patient specific curve shift to estimate oxygen 

concentrations.  Fit errors were used to assess the 

ability of the model to fit SpO2.   

To validate our model, we tested the ability of the 

volunteer developed model to fit data obtained in 

the volunteer study and clinical trial.  Model fit 

 
Figure 4: The accuracy of pulse oximetry, which ranges 

from ±2% to 4%, limits its utility as an indicator of 

alveolar oxygen concentration.  Because of this error band 

combined with the nature of the ODC, high SpO2 could 

indicate a wide range of PO2, and give no indication as to 

how close to the steep portion of the curve a patient’s 

saturation is. 
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values were compared with actual measurements for 

error analysis and absolute error was measured. 

III. RESULTS 

Figure 5 shows representative data from a clinical 

trial patient.  This data is an example of the ability 

of our model to adapt to the patient specific points.  

This model adaptation shows how, in this particular 

patient, oxygen saturation would begin to drop long 

before the standard ODC predicts.  In this patient, 

oxygen saturation reaches 98% at an end-tidal 

oxygen value of approximately 50% as compared to 

the standard curves estimate of a regular end-tidal 

concentration obtained when breathing room air of 

15%. 

 

A. Volunteer Study 

Thirty subjects (14 females/16 males; age: 34 ± 12 

years, height: 172.4 ± 10.1 cm, weight: 75 ± 17.6 

kg, mean ± SD) participated in this study.  All 

participants enrolled finished the study. 

For our volunteer study, the nominal average line 

is quite close to the standard curve (Figure 6).  The 

standard deviation appears to be larger to the right 

compared to the left, this is most likely due to the 

nature of the curve where values approach 100% 

saturation asymptotically. 

For both the whole data set and the average for 

each volunteer, the model adapted fit (red) showed 

great improvement over the standard curve fit 

(black).  The cumulative density plot of the model 

fit error for the entire data set in our volunteer study 

and the average for each volunteer had greater 

accuracy than the standard fit.  For the model 

adapted fit, 90% of data points had an error of less 

than 0.8% while for the standard fit 90% of data 

points had an error less than 2.0% (Figure 7).  The 

largest average fit error when using our model 

adapted fit was 0.3% while the largest average 

standard curve fit was 2.4% (Figure 8). 

 
Figure 5: Representative data from a clinical trial patient.  

This data is an example of the ability of our model to adapt 

to the patient specific points.  The model’s adaptation 

shows how in this particular patient oxygen saturation 

would begin to drop long before the standard ODC would 

predict. 
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Figure 6: Nominal curve and uncertainty for our volunteer 

study with 30 healthy volunteers.  The nominal average 

line (solid red) is quite close to the standard curve (solid 

black).  Individual patient curves are shown in gray.  The 

standard deviations shown show a good estimation of the 

variance in oxyhemoglobin dissociation curves between 

volunteers.  The standard deviation appears to be larger to 

the right compared to the left, this is most likely due to the 

nature of the curve where values approach 100% 

saturation asymptotically. 
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Figure 7: Cumulative density plot of the model fit error for 

the entire data set in our volunteer study.  The model 

adapted fit (red) shows great improvement over the 

standard curve fit (black).  This plot demonstrates the 

ability of our model to provide a more accurate estimate of 

healthy volunteer saturations when compared with the 

standard oxyhemoglobin dissociation curve.  For the 

model adapted fit, 90% of data points had an error of less 

than 0.8% while for the standard fit 90% of data points had 

an error less than 2.0%. 
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B. Clinical Study 

Sixty patients (32 females/28 males; age: 66.5 ± 

12.7, height: 170.3 ± 12.2 cm, weight: 81.2 ± 19.3 

kg, mean ± SD) participated in our trial and all 

patients completed the study.  All patients met 

eligibility criteria and were recruited between 

12/1/16 and 4/14/17. 

For our clinical study, the nominal average line is 

quite different than the standard curve (Figure 9).  

The standard deviations shown show a good 

estimation of the variance in oxyhemoglobin 

dissociation curves between volunteers.  This 

nominal curve is a good demonstration of the 

variability of the oxyhemoglobin dissociation curve 

from patient to patient and the difficulty of 

predicting patient saturation levels.  

For both the whole data set and the average for 

each patient, the model adapted fit (red) showed 

great improvement over the standard curve fit 
 

Figure 8: Cumulative density plot of the model fit error for 

our volunteer study using the average for each patient.  

The average model adapted fit (red) shows great 

improvement over the average standard curve fit (black).  

