Innovations in (U–Th)/He, Fission Track, and Trapped Charge Thermochronometry with Applications to Earthquakes, Weathering, Surface-Mantle Connections, and the Growth and Decay of Mountains

Alexis K. Ault1, Cécile Gautheron2, and Georgina E. King3

1Department of Geosciences, Utah State University, Logan, UT, USA, 2GEOPS, Université Paris-Sud, CNRS, Université Paris-Saclay, Orsay, France, 3Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland

Abstract A transformative advance in Earth science is the development of low-temperature thermochronometry to date Earth surface processes or quantify the thermal evolution of rocks through time. Grand challenges and new directions in low-temperature thermochronometry involve pushing the boundaries of these techniques to decipher thermal histories operative over seconds to hundreds of millions of years, in recent or deep geologic time and from the perspective of atoms to mountain belts. Here we highlight innovation in bedrock and detrital fission track, (U–Th)/He, and trapped charge thermochronometry, as well as thermal history modeling that enable fresh perspectives on Earth science problems. These developments connect low-temperature thermochronometry tools with new users across Earth science disciplines to enable transdisciplinary research. Method advances include radiation damage and crystal chemistry influences on fission track and (U–Th)/He systems, atomistic calculations of He diffusion, measurement protocols and numerical modeling routines in trapped charge systematics, development of 4He/3He and new (U–Th)/He thermochronometers, and multimethod approaches. New applications leverage method developments and include quantifying landscape evolution at variable temporal scales, changes to Earth’s surface in deep geologic time and connections to mantle processes, the spectrum of fault processes from paleoearthquakes to slow slip and fluid flow, and paleoclimate and past critical zone evolution. These research avenues have societal implications for modern climate change, groundwater flow paths, mineral resource and petroleum systems science, and earthquake hazards.

Plain Language Summary Documenting the timing and rates of transformations to Earth’s surface and crust helps scientists understand how and why geologic processes occur and improves predictions of future changes to our planet. The field of low-temperature thermochronometry, which quantifies the temperature ($T < 250 \degree C$) evolution of minerals and rocks through time, is uniquely suited to address these challenges. We highlight development of three techniques: fission track (damage tracks from spontaneous fission), (U–Th)/He (abundances of uranium and thorium compared to helium), and trapped charge (electrons trapped in crystal defects) thermochronometry. Innovations in these methods enable breakthroughs on long-standing and emerging Earth science problems. For example, low-temperature thermochronometry can document dramatic changes to Earth’s surface through erosion and plate tectonics, such as past earthquakes or detect subtle surface changes that are connected to deep (mantle) Earth processes. Thermochronometry research has implications for climate change, geologic exploration of other planets, subsurface water, resource development, and earthquake hazards.

1. Thermochronometry and Earth Processes

Many Earth processes result in a change in Earth’s thermal structure. Temperature changes impart distinct geochemical and isotopic fingerprints on minerals and rocks. A transformative advance in Earth science is the development of thermochronometry, which utilizes these fingerprints to quantify the thermal evolution of rocks through time as they move through Earth’s subsurface. Radioisotopic systems sensitive to a range of temperatures place specific ages on Earth materials from the oldest preserved rocks and minerals to the most recently formed, as well as dates on processes that cool, weather, transport, and deposit them. Low-
Low-temperature thermochronometry systems (250 °C > Tc > 25 °C) are uniquely suited to decipher upper crustal and Earth surface thermal histories owing to their low-temperature sensitivity (Figure 1). Here we highlight recent advances in FT, (U–Th)/He, and trapped charge thermochronometry. We focus on these systems due to their complementary Tc (Figure 1) and because addressing grand challenges in low-temperature thermochronometry requires integration of observations from multiple systems. Recent method and application advances enable fresh perspectives on fundamental Earth science problems and connect these tools with new users across disparate Earth science disciplines to facilitate transdisciplinary research. These developments mirror innovation in moderate (i.e., 40Ar–39Ar; e.g., Lovera et al., 1991) and high temperature (i.e., U–Pb; e.g., Blackburn et al., 2011; Cochrane et al., 2014; Schoene & Bowring, 2007) thermochronometry systems, as well as the development of noble gas paleothermometry (e.g., Tremblay et al., 2014; Tremblay et al., 2017), which are not the focus of this contribution. Ongoing work in 40Ar–39Ar and U–Pb thermochronometry and noble gas paleothermometry enable researchers to tackle a range of Earth science problems from crustal deformation to surface processes and mountain building (e.g., Gottardi et al., 2018; Hodges et al., 1996; Schneider et al., 2013; Tremblay et al., 2019; van der Pluijm et al., 2001; and many others).

In this contribution, we first review the fundamentals of the FT, (U–Th)/He, and trapped charge thermochronometry systems. We then highlight some of the discoveries and method improvements that are advancing the field to address grand challenges. Innovative applications leverage these advances and multisystem data sets and include but are not limited to landscape evolution, connecting Earth surface changes with the deep Earth processes, documenting the spectrum of fault processes from paleoearthquakes to slow slip and fluid flow, and paleoclimate changes and critical zone (CZ) evolution in deep geologic time.

2. Foundation

2.1. FT Thermochronometry

FT thermochronometry exploits the natural production of tracks formed during the spontaneous fission of 238U and time-temperature-dependent annealing of FTs. The first observations of charged-particle tracks were reported in the late 1950s (Silk & Barner, 1959; Young, 1958), and Price and Walker (1962a, 1962b, 1962c) discovered that tracks created by fission fragments are revealed by chemical etching. The foundation of the FT dating method, developed by Fleischer et al. (1975) and Naeser (1967), involves measuring U concentration, a 238U fission decay constant, and the FT density in a crystal, the accumulation of which is a function of time. Although many phases contain U, FT thermochronometry is predominantly applied to apatite and zircon, owing to suitable U concentrations (10-1000s ppm) that generate FT densities associated with relatively precise dates. Apatite and zircon FT (AFT and ZFT) are now routinely used to constrain geological processes occurring over 10⁶–10⁹ years, as well as high-temperature (i.e., >800 °C), short-duration (seconds to minutes) phenomena.
An AFT or ZFT date is obtained by counting the density of spontaneous FTs in a suite of epoxy-mounted crystals, revealed in an acid-etched polished surface. The spontaneous track density is compared with a U concentration, determined either by counting induced tracks from \(^{235}\text{U}\) neutron activation in an irradiated mica (i.e., external detector method; Gleadow, 1981) or by laser ablation inductively coupled plasma mass spectrometry (ICPMS; Chew & Donelick, 2012; Hasebe et al., 2004). Refinement and standardization of etching protocols, combined with consideration of compositional proxies (i.e., \(D_{\text{par}}\)), have improved FT thermochronometry applicability (Donelick et al., 1999; Ketcham et al., 1999; Murrell et al., 2009; Sobel & Seward, 2010) and refined data interpretations (e.g., Stevens et al., 2016).

FTs are not permanently preserved in minerals, and they can shorten, fade, and segment (e.g., Ketcham, 2005). Annealing of FTs in apatite and zircon is primarily a function of the thermal history and grain chemistry (Barbarand et al., 2003; Carlson et al., 1999; Green et al., 1985; Ketcham et al., 1999; Ketcham et al., 2007; Tagami et al., 1998; Yamada et al., 1995). More specifically, FTs anneal by temperature-controlled atomic diffusion, observed from the microscopic to atomic scales (Barbarand et al., 2003; Laslett et al., 1987; Li et al., 2011; Li et al., 2014). The \(T_c\) for the AFT and ZFT systems are \(\sim 80–120^\circ\text{C}\) and \(\sim 180–250^\circ\text{C}\) (e.g., Bernet, 2009; Ketcham et al., 2007; Figure 1). The measurement of the track length distribution in a given sample provides additional constraints on the sample’s thermal history (Gleadow et al., 1986; Green et al., 1985).

