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Abstract: When a canal’s size or shape changes, usually over a short distance, a section of the channel, known as a transition 
structure, is needed to connect the waterway’s two stretches. Fifth-degree parametric equations are developed to calculate 
the cross-section dimensions and bed centerline elevations (thus, the geometric surface coordinates) between the two ends of 
a warped transition structure in a water-supply canal. The parametric modeling approach provides a smooth representation 
of the mixed geometry that results from terminal sections having vastly different shapes. A generalized cross-section defined 
by four parameters enables a straightforward model of various forms ranging from trapezoids to semi-circles. This approach 
significantly simplifies the interpolation of surface coordinates between the terminal points of a transition structure. It also 
maintains a smoothness that helps avoid undesirable consequences of channel contractions and expansions. An example is 
presented that applies the parametric modeling approach to design a significant canal transition where the cross-section 
changes from a standard trapezoidal shape with rounded bottom vertices to a rectangular section in a steeper aqueduct that 
carries the flow across a broad valley. 

Keywords: Canal, water supply, transition, parametrically smooth, mixed-geometry  

1. Introduction 

An artificial canal supplying water for irrigation or public consumption may wind hundreds of kilometers from 
its source to its destination. Along the way, the flow rate delivered by the waterway usually decreases because of 
diversions, evaporation, and seepage losses, which reduces the size of the channel cross-section needed to convey 
the flow. The longitudinal slope might also vary, increasing or decreasing, accompanied by a change in cross-
section shape. The channel cross-section also changes at flumes, siphons, and aqueducts, where contractions and 
expansions of the flow occur (Aisenbrey et al. 1978). 

When the size or shape of a canal changes, usually over a short distance, a section of the channel, known as a 
transition structure, is needed to connect the waterway’s two stretches. The sidewalls’ geometrical shape (for 
example, conical frustum) and the physical appearance of the sidewalls (flared, splayed, straight, or streamlined) 
characterize the transition type. The most common types of transitions connecting channels having trapezoidal 
and rectangular cross-sections are the cylindrical quadrant, wedge, and semi-elliptical (Laycock 2007, page 154), 
which is like the so-called “warped” or twisted structure proposed by Hinds (1928) nearly a century ago. In Hinds’ 
warped transition, a surface is generated between the end (terminal) sections (which usually have flat walls either 
sloped or vertical) by a straight line moving so that no two consecutive positions are in the same plane. 

In comparatively small concrete-lined canals where energy losses at transitions are tolerable, the special formwork 
and skilled labor required to build elaborate structures are usually not justified economically. The most 
straightforward construction is suitable (Simmons 1964, page 1). However, for large canals on gentle slopes where 
energy losses at transitions must be kept small, the design typically tries to provide a gradual changeover that 
avoids turbulence caused by flow contractions and expansions and keeps the generation of surface waves to an 
acceptable level. Scobey (1933) notes that a cylindrical quadrant transition works well for contractions with 2.4 
m/s or less velocities. However, when the velocity-head changes by 0.6 m or more, he finds that a warped structure 
is best. Ippen (1949) found that warped transitions produce a minor energy loss in expansions. 

The procedure developed by Hinds (1928) for designing a warped transition relies on the hypothesis that the 
longitudinal water-surface profile consists of two reverse parabolas tangent to each other at the transition mid-
length and merge tangentially with the profiles at the entry and exit sections. It also assumes a constant value of 
the energy head-loss coefficient for the entire length of the transition and a dimensioning of the intermediate cross-
section that is subjective to a large extent. Detailed explanations of the strategy are given by Chow (1959, page 
319), Vittal and Chiranjeevi (1983), and Mazumder (2020, pages 82-85 and 157-167). However, contemporary 
methods for evaluating canal transition hydraulic performance use computational techniques more advanced than 
those devised by Hinds (1928). These approaches involve the numerical solution of differential equations that 
describe the canal flow in one, two, or three dimensions. For this reason, the technique developed by Hinds (1928) 
for computing water-surface profiles through warped transitions now has little practical relevance. 



In this investigation, the focus is not on the hydraulic calculations that go into designing a canal transition but on 
creating a layout that mirrors Hinds’ (1928) idea of connecting the terminal sections with a warped structure. 
Without abrupt changes in geometry, such a shape keeps energy losses small for contracting and expanding flows. 
A parametric modeling procedure produces a smooth, gradually-varying warped transition of mixed geometry. 
The coordinates of the intermediate cross-sections are calculated by mathematical expressions that employ 
specified coefficients to create a three-dimensional representation or parameterization of the structure surfaces.  

