Introduction

- Objectives:
 - Recovering sparse signal X from a small set of linear noisy measurements using either single- or multiple-measurement vectors (SMV or MMV).

- Assumptions:
 - Sparse Clustered Pattern: Non-zero elements of the underlying signal may cluster in columns with an unknown structure on each column of X.
 - Joint-Sparsity: Columns of X have the same non-zero locations Y.

Proposed algorithm:
- **C-SBL:** Sparse Bayesian learning model for sparse signals with unknown clustered pattern.

Graphical Representation of the Proposed Bayesian Model

Proposed Bayesian Model and Defining Priors

- **Basic MMV Model:** Solve for X_{0m} in $Y = AX_{0m} + E$, where $Y \in \mathbb{R}^{M \times N}, A \in \mathbb{R}^{M \times P}, X_{0m} \in \mathbb{R}^{P \times N}$, and $(M < P)$.

- **Promoting sparsity:** Gaussian-Bernoulli prior by defining $X_{0m} \sim \mathcal{B}(s \equiv X, \text{where } s \in \{0, 1\}^{(P \times N)})$.

- **Promoting clustering pattern:** Incorporating total variation prior on the support learning vector s using a measure of sparsity $(\|\Delta_{1\chi}\|_{2,1} \equiv \sum_{n \in \chi} |s_n| - |\chi|)$.

- **There exist two links for the clustered pattern supports:**

Examples:

<table>
<thead>
<tr>
<th>P</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>30</td>
<td>20</td>
</tr>
</tbody>
</table>

- **Prior on the solution-value matrix X:**

 $X - (x_1, \ldots, x_N)$ are drawn i.i.d. from the normal-gamma distribution $x_\mu \sim N(0, \tau^{-1} \mu), \gamma \sim \text{Gamma}(a_0, b_0), n = 1, \ldots, N$.

- **Prior on the support-learning component s:**

 Model the elements of s as Bernoulli random variables $(s_1, s_2, \ldots, s_P) \sim \text{Bernoulli}(\frac{\gamma}{\tau})$, $\gamma = 1, 2, \ldots, P$.

 $w_{s,j} \sim \text{Beta}(\gamma - 1, \tau - 1, \gamma - 1)$.

 $\text{Beta}(\gamma)$.

 $\gamma = 1, \ldots, P$.

Samples for support learning (MCMC-Gibbs Sampler)

Proposed Bayesian Model and Defining Priors (Contd)

- **Prior on the noise component E:**

 $e_{\nu} \sim N(0, \tau^{-1} \nu), m = 1, \ldots, M, n = 1, \ldots, N$.

- **Prior on the sparsity index n:**

 $n \sim \text{Gamma}(a_0, b_0)$.

Update Rule for n (EM-based)

$$Q(\tilde{\nu}) = \mathbb{E}_{\nu | Y, X, \tilde{\nu}} \left[\log p(Y | X, \tilde{\nu}) \right]$$

- **Maximization step of EM:**

 $\mathbb{E}_{\nu | Y, X, \tilde{\nu}}$ arg max $E_{\nu | Y, X, \tilde{\nu}} [Q(\tilde{\nu})]$.

- **Update rule for n:**

 $n \sim \text{Gamma}(a_0, b_0)$.

C-SBL Algorithm

<table>
<thead>
<tr>
<th>P</th>
<th>N</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Simulation Results on Synthetic Data

- **Aspects of performance of C-SBL for the SMV problem:**

- **Aspects of performance of C-SBL for MMV (with $N = 2$):**

- **Comparisons of various algorithms for the SMV case:**

- **Comparisons of various algorithms for the MMV ($N = 2$) case:**

Performance Comparison on Hand-Written Digits

- **Original images (borrowed from MNIST) are scaled up to be of size 100 x 100 pixels:**

- **The pixel values were normalized to be within [0, 1], then they were subtracted from 1, and those with value of less than 0.3 were deemed to zero:**

- **For SMV we solve each column of X (for each digit) one at the time:**

- **The number of measurements for each column of X is set to 50:**

- **The measurements for each chunk of digit are computed by $y_{cd} = Ax_{cd} + e_{cd}$, where $x_{cd} \in \mathbb{R}^{100}$:**

- **We set the estimated pixels values lower value than 0.3 to 0:**

- **The true $(\|\Delta\|_{1})$ for digits 0, 1, 4, 5, 6, 7, 8, 9, 208, 160, 161, 316, and 220, respectively:**

- **C-SBL learning the clustering pattern via our measure of sparsity $(\|\Delta\|_{2,1})$:**

- **C-SBL learning the clustering pattern via our measure of sparsity $(\|\Delta\|_{2,1})$:**

- **C-SBL learning the clustering pattern via our measure of sparsity $(\|\Delta\|_{2,1})$:**