2.2. (U–Th)/He Thermochronometry

(U–Th)/He thermochronometry exploits decay of \(^{238}\text{U}, \, ^{235}\text{U}, \, ^{232}\text{Th},\text{ and } ^{147}\text{Sm}\) isotopes, associated alpha particle (\(^{4}\text{He}\)) production, and temperature-dependent \(^{4}\text{He}\) diffusion through a crystal lattice (e.g., Farley, 2000; Strutt, 1909; Wolf et al., 1996; Zeitler et al., 1987). Because the Sm contribution to the He budget is limited, this method is historically referred to as (U–Th)/He, with (U–Th–Sm)/He used more recently for phases with measurable Sm content. (U–Th)/He dating has a historical perspective, with Ernest Rutherford reporting the first radioisotopic date using a U–He system in 1904. In the last three decades, a resurgence of interest in dating minerals with \(^{4}\text{He}\) ingrowth has been facilitated by an improved understanding of the behavior of He in minerals (Farley, 2000; Flowers et al., 2009; Gautheron et al., 2009; Guenther et al., 2013; Lippolt et al., 1994; Reiners et al., 2004a; Shuster et al., 2006; Shuster & Farley, 2009; Stockli & Farley, 2004; Wolf et al., 1996; Zeitler et al., 1987) and development of robust analytical techniques (Farley, 2002; Farley et al., 1999; Guenther et al., 2016). This method can be applied to address geological problems operative over \(10^5\) to \(10^9\) years, as well as high-temperature, short-duration thermal pulses.

(U–Th)/He dates are calculated using the \(^{4}\text{He}, \, ^{238}\text{U}, \, ^{235}\text{U}, \, ^{147}\text{Sm}\) content. An alpha ejection correction factor is applied to account for the fraction of \(^{4}\text{He}\) lost from the crystal during alpha decay (Farley et al., 1996; Ketcham et al., 2011), most recently via mapping the 3-D grain-shape and parent nuclide distribution...
Whole, pristine crystals (e.g., apatite) are selected, measured, or mapped, and, typically, individual grains are loaded into pure metal (e.g., Nb) tubes or foils. Zircon crystals can be purposefully selected to leverage the range of intrasample visual metamictization, a qualitative proxy for accumulated radiation damage and intrasample geochemical variability (Ault et al., 2018). Hematite aliquots can be targeted by grain size or texture, proxies for the range in T_c, and formation process, respectively (Jensen et al., 2018; McDermott et al., 2017). 4He content is determined by He release from the samples by laser heating or ablation under vacuum, gas purification, and analysis using a noble gas quadrupole or magnetic sector mass spectrometer (Boyce et al., 2006; Farley et al., 1999; Horne et al., 2016, 2019). U, Th, and Sm content are measured using an ICPMS by laser ablation or after aliquot dissolution using appropriate acids (e.g., Evans, Byrne, et al., 2005; Reiners, 2005). Elemental concentrations are traditionally determined by aliquot dimensional mass. Elemental concentrations can also be determined via ICPMS measurement of the Ca and Zr content of apatite and zircon crystals, respectively, and stoichiometry to calculate aliquot mass (Guenthner et al., 2016).

Many common accessory phases including apatite, zircon, titanite, rutile, magnetite, and monazite, and secondary minerals such as calcite, fluorite, hematite, and goethite incorporate trace but measurable amounts of U, Th, and Sm into their crystal structure and negligible initial He. Together with 4He retentivity over geologic timescales, these factors make minerals amenable to (U–Th)/He thermochronometry. The apatite (U–Th)/He (apatite He), zircon (U–Th)/He (zircon He), and titanite (U–Th)/He (titanite He) systems, for example, have T_c of ~30–120 °C (Farley, 2000; Flowers et al., 2009; Gautheron et al., 2009; Shuster et al., 2006; Shuster & Farley, 2009), ~20–200 °C (Guenthner et al., 2013; Reiners et al., 2004a), and ~20–210 °C (Baughman et al., 2017; Reiners & Farley, 1999; Figure 1). Additional T_c ranges for various (U–Th)/He systems are described in section 4.4.

2.3. Trapped Charge Thermochronometry

Trapped charge thermochronometry is based on the dynamic equilibrium between rates of charge trapping and thermally stimulated rates of charge detrapping. Free electronic charge (electrons or holes) is trapped at defects in a mineral lattice (i.e., atomic interstitials, atomic vacancies, and elemental substitutions) due to environmental or ionizing radiation (Figure 2). Electrons are excited by ionizing radiation and both the electron and hole left behind migrate to lower-energy positions or crystal defects. The trapped charge concentration is measured indirectly by a luminescence signal produced when the charge is evicted from a trap by heating or light stimulation.
either light (Aitken, 1998; Huntley, 1985) or heat (Aitken, 1985; Figure 2). The trapped charge concentration of a mineral can also be measured directly using electron spin resonance (ESR; Grün et al., 1999; Rink, 1997), which permits nondestructive charge quantification. The potential of trapped charge systems for determining the thermal history of rocks was recognized >65 years ago (Houtermans et al., 1957). However, since 2010, this technique has been the subject of intense research in an effort to develop a new low-temperature luminescence thermochronometer. To date, the focus has been on the development of optically stimulated luminescence (OSL; Guralnik, Jain, et al., 2015; Herman et al., 2010; King, Herman, Lambert, et al., 2016; Li & Li, 2012) and thermoluminescence (TL; Biswas et al., 2018; Brown et al., 2017) thermochronometry. These approaches benefit from a foundation in the established trapped charge method of luminescence dating (Roberts & Lian, 2015).

Although many minerals produce luminescence (e.g., Marfunin, 2012), defects, trapping capacities, and kinetic parameters are best characterized and thus understood in quartz and feldspar (see Table 2 in King, Guralnik, Valla, & Herman, 2016). Luminescence signals in other phases may not be stable or have such a high and variable environmental radiation dose that they are saturated at short timescales or the dose rate is challenging to calculate. Quartz and feldspar are extracted from bedrock samples with care because the trapped charge is light and heat sensitive. The exterior >1 cm of sample material is removed, and samples are gently hand crushed to extract minerals under subdued red light to avoid potential signal resetting. Samples are sieved to extract the desired grain size range (typically 180–220 μm), followed by treatment with HCl and H2O2 to remove carbonates and any organic material, respectively. Density separation isolates quartz and feldspar-enriched fractions. Quartz fractions are then etched in HF acid to remove any contaminating feldspar as well as the outer ~10 μm of the grain that has been affected by alpha irradiation. Feldspar grains may be etched in dilute hydrofluoric acid (e.g., Guralnik, Jain et al., 2015).