A fifth-degree polynomial equation is applied that provides a high measure of smoothness of the transition 
surfaces between the end sections. A similar fifth-degree polynomial equation interpolates the longitudinal 
variation of the channel centerline bed elevation. This approach dramatically simplifies the cross-section layout 
for warped transitions connecting channels with a wide range of conventional shapes. Although this investigation 
focuses on open channel transitions in water-supply canals, the same principle exists for waterways used for other 
purposes, such as diversion structures at dams (Hager et al. 2020, Chapter 7) and hydroelectric plant intake 
structures (Gemperline and Crane 1995). 

2. Generalized Canal Cross-Section 

Continuous excavating, trimming, and lining equipment is the most economical method for building large canals 
lined with erosion-resistant material. Widespread acceptance and use of canal cross-sections that conform to 
standard trapezoidal shapes enable manufacturers to build excavating and lining equipment more efficiently and 
lower replacement parts and service costs. For these reasons, the Bureau of Indian Standards (BIS 2004) 
recommends model cross-sections that are trapezoidal with rounded bottom vertices, emphasizing those lined with 
concrete. The BIS standard cross-sections set the bottom vertices’ radii to the full-supply-depth (that is, the typical 
channel depth at the design discharge) for comparatively shallow excavation and one-half of the supply depth 
where deep cuts are needed. 

In this analysis, the development of smooth, mixed geometry transitions is based on a generalization of the BIS 
standard cross-section shapes introduced by the writer (Froehlich 2008). The cross-section is defined by four 
parameters (see Fig. 1): b = the horizontal bottom width, h = the full-supply depth, m = the side-slope ratio 
(horizontal to vertical), and κ = r ÷ h, where r = the radius-of-curvature of the bottom vertices and 0 1κ≤ ≤ . 
Cross-sections of various shapes ranging from trapezoids to semi-circles can be formed with different 
combinations of the four parameters, as illustrated in Table 1. With b > 0, setting κ to 1 and 0.5 gives the two BIS 
standard canal cross-sections. With κ = 0, a trapezoid with sharp bottom vertices is produced. 

The flow area A for the generalized cross-section is calculated as 

 ( ) ,A b h hα= +  (1) 

the wetted perimeter P (that is, the boundary length of the section that is in contact with the flow) is given by 

 ,P b hβ= +  (2) 

 
Figure 1. Generalized trapezoidal cross-section. 
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and the section topwidth T is found as 

 ,T b hδ= +  (3) 

where the coefficients α, β, and δ are calculated as follows: 

 ( ) ( ) ( ) 2 2 1, 1 2 1 2 1 1 arctan ,m m m
m

α κ κ κ κ κ κ= − − + − + +    (4) 

 ( ) ( ) 2 1, 2 1 1 arctan ,m m m
m

β κ κ κ κ = + − + +  
 (5) 

 ( ) ( ) 2, 2 1 1 .m m mδ κ κ κ = − + +  
 (6) 

When κ = 0, the expressions for A, P, and T reduce to those for a trapezoidal section with sharp bottom vertices 
if b > 0, or a triangular section if b = 0. 

Freeboard is an extra height (f, shown in Fig. 1) added to the full-supply depth to set the top elevation of the 
channel’s lining. The freeboard aims to accommodate waves, a flood surcharge, or a flow surge caused by a faulty 
operation. It is also a safety margin that can absorb the effects of low construction tolerances or inaccurate 

Table 1. Generalized cross-section shapes for various values of b, m, and κ. 

Bottom 
width 

Corner 
curvature 

Side Slope (Horizontal/Vertical) 
0m =  1 3m =  

b > 0 

κ = 0 

  

κ = 1/2 

  

κ = 1 

  

b = 0 

κ = 0 --a 

 

κ = 1/2 

  

κ = 1 

  
aRectangular cross-section with b = 0 is not possible. 



estimates of the channel lining surface roughness or longitudinal bed slope, factors affecting the calculated full-
supply depth (Liria Montañés 2006, pages 164-170). 

