Cybersecurity Of Autonomous Vehicle Platooning

Presenter: Soodeh Dadras
Advisor: Prof. Chris Winstead
Electrical and Computer Engineering Department
Utah State University
Agenda

- What is Autonomous Vehicle Platooning?
- Pros and Cons of Autonomous Vehicle Platooning
- Platooning Challenges
- Modeling and Results
- Conclusion
Autonomous Vehicle Platooning

- **Autonomous Vehicle:**
 - The car that drives itself.

- **Platooning:**
 - Group of Autonomous vehicles travelling together with relatively small spacing and small/zero relative velocity of the vehicles.
Leading Companies and Projects
Pros and Cons

- **Pros:**
 1. Safety
 2. Operational Efficiency (Increase highway capacity)
 3. Driving Comfort
 4. Transit time Efficiency

- **Cons:**
 1. Computer failure
 2. Degrading performance in case of interception
 3. Increase in crashes involving pedestrians
Platooning Challenges

- Driver acceptance
- Reliability
- Legislation
- System Security
Cyber Security Of Autonomous Vehicle Platooning

“In fact, Munich Re, the world’s second-largest reinsurer, found that 55% of corporate risk managers surveyed in a recent study named cybersecurity as their top concern for autonomous vehicles. Even more alarming, 64% of companies surveyed say they feel completely unprepared to address cyber security [1]”
Research Works Study the Security in Platooning

- Communication security issues \([2, 3]\)

- Availability
- Confidentiality
- Data integrity
- Authentication
Security Attacks on Communication: Threats and Attacks on Availability

- Jamming attack
- DOS (Denial of service) or DDOS attack
- Malware attack
- Broadcast tampering attack
- Black hole attack
- Greedy behavior attack
- Spamming attack
Security Attacks on Communication: Threats and Attacks on Confidentiality

- Eavesdropping attack
- Traffic analysis attack
- Man in the middle attack
Security Attacks on Communication: Threats and Attacks on Authentication

- Sybil attack
- Tunneling attack
- GPS spoofing
- Impersonation attack
- Free-riding attack (or active free-riding attack)
- Masquerading attack
- Key and/or certificate replication
- Message tampering
Security Attacks on Communication: Threats and Attacks on Data Integrity

- Replay attack
- Masquerading attack
- Message modification attack
- Illusion attack
Research Works Study Security In Platooning

- Control security issues
 - Destabilizing attack [4]
 - High-speed Collision induction attack [5]
 - Energy efficiency attack [6]
 - False data injection [7]
 - Traffic flow instability attack [8]
Platoon Model

- Bidirectional structure [9]:

Each vehicle receives states of the vehicles in front and behind.

\[u_i = k_p(x_{i+1} - x_i - \sigma_{\text{ref}}) + k_p(x_{i-1} - x_i + \sigma_{\text{ref}}) + k_d(v_{i+1} - v_i) + k_d(v_{i-1} - v_i) \]

with \(k_p \) position gain and,
with \(k_d \) velocity gain
System Performance

Position

Velocity

X1-X2

X2-X3

X3-X4

X4-X5
Attack Model

- Attack objective
 Causing collision by attackers’ motion and gain modification
While:
Attacker is not affected
Attacker is not detectable

\[u_i = k_p (x_{i+1} - x_i - \sigma_{ref}) + k_p (x_{i-1} - x_i + \sigma_{ref}) + k_d (v_{i+1} - v_i) + k_d (v_{i-1} - v_i) + u_a \]

\(k_{d_a} \): velocity gain for the attacker
\(u_a \): Attacker's input
Simulation Results

- 15-vehicle platoon
- Attackers #1 and #5
- Gains for normal and attacker's vehicle
- Attacker’s Input

\[k_p = 1, k_d = 11 \]
\[k_{da} = 0.3 \]
Simulation Results
Simulation Results
Conclusion

- Simulation results show:
 - Attacker can easily disrupt platoon performance and stay intact and Attacker is not detectable.
 - Cyber security of autonomous vehicle platooning is an important issue and it needs immediate attention.
Bibliography