Trapped charge dates (ka), in their simplest form, are given by the following equation:

\[Date = \frac{D_c}{D} \]

where \(D_c \) is the number of trapped charge, or the equivalent dose (Gy), and \(D \) is the environmental dose rate (Gy/ka). The accumulated dose from environmental radiation, rate of signal saturation, and saturation level are measured via the natural signal using heat (TL), light (OSL), or microwaves (ESR). Kinetic parameters of trapped charge signals, such as signal loss in response to heat for quartz and feldspar, as well as athermal signal loss from feldspar, are documented using isothermal decay and anomalous fading measurements, respectively. TL and OSL measurements use automated systems such as a Risø TL/OSL reader (Bøtter-Jensen et al., 2000) and ESR measurements are typically made with an X-band ESR spectrometer. The rate of signal trapping is calculated from the sample-specific environmental radiation dose rate, which is a function of the U, Th, and K concentrations within the surrounding rock matrix, as well as grain size and mineral type (cf. Durcan et al., 2015). Radioisotope concentrations are measured via ICPMS or by sample activity, constrained with high-resolution gamma spectrometry, alpha, and/or beta counting.

Trapped charge systems have \(T_c \) ranging from ~30 °C to ~90 °C, depending on the mineral and signal investigated (Figure 1; Biswas et al., 2018; Guralnik, Jain, et al., 2015; King, Herman, & Guralnik, 2016). In contrast to other thermochronometric systems, these systems are used to infer changes in rock cooling over finite time periods of \(10^5 \) years for OSL and TL dating and \(10^6 \) years for ESR dating because these systems saturate. The saturation limit and low \(T_c \) means that trapped charge thermochronometry is applicable for documenting recent rapid exhumation or for late Quaternary paleothermometry (Guralnik, Jain, et al., 2015; Herman & King, 2018; King, Herman, & Guralnik, 2016). Below the \(T_c \), the rate of charge trapping is governed by the environmental radiation dose rate and the grain size distribution of the analyzed aliquots (cf. Durcan et al., 2015).

3. Analytical Uncertainties, Models, and Interpretations
3.1. FT and (U–Th)/He Systems

Resolving complex thermal histories using FT and (U–Th)/He data is a function of analytical precision, our evolving understanding of variables that control FT annealing and He diffusion as well as our ability to accurately model these phenomena, and the questions posed. Reported FT dates utilize pooled, central, or
arithmetic means from large ($n = 20–100$) single-grain data sets (Galbraith & Laslett, 1993; Vermeesh, 2009). These dates may comprise single or multiple populations with different annealing kinetics. Track density and track length analysis (Gleadow et al., 1986) collectively provide a powerful constraint on a sample’s thermal history. Primary sources of analytical uncertainty in FT thermochronometry are undersaturation or oversaturation of FTs due to low or high U concentrations, respectively, and analyst bias in track counting and track length measurements (e.g., Donelick et al., 2005; Ketcham et al., 2015). Ketcham, van der Beek, et al. (2018) provide a review of laboratory intercomparison of FT and (U–Th)/He dates and the sources of variability within each system and between the two systems.

Analytical uncertainties for individual (U–Th)/He dates are typically ~3–4% (not accounting for uncertainty in the alpha ejection correction). However, mean (U–Th)/He dates are commonly overdispersed, with standard deviations of the means exceeding analytical precision. Overdispersion is due to various factors that control He diffusivity and thus influence T_c and dates, including diffusion-domain length scale and cooling rate (Dodson, 1973; Farley, 2000; Jensen et al., 2018; Reiners & Farley, 2001), radiation damage accumulation (Baughman et al., 2017; Flowers et al., 2009; Gautheron et al., 2009; Guenthner et al., 2013, 2017; Shuster & Farley, 2009), grain chemistry (Gautheron, Barbarand, et al., 2013), and grain breakage (Brown et al., 2013). Additional variables that cause He data dispersion include implantation of parentless He by adjacent U–Th-rich phases (Gautheron et al., 2012; Murray et al., 2014; Spiegel et al., 2009), parent isotope zonation (Ault & Flowers, 2012; Farley et al., 2011; Gautheron, Barbarand, et al., 2013; Guenthner et al., 2013; Hourigan et al., 2005; Meesters & Dunai, 2002; Orme et al., 2015), microvoids or crystal defects (McDannell, Zeitler, Janes, et al., 2018; Zeitler et al., 2017), and inaccuracies in the alpha ejection correction factor owing to grain geometry or zoning (Farley et al., 1996, 2011; Glotzbach et al., 2019). Relationships between individual apatite, zircon, titanite, and hematite He dates and radiation damage, grain chemistry, and grain size can be leveraged to extract a more precise time-temperature history from rocks, as described in section 4.1.

3.2. Trapped Charge Thermochronometric Systems

OSL signals can be measured with <5% precision in the laboratory (Murray & Olley, 2002). Precision of TL and ESR analyses may be lower, owing to sensitivity changes throughout laboratory analyses and lack of automated instrumentation, respectively. However, the largest source of uncertainty for trapped charge dates is derived from the environmental dose rate, with uncertainty increasing with sample date (cf. equation (1)). Calculation of the environmental dose rate (D) is especially challenging for trapped charge thermochronometry because the sample grain size distribution is lost during sample preparation (Duncan et al., 2015; Guralnik, Jain, et al., 2015), and approaches to overcome this issue are discussed in section 4.6.

Constraining the signal saturation level is essential for accurate modeling of trapped charge data (Wintle & Murray, 2006), with the possible exception of the Al center in ESR analysis. A laboratory-constrained He diffusivity and thus in T_c and dates, including diffusion-domain length scale and cooling rate (Dodson, 1973; Farley, 2000; Jensen et al., 2018; Reiners & Farley, 2001), radiation damage accumulation (Baughman et al., 2017; Flowers et al., 2009; Gautheron et al., 2009; Guenthner et al., 2013, 2017; Shuster & Farley, 2009), grain chemistry (Gautheron, Barbarand, et al., 2013), and grain breakage (Brown et al., 2013). Additional variables that cause He data dispersion include implantation of parentless He by adjacent U–Th-rich phases (Gautheron et al., 2012; Murray et al., 2014; Spiegel et al., 2009), parent isotope zonation (Ault & Flowers, 2012; Farley et al., 2011; Gautheron, Barbarand, et al., 2013; Guenthner et al., 2013; Hourigan et al., 2005; Meesters & Dunai, 2002; Orme et al., 2015), microvoids or crystal defects (McDannell, Zeitler, Janes, et al., 2018; Zeitler et al., 2017), and inaccuracies in the alpha ejection correction factor owing to grain geometry or zoning (Farley et al., 1996, 2011; Glotzbach et al., 2019). Relationships between individual apatite, zircon, titanite, and hematite He dates and radiation damage, grain chemistry, and grain size can be leveraged to extract a more precise time-temperature history from rocks, as described in section 4.1.

In common with all thermochronometric systems, thermal kinetic parameters estimated in the laboratory must be extrapolated over geological time, potentially introducing significant uncertainties. Various numerical models have been proposed to extract kinetic parameters from luminescence decay measured in response to isothermal holding (e.g., Guralnik, Jain, et al., 2015; Li & Li, 2012). However, to date, none of these models yield physically plausible values (Riedesel et al., 2018).
Despite this challenge, all currently employed models are validated against the known thermal history of the German Continental Deep Drilling Program (KTB) borehole using the experimental data of Guralnik, Jain, et al. (2015).