The best hydraulic section provides the maximum flow-carrying capacity for a fixed area or the minimum cross-
sectional area and perimeter to pass a given discharge. As it is a minimum area and minimum perimeter section, 
it provides the maximum hydraulic radius and, therefore, requires the least excavation and lining costs. The most 
efficient cross-section shape for carrying open-channel flows is a semi-circle and a regular half-hexagon when a 
sharp-cornered trapezoid (Froehlich 1994). A shape’s hydraulic efficiency can be judged by comparing its non-
dimensional hydraulic radius ( )* /R R A A P A A P= = =  to the value for by a semi-circle (1 2π ). For 

the generalized cross-section given by Eqs. (1) and (2), ( ) ( )*R b h h b hα β= + + . 

3. Curve and Surface Continuity and Smoothness 

Transition structures must efficiently connect the terminal cross-sections with continuous wall and bed surfaces 
to achieve the goals of small energy loss production and minimal generation of surface waves. Continuity is 
associated with the smoothness of the geometry and describes how two items come together. These items may be 
two curves that meet in some way or two portions of the same curve. The function derivatives define the concept 
of the smoothness of curves. A straight curve (a line) has a zero second derivative, and a nonlinear curve with a 
sharp kink has a high second derivative at the abrupt bend. 

This analysis evaluates the smoothness of transition surfaces using a parametric equation that interpolates between 
the generalized terminal cross-sections, whose shapes are defined by the parameters b, h, m, and κ in Eqs. (1)
through (6). Parametric continuity is determined by the n-th derivative of the defining expression, so-called Cn 
continuity. If a curve or surface is continuous at the n-th derivative, it is said to have an n-th degree of continuity 
(or degree of continuity n). A function n times continuously differentiable is n-th order parametric continuous, 
with smoothness increasing with n (Veltkamp 1992). A curve is said to possess a particular degree of continuity 
when the continuity is at least that degree for all points on the curve’s interior. The same holds for surfaces.  

C1 continuity means the parametric equation associated with the curve or surface exhibits first derivative 
continuity. It follows that C1 continuity implies C0 continuity; if a curve or surface is C1, it is also C0 continuous. 
Similarly, C2 continuity implies C1 continuity. More precisely, C0 continuity means that a curve or surface is 
continuous (that is, it has no gaps) but may exhibit kinks or sharp bends. C1 continuity means that the parametric 
equation associated with the curve possesses first derivative continuity – in addition to C0 continuity – so that the 
tangents are identical. Likewise, C2 continuity implies parametric second derivative continuity and being C1 
continuous. The curvature is said to be continuous if its entities are C2. 

While it may be evident that a curve would require C1 continuity to appear smooth, higher geometric continuity 
levels are required for pleasing aesthetics (Barnhill 1985, Boehm 1988). For example, a reflective surface, such 
as an automobile’s body, does not appear smooth unless it has C2 continuity. C2 means that the curvature is 
continuous across two connected curves. Again, all previous conditions must be fulfilled for C2 to be possible. 
Although the reflective property of light from the surface of a concrete-lined transition is not a concern, the 
reflection of surface waves from its sidewalls is worrying. To avoid the generation of cross-waves and runup along 
the sidewalls, enforcing C2 continuity is a prudent design condition. 

4. Transition Parameterization 

Parametric modeling, also known as constraint modeling, automatically merges two structures into a single unit 
governed by the union of all the constraints in a coordinated way. A parametric equation defines a group of entities 
as functions of one or more independent variables called parameters. Parametric equations are commonly used to 
express the coordinates of the points that make up a geometric object, such as a curve or surface. The equations 
are collectively called a parametric representation or parameterization of the object. In this analysis, the item 
analyzed is a canal transition surface formed from the cross-section properties and the longitudinal bed profile as 
they vary between the ends of the structure. 