This plot demonstrates the ability of our model to provide 

a more accurate estimate of patient saturations when 

compared with the standard oxyhemoglobin dissociation 

curve.  The largest average fit error when using our model 

adapted fit was 0.3% while the largest average standard 

curve fit was 2.4%. 
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Figure 9: Nominal curve and uncertainty for our clinical 

study with 60 patients.  The nominal average line (solid 

red) is quite different than the standard curve (solid black).  

The standard deviations shown show a good estimation of 

the variance in oxyhemoglobin dissociation curves 

between volunteers.  This nominal curve is a good 

demonstration of the variability of the oxyhemoglobin 

dissociation curve from patient to patient and the difficulty 

of predicting patient saturation levels. 

88

90

92

94

96

98

100

0 20 40 60 80 100

Sp
O

2
 (%

)

Expired Oxygen Concentration

Standard Curve +1 SD -1 SD Nominal Average

 
Figure 10: Cumulative density plot of the model fit error 

for the entire cohort in our clinical study.  The model 

adapted fit (red) shows great improvement over the 

standard curve fit (black).  This plot demonstrates the 

ability of our model to provide a more accurate estimate of 

patient saturations when compared with the standard 

oxyhemoglobin dissociation curve.  For the model adapted 

fit, 90% of data points had an error of 1.3% or less while 

for the standard fit 90% of data points had an error of 2.6% 

or less. 
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Figure 11: Cumulative density plot of the model fit error 

for our clinical study using the average for each patient.  

The average model adapted fit (red) shows great 

improvement over the average standard curve fit (black).  

This plot demonstrates the ability of our model to provide 

a more accurate estimate of patient saturations when 

compared with the standard oxyhemoglobin dissociation 

curve.  The largest average fit error when using our model 

adapted fit was 0.6% while the average standard curve fit 

error approached 5.4%. 
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 (black).  The cumulative density plot of the model 

fit error for the entire data set in our clinical study 

and the average for each patient both had greater 

accuracy than the standard fit.  For the model 

adapted fit, 90% of data points had an error of less 

than 1.3% while for the standard fit 90% of data 

points had an error less than 2.6% (Figure 10).  The 

largest average fit error when using our model 

adapted fit was 0.6% while the largest average 

standard curve fit was 5.4% (Figure 11).   

IV. DISCUSSION 

This study has shown that our model is able to fit 

patient saturation values with higher accuracy than 

when using the standard oxyhemoglobin 

dissociation curve.  We have also shown that the 

variability of the ODC from patient to patient is 

quite large, making predicting patient saturation 

quite difficult. 

Our results demonstrate the ability of our model 

to provide a more accurate estimate of healthy 

volunteer and patient saturations when compared 

with the standard oxyhemoglobin dissociation 

curve.  These accurate estimates could help 

determine a patient’s specific ODC and thus define  

where on the PO2 scale the patient’s SpO2 would 

start to drop drastically. 

We experienced large variations in the 

relationship between PO2 and SpO2 in both 

volunteers and patients.  The larger variation in the 

relationship in patients could be attributed to the 

fact that the patients underwent sedation and 

experienced lower minute volume.  The variation 

could also be attributed to the difference in age 

between the volunteers and patients.  This variation 

can be quite difficult to predict and our model 

shows an initial step toward understanding and 

predicting these differences. 

Although our model was able to fit patient data 

values within the range measured, we did 

experience unusual behavior beyond the ranges we 

tested.  The model results would at times cross over 

from the right side of the standard ODC to the left 

side or vice versa.  This behavior has not been 

experienced in clinical data and may be caused by a 

number of things including the ±2% error span of 

SpO2 measurements and noise. 

Future directions for this research include using a 

subset of patient data to create a model fit and 

subsequently using that model fit to predict 

remaining patient saturation values.  This type of 

technique would make acquiring the patient-specific 

ODC less cumbersome as only a small amount of 

sample points would be needed to characterize the 

curve. 

Once clinically validated, our model would 

increase the utility of pulse oximetry measurements 

when saturation is >98%.  Future validation would 

include predicting patient saturation for a range of 

levels of supplemental O2.   

A future use for this model would be to combine 

the model with other existing models to simulate 

and predict O2 saturation and time to apnea in 

patients with varying levels of respiratory drive. 

Predicting the course of SpO2 for a given amount of 

time could help explore and experiment with 

simulations on different clinical scenarios that may 

not be safe to study in volunteers or patients. 

 In summary, we have developed and tested a 

model for fitting the oxyhemoglobin dissociation 

curve to patients.  We have shown improved fit 

when compared to the standard ODC.  This model 

could potentially be used to predict time to 

desaturation specific to a patient. 
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