3.3. Thermal History Modeling of Thermochronometry Data

Thermochronometry results, reported as dates and saturation ratios, reflect a mineral’s *integrated* thermal history. FT and (U–Th)/He data are modeled using computer-based numerical simulation programs, such as QTQt and HeFTy (Gallagher, 2012; Ketcham, 2005) or numerical codes that simultaneously invert thermochronometric data and additional thermal constraints, such as vitrinite reflectance data (Issler et al., 2005). Trapped charge data are modeled using Monte Carlo inversion approaches (Guralnik, Jain, et al., 2015; King, Herman, Lambert, et al., 2016). Simulations use kinetic models that describe how the FT, (U–Th)/He, and trapped charge systems respond as a function of temperature and time. These programs predict dates for a given time-temperature path or yield time-temperature paths that are consistent with thermochronometric data and independent geologic (e.g., unconformities and overburden estimates) and thermochronologic constraints. Owing to the subjectivity of imposed time-temperature constraints and choices in kinetic models and data visualization, thermal history models should be viewed as interpretations and transparency in model inputs and outputs is necessary (Flowers et al., 2015; Ketcham, van der Beek, et al., 2018). Simultaneous simulation of multiple low-temperature thermochronometers (i.e., AFT andapatite He or zircon He) has the potential to improve the reliability of thermal history information and/or provide inter-method calibration (e.g., Fox et al., 2019; Mackintosh et al., 2017; Winn et al., 2017).

Thermal histories derived from thermochronometry data are converted into burial and unroofing histories assuming appropriate geothermal gradients and surface temperatures. Surface temperature can be a critical parameter in some of these models, owing to the low T_c of select (U–Th)/He and trapped charge thermochronometric methods (Figure 1). In some trapped charge systems, for example, a sample that does not appear to be in athermal saturation may in fact be in thermal steady state, reflecting equilibrium with the surface temperature (Guralnik & Sohbati, 2019). Codes have been devised to convert thermochronometric dates to surface erosion or exhumation rates (e.g., Fox, Herman, et al., 2014; Willett & Brandon, 2013) and variable erosion rates (Biswas et al., 2018). Models such as Pecube (Braun, 2003; Braun et al., 2012) use a finite element method to solve the 3-D heat transport equation and predict thermal histories of rocks. Outputs from Pecube and other complementary models are compared with low-temperature and trapped charge thermochronometric data to constrain tectonic and erosion rates (Batt & Braun, 1997; Braun, 2003; Stüwe & Hintermüller, 2000; Whipp et al., 2009). Pecube is also coupled with landscape evolution models to infer surface processes (Braun et al., 2012; Herman et al., 2010; van der Beek et al., 2002). Midland Valley’s Move kinematic modeling software has been linked with finite element advection-diffusion thermal models to predict thermochronometric dates from deformation-specific thermal histories (Lock & Willett, 2008; McQuarrie & Ehlers, 2015).

4. Advances in Thermochronometry Systematics

4.1. Radiation Damage and Chemistry Controls on (U–Th)/He and FT Thermochronometry

The recognition that radiation damage accumulation and crystal chemistry impact He mobility and FT annealing and, consequently, T_c and (U–Th)/He and FT dates has transformed our ability to apply these techniques to a range of Earth science problems. Damage to the crystal lattice develops from self-irradiation from the natural decay of isotopes of U, Th, and Sm by ionization and electronic excitation and heavy nuclide recoil during alpha decay, as well as spontaneous fission (e.g., Weber & Matzke, 1986). This discovery is rooted in materials science approaches to characterize apatite, zircon, and titanite using X-ray diffraction, infrared and Raman spectroscopy, in situ transmission electron microscopy analysis, and hardness analysis via nanoindentation (Beirau et al., 2018; Ginster et al., 2019; Hawthorne et al., 1991; Holland & Gottfried, 1955; Li et al., 2017; Lumpkin et al., 1991; Nasdala et al., 1995, 2004; Woodhead et al., 1991). Damage anneals at high temperatures and thus cumulative damage is a function of a sample's initial U, Th, and Sm content and its thermal history.

Radiation damage impacts He diffusivity in apatite (Flowers et al., 2009; Gautheron et al., 2009; Gerin et al., 2017; Recanati et al., 2017; Shuster et al., 2006; Shuster & Farley, 2009; Willett et al., 2017), titanite (Baughman et al., 2017; Guenthner et al., 2017), and zircon (Ginster et al., 2019; Guenthner et al., 2013;
Hurley, 1952; Reiners, 2005). Provided grains experience the same thermal history, the measured effective U concentration (eU, where eU is calculated as [U] + 0.234 * [Th] + 0.0046 * [Sm]; Gastil et al., 1967) corresponds to relative radiation damage. Figure 3 illustrates relationships between eU, radiation damage, and (U-Th)/He dates for apatite, zircon, and titanite in slowly cooled rocks. Radiation damage effects are manifest in samples with a span of eU values that experience slow cooling, which involves sufficient time for the He retenties of variably damaged grains to diverge. In the apatite He system, increasing amounts of radiation damage from alpha recoil impede He diffusion, resulting in a higher Tc (Flowers et al., 2009; Gautheron et al., 2009). The influence of radiation damage can yield a positive relationship between apatite He date and eU, depending on the thermal history (Figure 3; e.g., Ault et al., 2018; DeLucia et al., 2018; Johnson et al., 2017; Mackintosh et al., 2017). High eU zircon He dates can be younger than apatite He dates reflecting low Tc. Zircon He dates similarly yield an inverse date-eU relationship and older dates owing to lower eU values and higher Tc (Baughman et al., 2017; Guenthner et al., 2017).

The radiation damage effect is magnified in the zircon and titanite He systems owing to higher eU content (~100–10,000 ppm) and crystal self-healing properties requiring higher annealing temperatures than the apatite He system. In zircon, accumulating damage initially disrupts c axis-parallel diffusion pathways but reaches a threshold causing damaged portions of the crystal lattice to become interconnected and diffusivity to increase (Figure 3; Guenthner et al., 2013; Ketcham et al., 2013). Thus, low eU zircon grains yield low damage, decreased diffusivity, higher Tc, and older dates, provided that grains share a common thermal
history. High eU grains result in comparatively higher damage, increased diffusivity, lower T_c, and younger dates (Figure 3). Given a spread in eU values, individual grains from a single sample can develop positive and/or negative date-eU relationships depending on the thermal history (Figure 3; Guenthner et al., 2013). Titanite reaches a damage threshold causing increased He diffusivity at lower damage levels than zircon, potentially due to larger damage zones (Baughman et al., 2017; Ewing et al., 2000). However, titanite He dates record higher temperatures and older dates than zircon for the same thermal history, owing to lower eU (Figure 3; Baughman et al., 2017; Guenthner et al., 2017).

Apatite, zircon, and titanite date-eU relationships (e.g., Figure 3) are a powerful tool for reconstructing protracted thermal histories characteristic of ancient bedrock (Ault et al., 2009, 2013; Ault et al., 2018; Baughman & Flowers, 2018; DeLucia et al., 2018; Flowers, 2009; Flowers et al., 2007; Guenthner et al., 2013, 2014, 2017; Johnson et al., 2017; Mackintosh et al., 2017; Orme et al., 2016; Powell et al., 2016; Weisberg et al., 2018). Damage-diffusivity patterns can be predicted given a thermal history or inverted to derive a thermal history using HeFTy or QTQt. Current radiation damage-diffusivity models for apatite and zircon available to the larger community (Flowers et al., 2009; Gautheron et al., 2009; Gerin et al., 2017; Guenthner et al., 2013) are now used to resolve thermal histories from bedrock data sets that were previously considered uninterpretable. This is because crystals with variable eU and thus damage yield different temperature sensitivities, in essence providing multiple thermochronometers within one sample to improve model resolution. However, applying a damage-diffusivity model in HeFTy or QTQt implies that observed intrasample dispersion in bedrock samples can be explained by radiation damage or diffusion-domain length scale effects. Thermal history information should only be derived from bedrock samples that exhibit date-eU and/or date-grain size patterns, including uniform dates regardless of eU or grain size values (Flowers & Kelley, 2011). Samples yielding overdispersed (U-Th)/He dates uncorrelated with eU or grain size should either not be modeled or more information is required to understand the date scatter (Flowers & Kelley, 2011; Fox et al., 2019).