4.1. Cross Sections 

Considering a transition of length L, constraints are imposed at the terminal sections on the values of the 
generalized cross-section factors b, h, m, and κ along with their first and second derivatives with respect to channel 
distance x (as measured along the channel centerline.) A general profile shape function F(ξ), where ξ = x/L is 
defined so that 



 (0) (0) (0) (1) (1) 0  and  (1) 1F F F F F F′ ′′ ′ ′′= = = = = = , (7) 

where ξ = 0 is at the upstream end of the transition and ξ = 1 at the downstream end. The following fifth-degree 
parametric polynomial equation meets these requirements, as can easily be verified: 

 3 4 5( ) 10 15 6 ; 0 1.F ξ ξ ξ ξ ξ= − + ≤ ≤  (8) 
The function is fifth-order parametric continuous. Moreover, because the function is C2 continuous, if 0( ) 0F ξ′′ =  
and 0( ) 0F ξ′′′ ≠  for some ξ0 – that is, if ( ) 0F ξ′′ <  on one side of ξ0 and ( ) 0F ξ′′ >  on the other side), F has an 
inflection point at ξ0. At an inflection point, the curvature is continuous, and the surface smoothness is assured. 
Because these conditions are satisfied at ξ = 0 and ξ = 1, there exist inflection points at the terminal cross-sections. 
Consequently, the transition surface curvature is in line with the upstream and downstream channels, which is a 
critical property because any discontinuities in curvature at the end sections, or if (0) 0F ′′ ≠  or (1) 0F ′′ ≠ , can 
lead to flow separation and sudden steep increases in the local fluid pressure field. 

On the plane ξ = 0 (that is, the upstream end of the transition), the four cross-section parameters are b0, h0, κ0, and 
m0, and on the plane ξ = 1 (the downstream end), they are bL, hL, κL, and mL. The cross-section parameters between 
the terminal sections ( )0 1ξ≤ ≤ interpolated with the same properties attributed to F(ξ) are found as follows: 
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 (9) 

The parametric equations give points on the warped transition surface between the two end sections of the 
structure. Transition surface schematics in Table 2 illustrate three combinations of entrance and exit sections. 

4.2. Bed Centerline Profile 

The centerline bed profile of a lined canal is usually composed of stretches with constant slopes connected by 
vertical curves. Consequently, the transition centerline bed elevation (zb) is parameterized slightly differently than 
cross-sections to allow non-zero values of the longitudinal bed slope to be specified at the terminal sections. The 
following fifth-degree polynomial is used to interpolate zb between the entrance and exit sections at ξ = 0 and 1: 

 ( ) ( ) ( ) ( )3 4 5
0 0 1 2 1 2 1 210 4 15 7 6 3b b bz z z k k k k k kξ ξ ξ ξ ξ′= + + − − − + −  (10) 

where b b bz dz d L dz dxξ′ = = × , and the coefficients k1 and k2 are 

 1 0 0 2 0   and   bL b b bL bk z z z k z z′ ′ ′= − − = −  (11) 

The conditions ( ) 00 ,b bz z=  ( )1 ,b bLz z=  ( ) 00 ,b bz z′ ′=  ( )1b bfz z′ ′= , and ( ) ( )0 1 0b bz z′′ ′′= =  as a function of ξ 
are satisfied and are easily verified. 

Sharp concave (that is, the tangent line to the longitudinal profile lies below the bed in the vicinity of a point) and 
convex (the tangent line lies above the bed) vertical curves create undesirable conditions usually avoided in a 
water-supply canal. Concave curves should have an amply long radius-of-curvature to control the dynamic 
pressures exerted on the floor by the centrifugal force resulting from the flow direction change. Convex curves 
should be flat enough to maintain positive pressures and prevent the flow’s tendency to separate or spring free 
from the channel’s floor, as described by the U.S. Bureau of Reclamation (USBR 1987, page 384). The radius-
of-curvature of the bed centerline profile is 

 
( )

3/22

2 2

1 b
c

b

dz dx
r

d z dx

 + =  (12) 

where from Eq. (10), 

 ( ) ( ) ( )2 3 4
0 1 2 1 2 1 2

13 10 4 4 15 7 5 6 3b b
b

dz dz d z k k k k k k
dx d dx L

ξ ξ ξ ξ
ξ

 ′= = + − − − + −   (13) 

and 



 ( ) ( ) ( )
2 2 2

2 3
1 2 1 2 1 22 2 2 2

16 10 4 12 15 7 20 6 3b bd z d z d k k k k k k
dx d dx L

ξ ξ ξ ξ
ξ

 = = − − − + −   (14) 

A positive value of rc indicates a concave vertical curve, and a negative value one that is convex. Concave profiles 
present no difficulty provided the curvature radius is not smaller than 10 × y1, where y1 = the flow depth at the 
start of the curve. However, a larger radius is better. 