Crystal chemistry and lattice defects also influence FT annealing and He diffusion in apatite and ultimately the T_c in both FT and apatite He thermochronometry. For example, Cl substitution, as well as some cations (Fe, Mn, Na, Sr, and Mg) and rare Earth elements (La and Ce) that substitute for Ca, impact FT annealing resulting in an increase in the T_c (BarbRand et al., 2003; Carlson et al., 1999; Ketcham et al., 2007; Ravenhurst et al., 2003). Cl substitution also alters He mobility and increases the apatite He T_c (Djimbi et al., 2015; Gautheron, BarbRand, et al., 2013). Because current damage-diffusivity models assume alpha recoil damage anneals at temperatures analogous to FTs in fluorapatite, chemical variability also influences the annealing model in (U–Th)/He systems (Gautheron, BarbRand, et al., 2013). In addition, microvoids and strain dislocations in the apatite crystal lattice can either trap He or alter the He diffusion pathway, resulting in a higher T_c (McDannell, Zeitler, & Schneider, 2018; Zeitler et al., 2017). New work suggests alpha recoil damage anneals at higher temperatures compared to FTs in both apatite and zircon and damage-diffusivity models being refined (Ault et al., 2018; Fox & Shuster, 2014; Garver & Kamp, 2002; Gerin et al., 2017; Ginster et al., 2019; Willett et al., 2017).

4.2. Atomistic Perspectives on He Diffusion

A realistic, atomic level description of He diffusion behavior in minerals is required to understand the role of chemical composition on diffusion, mechanisms modifying diffusivity by radiation damage, and noble gas diffusion in a range of mineral structures. He diffusion behavior in perfect crystal lattices has been investigated for different minerals at atomic to crystal scales using computing advances. In this approach, a crystal cell is constructed using density functional theory (DFT), or a computational quantum mechanical model that predicts material behavior. This method determines the ground energy state of the crystal by solving the Schrödinger equation for all bonds in the atomic structure. Different model codes can be applied to calculate He insertion sites, or interstitial positions, and energetic pathways in a crystal lattice (e.g., Reich et al., 2007). Most studies use the Vienna Ab Initio Simulation Package (Kresse & Furthmüller, 1996a, 1996b; Kresse & Hafner, 1993) for DFT calculations to optimize crystal lattice models for a perfect (i.e., damage free) crystal. Ab initio algorithms were first developed for the theoretical chemistry community but are now applied to geological problems.

To characterize the 3-D diffusion of He in minerals, the size of the cell used (i.e., number of atoms in the structure) is optimized to minimize the crystal relaxation effect due to the incorporation of a He
For example, an optimized apatite crystal model comprises 84 atoms representing a double apatite cell (Ca_{10}(PO_{4})_{6}F_{2}); Djimbi et al., 2015). The minimum migration energy between He insertion sites is obtained using the nudged elastic band method (Jónsson et al., 1998; Mills et al., 1995). Figure 4 shows He diffusion pathways in apatite with associated insertion types along the c axis (Djimbi et al., 2015). A characterization of the apatite He diffusion coefficient including the activation energy (E_a) and the frequency factor (D_0) is calculated using a Monte Carlo random walk, using all insertion and migration energies along the a, b, and c crystal axes (Figure 4; Djimbi et al., 2015; Gautheron & Tassan-Got, 2010). Calculation details for a damage-free apatite crystal structure and associated 3-D He diffusion coefficients at 0 K are found in Saadoune and De Leeuw (2009) and Djimbi et al. (2015). Computed 3-D He diffusion in apatite and hematite mirrors experimental data on real specimens, supporting the veracity and applicability of this theoretical approach (Balout et al., 2017; Djimbi et al., 2015).

DFT calculations with large numbers of atoms (>200–2,000) cannot be performed at present owing to computational limitations, thus limiting the application to alpha recoil damage and quantifying the damage-induced trapping energy of He diffusion. However, atomic investigation of He diffusion in zircon yields non-retentive results (Bengtson et al., 2012; Reich et al., 2007; Saadoune et al., 2009; Saadoune & De Leeuw, 2009), which differs from retentive behavior in natural zircon (e.g., Reiners et al., 2002; Reiners et al., 2004b). This comparison reveals that processes such as the creation of radiation damage-induced traps significantly alter He diffusion in zircon. In addition, the impact of chemical substitution or single vacancies can be investigated using DFT (Djimbi et al., 2015; Gerin et al., 2017; Saadoune & De Leeuw, 2009). Thus, atomistic calculations of He diffusion in perfect crystal lattices identify parameters that alter diffusion, providing new perspectives when diffusion coefficient measurements are not available or difficult to perform.

4.3. Double and Triple Dating With U–Pb, FT, and (U–Th)/He Systems

FT and (U–Th)/He thermochronometry are now routinely applied to detrital minerals (e.g., Carter, 2019, and references therein). Detrital apatite and/or zircon crystals can trace sediment sources in orogenic systems (Bernet & Garver, 2005; Glotzbach et al., 2011; Horton et al., 2010; Stock et al., 2006), quantify the basin burial and exhumation phases (Guenthner et al., 2015; Ketcham, Mora, & Parra, 2018; Schwartz et al., 2017), and track the source to sink evolution of sedimentary basins (Calzolari et al., 2016; Carter, 2019; Tranel et al., 2011; Zattin et al., 2014). Detrital thermochronometry from catchments also informs the timing and tempo of source area exhumation related to tectonism (e.g., Bernet et al., 2006; Bernet et al., 2009; Espurt et al., 2010; Filléau de Aufaudeau et al., 2012; Gautheron, Espurt, et al., 2013), glacial processes (e.g., Ehlers et al., 2015; Enkelmann & Ehlers, 2015), or the interplay between the two.

FT and (U–Th)/He data can be acquired on crystals previously analyzed for U–Pb geochronology, aided by analytical advances of laser ablation and noble gas mass spectrometry analyses. This approach includes “double” U–Pb and FT or He analysis of apatite or zircon (Campbell et al., 2005; Carter & Moss, 1999;
Fosdick et al., 2015; Lease, Haeussler, & O’Sullivan, 2016; Odlum & Stockli, 2019; Rahl et al., 2003; Reiners et al., 2005; Ternois et al., 2019; Thomson et al., 2017) or U–Pb, FT, and (U–Th)/He “triple” dating (e.g., Carrapa et al., 2009; Danišík, 2019; Danišík et al., 2010). Integration of data from two or more thermochronometric systems with different temperature sensitivities in the same mineral permits a more detailed reconstruction of the thermal history in these settings. These detailed time-temperature histories allow researchers to discriminate between different source regions, constrain protracted postdeposition burial histories, or capture the source to sink dynamics including sediment recycling. The ability to more fully characterize a basin’s thermal evolution also has implications for georesource exploration, as temperature constraints through time are critical for understanding the maturation, expulsion, and trapping of hydrocarbons.

4.4. New (U–Th)/He Thermochronometers

Apatite, zircon, and titanite He continue to be the most widely applied (U–Th)/He thermochronometers, but new mineral systems have been developed in the past three decades that extend the application of these techniques to tackle new research questions (Figure 5). For example, primary and secondary Fe oxides are amenable to (U–Th)/He dating. Hematite He thermochronometry has been successfully applied to constrain deformation, hydrothermal, and diagenesis histories (Ault, Reiners, et al., 2015; Ault et al., 2016; Calzolari et al., 2018; Evenson et al., 2014; Farley & Flowers, 2012; Farley & McKeon, 2015; McDermott et al., 2017; Moser et al., 2017; Wernicke & Lippolt, 1993, 1994). Hematite occurs as polycrystalline aggregates and exhibits polydomain He diffusion behavior (Evenson et al., 2014; Farley, 2018; Farley & Flowers, 2012). Individual crystallites are the He diffusion domains and the hematite He T_c, which is ~ 25–$250 \degree C$ (10 °C/Myr cooling rate), increases with increasing domain (grain) size (Balout et al., 2017; Evenson et al., 2014; Farley, 2018; Farley & Flowers, 2012; Jensen et al., 2018). Goethite He has a T_c ~ 25–$60 \degree C$ with possible He loss at surface conditions and is used to date supergene alteration and deep weathering profiles (Deng et al., 2017; Heim et al., 2006; Miller et al., 2017; Monteiro et al., 2014; Riffel et al., 2016; Shuster, Vasconcelos, et al., 2005; Shuster et al., 2012; Vasconcelos et al., 2013). Magnetite He thermochronometry is used to date intermediate to mafic volcanic rocks (Blackburn et al., 2007) and serpentinization (Cooperdock & Stockli, 2016). This system has a T_c of $\sim 250 \pm 50 \degree C$ (Blackburn et al., 2007), although components of 4He diffusion data suggest potential multidomain diffusion behavior.

A variety of accessory phases in igneous and metamorphic rocks can serve as (U–Th)/He thermochronometers. Baddeleyite, for example, has a T_c ~ 450–$500 \degree C$ (Metcalf & Flowers, 2013). Perovskite has a $T_c >300 \degree C$ and has been used to date kimberlite emplacement (Stanley & Flowers, 2016). Rutile has a T_c of ~ 220–$235 \degree C$ and has the potential to quantify midcrustal exhumation when paired with well-characterized petrologic and geochemical context (Stockli et al., 2007; Wolfe, 2009). Garnet, common in metamorphic
rocks, has a T_c of \sim200–300 °C (Seman et al., 2014), although 3He diffusion experiments using nuclear reaction analysis yield $T_c >$450 °C (Roselieb et al., 2006). Spinel, a primary phase in mantle peridotites, has a T_c of \sim200–300 °C based on empirical constraints comparing spinel He and ZFT results (Cooperdock & Stockli, 2018). This technique may constrain the timing of oceanic crust formation and mantle exhumation. Monazite, common in peraluminous granites and pelitic rocks, has a T_c of \sim180–280 °C that is dependent on chemical composition (Boyce et al., 2005; Farley, 2007). Fluorite He thermochronometry has a T_c of \sim50–170 °C, and this tool has potential for investigating ore deposits and hydrothermal systems (Evans, Wilson, et al., 2005; Wolff et al., 2015; Wolff et al., 2016). Xenotime yields a T_c of \sim35–75 °C (Anderson et al., 2019; Farley, 2007; Farley & Stockli, 2002).

In addition to detrital zircon andapatite He thermochronometry, calcite and bioapatite are useful (U–Th)/He tools for reconstructing the thermal history of sedimentary rocks. Calcite, a constituent of limestone, mudstone, and fossils, has a T_c of \sim40–80 °C and common (initial) 4He issues are mitigated by analyzing samples that have experienced significant postdepositional reheating (Copeland et al., 2007; Copeland et al., 2015; Cros et al., 2014). Conodont microfossils (bioapatite) are a target for (U–Th)/He analysis applied to carbonates and shales and the T_c mirrors that of the traditional apatite system (\sim60 °C; Landman et al., 2016; Peppe & Reiners, 2007). Ongoing research aimed at quantifying the diffusion kinetics of each of the aforementioned systems, coupled with textural and geochemical information and data comparisons with established low-temperature thermochronometry systems, will continue to expand the utility of new (U–Th)/He thermochronometers.

4.5. 4He/3He Thermochronometry: Grain-Specific Diffusion Kinetics and Thermal Histories

Recent and ongoing development of 4He/3He thermochronometry permits recovery of aliquot-specific diffusion kinetics and a sample's detailed thermal history (Farley, 2018; Farley & Flowers, 2012; Fox, McKeon, & Shuster, 2014; Shuster et al., 2004; Shuster & Farley, 2004, 2005; Shuster, Vasconcelos, et al., 2005). This approach quantifies the distribution of 4He in a single crystal or polycrystalline aggregate. Stepwise degassing of an aliquot containing synthetic, uniformly distributed, proton-induced 3He constrains the 4He distribution, which is a function of the initial U and Th distribution (Farley et al., 2010) and the thermal history. Combined with additional geochronological and thermochemical information (i.e., the (U–Th)/He date) or geologic information, the 4He concentration profile can be used to more narrowly constrain a sample’s thermal history. The 3He Arrhenius relationship yields information about the aliquot’s diffusion domain(s) and diffusion kinetics (e.g., Farley, 2018).

The apatite 4He/3He method can resolve cooling histories down to \sim20–30 °C (Shuster & Farley, 2004). Owing to its low temperature sensitivity, this technique has been used to quantify the timing and tempo of glacial erosion and related relief generation (Chri turbulence and related relief generation (Christeleit et al., 2015; Shuster, Ehlers, et al., 2005; Shuster, Ehlers, & Ehlers, 2005; Shuster et al., 2011; Valla et al., 2011), exhumation of mountain ranges (Tremblay et al., 2015; Valla et al., 2012), and canyon incision including carving of Grand Canyon (Flowers & Farley, 2012; Fox et al., 2017; Schildgen et al., 2010; Winn et al., 2017). Zircon 4He/3He thermochronometry has been applied to the fast-cooled Fish Canyon Tuff zircon standard and zircon crystals from the Sierra Nevada batholith in the vicinity of the Little Devil’s Postpile intrusion (Tripathy-Lang et al., 2015). This tool has also been used to constrain the diffusion kinetics and thermal history of hematite (Evenson et al., 2014; Farley, 2018; Farley & Flowers, 2012; Farley & McKeon, 2015), goethite (Allard et al., 2018; Deng et al., 2017; Shuster, Vasconcelos, et al., 2005; Vasconcelos et al., 2013), and Mn oxides (Garcia et al., 2017).

4.6. Measurement and Modeling Advances in Trapped Charge Thermochronometry

The recent development of trapped charge thermochronometry means that methods and kinetic and thermal models are rapidly improving. Advances center on numerical models that describe the equilibrium between charge trapping and thermal and athermal charge detrapping (e.g., Biswas et al., 2018; Brown et al., 2017; Guralnik, Jain, et al., 2015), measurement protocols (Guralnik, Jain, et al., 2015; King, Herman, Lambert, et al., 2016), and model validation against samples of known thermal history (Guralnik, Jain, et al., 2015). Ongoing development of ESR thermochronometry (Fang et al., 2018; Grün et al., 1999) may overcome the limitation of signal saturation. ESR signals saturate over timescales of up to \sim2 Myr (Rink, 1997), potentially extending the applicability of trapped charge thermochronometry methods to more environmental settings (e.g., Bartz et al., 2018) and longer timescales.
A sample’s environmental radiation dose rate determines the rate of signal accumulation (i.e., charge trapping) for trapped charge thermochronometric systems. For samples in thermal steady state within the partial retention zone, dose rate exerts only a logarithmic control on the trapped charge concentration, and thus has a low impact on the palaeotemperature determined (Guralnik et al., 2013; Guralnik, Jain, et al., 2015). However, for samples that record cooling, the effect of dose rate will vary from linear to logarithmic as sample saturation (steady state) is approached (Guralnik et al., 2013). This means that, in rapidly cooled settings, a change in dose rate of 30% results in an equivalent shift in the calculated cooling rate (King, Herman, Lambert, et al., 2016).