5. Example Application 

The design of a smooth transition connecting a concrete-lined water-supply canal on a gentle slope to an aqueduct 
with a steeper incline that crosses a broad valley illustrates the geometric surfaces’ parametric representation. 
Only development of the geometric layout is presented. Procedures for computing water-surface profiles in 
contracting and expanding transitions can be found elsewhere (see, for example, Swamee and Chahar 2015). 
Standard software that numerically solves differential equations that describe flow in open channels (in one, two, 
or three dimensions) can be used for such calculations. 

The canal cross-section is typical of large waterways in India (BIS 2004), with rounded bottom vertices having a 
curvature radius equal to the full-supply water depth h0 = 4.5 m with a design discharge Q = 100 m3/s. The canal 
has a gentle longitudinal slope 0 1 / 15500 m/mbdz dx -= , a horizontal bottom width b0 = 14.6 m, a side-slope 
ratio m0 = 2 (horizontal to vertical), and a freeboard f = 0.75 m. The entrance section wall height is then hw0 = 4.5 
+ 0.75 = 5.25 m.  

Table 2. Transition surface schematics for three combinations of entrance and exit sections. 

Rotation 
angle 

about the 
vertical 

axis 

(deg) 

Terminal Section Parameters 

0 0 020 m, 1, 0
15 m, 0, 0L L L

b m
b m

κ
κ

= = =

= = =
 0 0 020 m, 0, 1

0 m, 0, 1L L L

b m
b m

κ
κ

= = =

= = =
 0 0 015 m, 0, 0

20 m, 1, 1 2L L L

b m
b m

κ
κ

= = =

= = =
 

45 

   

30 

   

15 

   

0 

   
aAll views have an elevation angle (that is, the angle made with a plane normal to the vertical axis) of 30 
degrees. The azimuth angle defines the horizontal rotation of the view about the vertical axis. 



The longitudinal slope of the channel increases to 1 / 5000 m/mbLdz dx -= in the aqueduct, which has a sharp-
cornered rectangular cross-section with bL = 10.0 m, hL = 5.25 m, hwL = 5.25 + 0.75 = 6.0 m, mL = 0, and κL = 0. 
The bed elevation drops 0.9 m through the transition (zb0 = 7.5 m and zbL = 6.6 m), which is 50 meters in length 
(L = 50 m), giving 0bz′  = L × dzb0/dx = 50 × (– 1/15500) = – 0.003223 m/m, and bLz′  = L × dzbL/dx = 50 × (– 
1/5000) = – 0.01 m/m. Dimensions of the canal and the aqueduct are summarized in Table 3. 

The cross-section measures b, h, m, and κ given by Eq. (9), the centerline bed elevation zb obtained from Eq. (10)
, the first and second derivatives of zb with respect to the channel distance x, and the radius-of-curvature of the 
bed centerline rc from Eq. (12), are listed at five-meter spacings in Table 4. For the calculation of zb from Eq. (10)
, the coefficients k1 = 6.6 – 7.5 – (– 0.00323) = – 0.897 and k2 =  – 0.01 – (– 0.00323) = – 0.00677. The minimum 
radius-of-curvature of the bed rc_min = 481.2 m at ξ = 0.789 (x = 39.5 m), which was found by a binary search, and 
is concave. A three-dimensional plot of the smooth transition surface is presented in Fig. 2.  

6. Summary and Conclusions 

Fifth-degree parametric equations are developed to calculate the cross-section dimensions and bed centerline 
elevations (thus,  the geometric surface coordinates) between the two ends of a warped transition in a water-supply 
canal. The parametric modeling approach provides a smooth representation of the mixed geometry that results 
from terminal sections having vastly different shapes. Additionally, modifications to the transition structure 
parameters during the design process can be easily implemented and evaluated using this technique. 

Table 3. Example transition structure terminal section parameters. 