Grain size exerts a significant control on environmental dose rate, but grain size information is commonly lost during the sample preparation by hand crushing. Grain size distributions can be quantified via thin-section petrography (Guralnik, Jain, et al., 2015). Consideration of end member and/average observed grain size distributions can provide bounds on dose rate calculations (Guralnik, Jain, et al., 2015) and Monte Carlo modeling can evaluate the impact of heterogeneous grain size distributions on the dose rate of minerals extracted from bedrock (Fang et al., 2018). Accurate estimation of the grain size distribution and chemical composition of K-feldspar are important owing to an internal dose rate component, which can cause a significant change in the total dose rate (Fang et al., 2018). K positioning within the K-feldspar lattice contributes a beta dose, which may increase with increasing mineral size (Buylaert et al., 2018).

Trapped charge systems yield multiple luminescence signals with different optical and thermal stabilities, which can be conveniently measured within the same analytical run. This means that multiple constraints on the cooling history of a single sample are obtained, overcoming potential uncertainties associated with combining data from different thermochronometric systems. For example, King, Herman, Lambert, et al. (2016) demonstrated the utility of multiple OSL signals to derive high-precision cooling and thus exhumation histories in geological settings. Combining four infrared stimulated luminescence signals measured from K-feldspar, with T_e of ~30–90 °C, permits inversion of a more precise cooling history than from single-system inversion (King, Herman, Lambert, et al., 2016). Biswas et al. (2018) developed this approach for TL thermochronometry, measuring a continuum of charge with different thermal stabilities and 10 different signals to constrain cooling rate variations. In addition, a new algorithm now allows for inversion of multiple trapped charge data sets to constrain cooling and thus erosion rate variations (Biswas et al., 2018). Model outputs are more robust, because physically impossible cooling histories are rejected from the inversion and a time series of cooling rate changes are generated. Following the success of these studies, similar approaches have been applied to samples from other rapidly exhuming terranes (Herman & King, 2018).

5. Low-Temperature Thermochronometry Applications

New applications of low-temperature thermochronometry utilize the aforementioned method advances in the FT, (U–Th)/He, and trapped charge systems, as well as numerical modeling approaches. In this section, we highlight efforts to push the boundaries of these techniques to address Earth science problems including landscape evolution, surface-mantle connections in deep time, fault zone processes, and weathering. We emphasize that these examples represent only a fraction of the innovative applications of low-temperature thermochronometry. Figure 6 depicts the diverse science questions that are currently being investigated across continents worldwide using FT, (U–Th)/He, and trapped charge thermochronometry.

5.1. Landscape Evolution

Understanding the tempo of erosive processes that sculpt Earth’s surface is at the core of geomorphology and Earth science more broadly. This information has fueled debates into how passive margins evolve via scarp retreat, sediment dispersal and routing from source to sink, and relationships between tectonics and climate. Bedrock and detrital low-temperature thermochronometry, coupled with other chronologic, geologic, and geophysical insights, inform these debates (Figure 6). For example, thermal histories derived from APT and apatite He dating characterize the topographic evolution of passive continental margins and rates of escarpment retreat associated with supercontinent breakup (Figure 6). Low-temperature thermochronometry provides new perspectives on the relative importance of lithospheric flexure, isostasy, and structural inheritance controlling escarpment development and degradation. Examples of FT and (U–Th)/He thermochronometry applications to passive margins include southern Africa (Brown et al., 1990, 2000; Brown et al.,
2002; Cockburn et al., 2000; Flowers & Schoene, 2010; Gallagher & Brown, 1999; Kounov et al., 2009; Tinker et al., 2008; Wildman et al., 2016), Fennoscandia (Hendriks & Redfield, 2005), Brazil (Gallagher et al., 1994; Hackspacher et al., 2004), and Baffin Island and West Greenland (Japsen et al., 2009; Jess et al., 2018; Jess et al., 2019).

In active orogenic settings, landscape evolution is driven by the interplay between surface uplift via tectonics and climate-modulated surface processes. FT, (U–Th)/He, and 4He/3He thermochronometry of basement rocks, sedimentary rocks, and sediments quantify the timing and tempo of erosional and tectonic exhumation in orogens (Figure 6). In mountain ranges that develop in convergent orogens, these tools lay the foundation to investigate relationships between rapid erosion and surface uplift (e.g., Avdeev & Niemi, 2011; McDermott et al., 2019; Spencer et al., 2019; and many others), propagation of deformation into the foreland (e.g., Gautheron, Espurt, et al., 2013; Lease, Ehlers, & Enkelmann, 2016; Thomson et al., 2017), rapid Quaternary exhumation (Blythe et al., 2007; Shuster et al., 2011; Valla, Rahn, et al., 2016; Yang et al., 2018), and Quaternary climate influences on sediment storage and erosion (e.g., Lang et al., 2018).

Conventional low-temperature thermochronometers traditionally cannot precisely resolve variations in Quaternary erosion rates. Trapped charge thermochronometry is able to span this temporal gap and has been successfully applied to understand the Quaternary evolution of the Southern Alps of New Zealand (Herman et al., 2010), the Western Arunachal Himalaya (De Sarkar et al., 2013), the Eastern Himalayan syntaxis (King, Herman, & Guralnik, 2016), and the Japanese Alps (Herman & King, 2018). For example, Figure 7 illustrates that the combination of OSL thermochronometry, together with higher temperature thermochronometric systems, reveals an acceleration in exhumation rates from <1 to >6 mm/year over the past ~1 Myr at Namche Barwa in the eastern Himalayan syntaxis (King, Herman, & Guralnik, 2016). More recent work using TL thermochronometry, which has a lower T_c and thus records more recent changes in rock cooling and exhumation, suggests exhumation rates may have exceeded ~10 mm/yr at ~40 ka, followed by rates of ~2–8 mm/yr over the past 20 ka (Biswas et al., 2018). Regardless of method, trapped charge-derived erosion rates are greater than those inferred from higher-temperature thermochronometry systems. Based on their results, King, Herman, and Guralnik (2016) suggest that tectonics is the key control on the location of rapid exhumation in this region. Future research directions coupling trapped charge with FT and (U–Th)/He thermochronometry, as well as comparing 4He/3He and trapped charge data that have similar T_c, will help decipher variations in exhumation rate and thus evaluate the relative roles of tectonics and surface processes in orogenic systems.