Section Parameters 
Terminal Section Parameter Value 

Entrance (canal) Exit (aqueduct) 

Bottom width b (m) 14.6 10.0 
Lined bank height h (m) 5.25 6.0 
Side slope m (horizontal:vertical) 2 0 
Bottom vertex curvature ration κ 1 0 
Channel bottom elevation zb (m) 7.5 6.6 
Full-supply water depth hn (m) 4.5 5.25 
Longitudinal channel slope dzb/dx (m/m) 1/15500 1/5000 

Table 4. Example transition structure cross-section and bed centerline parameters 

Transition 
distance x 

(m) 

ξ = 
x/L 
(--) 

F(ξ) 
(--) 

Cross-section Shape Parameters Bed Centerline Profile 
b 

(m) 
h 

(m) 
m 

(m/m) 
κ 

(--) 
zb 

(m) 
bdz dx  

(m/m) 

2 2
bd z dx  

(m/m2) 
rc

a,b 

(m) 
0 0.0 0.000 14.600 4.500 2.000 1.000 7.500 -6.667×10-5 0 ∞ 

5 0.1 0.009 14.561 4.506 1.983 0.991 7.492 -0.0044 -0.00155 -647 

10 0.2 0.058 14.334 4.543 1.884 0.942 7.448 -0.0138 -0.00206 -485 

15 0.3 0.163 13.850 4.622 1.674 0.837 7.353 -0.0237 -0.00180 -555 

20 0.4 0.317 13.140 4.738 1.365 0.683 7.215 -0.0310 -0.00103 -969 

25 0.5 0.500 12.300 4.875 1.000 0.500 7.051 -0.0336 0.00000 -2.50×105 

30 0.6 0.683 11.460 5.012 0.635 0.317 6.887 -0.0310 0.00103 977 

35 0.7 0.837 10.750 5.128 0.3226 0.163 6.749 -0.0238 0.00180 557 

40 0.8 0.942 10.266 5.207 0.116 0.058 6.654 -0.0139 0.00206 487 

45 0.9 0.991 10.039 5.244 0.017 0.009 6.609 -0.0045 0.00154 648 

50 1.0 1.000 10.000 5.250 0.000 0.000 6.600 -0.0002 0 ∞ 
aNegative values of rc show convex curvature; positive values are concave. 
bThe minimum rc = 481.2 m at ξ = 0.789. 



The generalized cross-section shape introduced by the writer (Froehlich 2008) for canal design significantly 
simplifies the interpolation of sections between the terminal points of a transition structure and its geometric 
surface representation. The standard shape (see Fig. 1) is defined by four parameters (b, h, m, and κ), which 
enables a straightforward representation of cross-sections having various forms ranging from trapezoids to semi-
circles (see Table 1). With b > 0, setting κ to 1 and 0.5 gives the two standard cross-sections used for major canals 
in India (BIS 2004). 

Higher-degree polynomial formulas could be used for the parameterization. For example, Wilson (2005) uses a 
seventh-degree expression to develop smooth profiles of nozzles and transition ducts. However, in this analysis, 
the fifth-degree equation is sufficient to deliver a high level of surface smoothness that is esthetically pleasing 
(see Fig. 2). Additionally, the parametrization guarantees that inflection points exist along the warped sides at the 
terminal cross-sections. Consequently, the transition surface curvature is in line with the upstream and 
downstream channels, which avoids discontinuities in curvature at the end sections that can lead to flow 
separation, sudden steep increases in the local fluid pressure field, and generation of cross-waves and runup along 
the sidewalls. 

An example is presented that applies the parametric modeling approach to design a significant canal transition 
where the cross-section changes from a standard trapezoidal shape with rounded bottom vertices to a rectangular 
section in a steeper aqueduct that carries the flow across a broad valley. The bed centerline elevations are also 
calculated to ensure a smooth changeover and that the vertical curvature is not excessive. The example shows that 
the parametric approach dramatically simplifies the geometric design of warped transitions connecting channels 
having a wide range of conventional shapes. 

Because the focus of this analysis is creating a smooth mixed-geometry layout that embodies Hinds’ (1928) idea 
of connecting the terminal sections with a warped transition structure, it is a designer’s task to evaluate energy 
losses using (most likely) numerical models of flow in the open channel (possibly a three-dimensional numerical 

 
Figure 2. A three-dimensional representation of the smooth transition surface: (a) The view from downstream (aqueduct) 
end with a 45o rotation about the vertical axis, and (b) the view from the upstream (canal) end with no rotation about the 
vertical axis. Both views have an elevation angle (that is, the angle made with a plane normal to the vertical axis) of 30o. 

(a)

(b)



hydrodynamic model). A small-scale physical model could also be constructed and used to evaluate the design. 
The ability of warped transition structures to minimize energy losses is documented by Hinds (1928), Scobey 
(1933), and Ippen (1949). 
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