5.2. Deep Time Thermochronometry

The ability to reconstruct low-temperature thermal histories spanning billions of years, known as deep time thermochronometry (e.g., DeLucia et al., 2018; Flowers, 2009; Flowers et al., 2006), has implications for the recognition of dynamic topography in the rock record, identifying if and how surface processes are coupled
or decoupled from deep-seated (mantle) processes through geologic time, understanding how supercontinent cycles shape Earth’s landscape, and documentation of feedbacks between weathering, erosion, and global paleoenvironmental change. AFT thermochronometry can decipher long-term thermal histories of ancient rocks exposed in cratons (e.g., Feinstein et al., 2009; Gleadow et al., 2002; Kohn et al., 2002; Kohn et al., 2005; McDannell et al., 2019). In addition, the low-temperature sensitivity and radiation damage in fluences on the apatite He system make it ideal for quantifying the timing, magnitude, and extent of low (<2 km) amplitude deposition and denudation episodes in cratonic regions, even when the deposited rocks have been completely eroded from the rock record. Apatite He date-eU relationships inform long-term thermal histories linked to these surface processes (e.g., Ault et al., 2009, 2013; Ault, Flowers, & Bowring, 2015; Flowers, 2009; Flowers et al., 2012; Guenthner et al., 2017; Mackintosh et al., 2017). Figure 8 presents apatite He, AFT, and zircon He data patterns from across the

Figure 7. Example of combined trapped charge and low-temperature thermochronometry data from eastern Himalayan syntaxis, Namche Barwa, modified from King, Herman, Lambert, et al. (2016). (a) Erosion rates over 2 million years derived from apatite fission track (AFT) and zircon fission track (ZFT), zircon (U-Th)/He (ZH), and biotite 40Ar/39Ar thermochronometry from prior work. Regions of high stream power (yellow) previously identified as coincident with high exhumation rates; circles denote optically stimulated luminescence (OSL) sample locations of King, Herman, Guralnik (2016). (b) Multi-OSL and low-temperature thermochronometry results, as well as modeled exhumation (exh.) rate changes (pink diamonds) from these data, as a function of distance along A-B line in (a). (c) Data comparison and inversion reveals exhumation rates increased an order of magnitude in the last 1 Ma.
interior of continental North America. Apatite He and AFT data reveal phases of substantial burial (1–4 km), unroofing, and elevation change long after initial cratonic stabilization (Figures 8a and 8b; Ault et al., 2009, 2013; Feinstein et al., 2009; Flowers, 2009; Flowers et al., 2012; Flowers & Kelley, 2011; Kohn et al., 2005; McDannell et al., 2019). The long wavelength (>1,000 km) nature of this elevation change is out of phase with sea level change (Figure 8b). Elevation change distal from plate boundaries and the lack of significant associated crustal deformation suggest dynamic topography as a probable cause (Figure 8b; Ault et al., 2013; Flowers et al., 2012; Zhang et al., 2012).

Recent work extends the low-temperature thermal history of cratonic North America into deeper geologic time (Figures 8a and 8c; Ault et al., 2018; DeLucia et al., 2018; McDannell, Zeitler, & Schneider, 2018; Orme et al., 2016). For example, zircon He thermochronometry date-eU patterns from the North American mid-continent cratonic basement reveal ~850–680 Ma cooling and exhumation associated with the development of the Great Unconformity, an erosion surface representing ~100–1,000 Ma of missing geologic time between Precambrian and Phanerozoic rocks (DeLucia et al., 2018). In addition, 40Ar–39Ar multidiffusion
Fault and (U–Th)/He thermochronometry are also valuable tools for linking southern Africa's unique surface history with mantle processes. Southern Africa, a continental shield residing at a mean elevation of ~1 km (Nyblade & Robinson, 1994) is widely cited as an example of dynamically supported topography (Gurnis et al., 2000; Lithgow-Bertelloni & Silver, 1998). Combined AFT and apatite He data from Archean rocks of the Kaapvaal craton and off-craton Paleozoic mobile belts suggests Early Cretaceous cooling and unroofing focused on craton margins with comparatively limited erosion in the cratonic interior (Wildman et al., 2017). Apatite He thermochronometry from kimberlites document a Cretaceous eastward wave of erosion focused on craton margins with comparatively limited erosion in the cratonic interior (Wildman et al., 2013). Researchers are now extending the low-temperature thermal history of southern Africa into deep time, using zircon and titanite date-eU patterns to document Proterozoic burial across the Kaapvaal craton for which the geologic evidence has been erased (Baughman & Flowers, 2018) and Pan-African orogenesis in the Zimbabwe craton (Mackintosh et al., 2017). Collectively, these studies highlight the potential of FT and (U–Th)/He thermochronometry to decipher cryptic thermal histories in cratons and connect surface processes with geodynamics in deep geologic time.

5.3. Fault Zone Processes: Earthquakes, Creep, and GeoFluid Flow

Documenting fault zone behavior in space and time is integral for understanding the mechanical, chemical, and thermal conditions of crustal deformation and illuminating dynamic interactions between tectonics and Earth surface processes (Huntington & Klepeis, 2018). Fault activity can be inferred from variations in bedrock FT and (U–Th)/He thermochronometry dates and/or extrapolated cooling rates (e.g., Abbey & Niemi, 2018; Bidgoli et al., 2015; Brady, 2002; Carter et al., 2006; Clark et al., 2005; Colgan et al., 2008; Collett et al., 2019; Curry et al., 2016; d’Alessio & Williams, 2007; Ehlers & Farley, 2003; Johnstone & Colgan, 2018; McDermott et al., 2013; Stockli et al., 2000; Tagami, 2012; Wells et al., 2000).

Exhumed fault zones provide a target for dating deformation and a bridge to geophysical and geochemical observations of deformation processes (e.g., Rowe & Griffith, 2015, and references therein). Radioisotopic methods used to place direct temporal constraints on fault slip include 40Ar/39Ar and K–Ar dating of neformed, fault gouge clay (Duvall et al., 2011; Fitz-Diaz & van der Pluijm, 2013; Haines & van der Pluijm, 2008; van der Pluijm et al., 2001; van der Pluijm et al., 2006; Vrolijk & van der Pluijm, 1999; Zwingmann & Mancktelow, 2006), muscovite (Pachell & Evans, 2002), and pseudotachylytes (Cosca et al., 2005; Dia Vincenzo et al., 2013; Magloughlin et al., 2001; Reimold et al., 1990; Sherlock et al., 2004; Sherlock et al., 2008; Sherlock et al., 2009); and U–Pb and U–Th dating of carbonate and opal (Nuriel et al., 2011, 2012, 2013, 2017, 2019; Pagel et al., 2018; Rittner & Muller, 2011; Roberts & Walker, 2016; Uysal et al., 2007; Verhaert et al., 2003; Watanabe et al., 2008).

Minerals on or adjacent to fault surfaces record strain, friction-generated heat, and fluid circulation associated with fault slip. Low-temperature thermochronometry of these phases offers the potential to document the timing, temperature, and nature of brittle fault zone processes, provided that fault-specific thermal signatures can be isolated from the ambient thermal history. For example, ZFT annealing kinetics respond to short duration, high-temperature thermal pulses (Murakami, Yamada, & Tagami, 2006) due to frictional (shear) heating (Ben-Zion & Sammis, 2013), asperity flash heating (Rice, 2006), or melting (Sibson, 1975). ZFT thermochronometry has been used to identify paleoearthquakes that generate pseudotachylytes or shear heating (Murakami, Kosler, et al., 2006; Murakami & Tagami, 2004; Tagami, 2005, 2012, 2019; Tagami & Murakami, 2007). Friction-generated heat has also been detected using zircon He thermochronometry (Maino et al., 2015) and ferrimagnetic resonance signals via ESR (Fukuchi et al., 2007). Luminescence and ESR signals of quartz and feldspar can be reset within fault gouge (Ding & Lai, 1997; Fukuchi, 2001; Lee & Yang, 2007; Mukul et al., 2007; Singbhi et al., 1994; Spencer et al., 2012), although it is challenging to
empirically reproduce signal resetting under equivalent conditions in the laboratory (e.g., Fukuchi & Imai, 1998; Toyoda et al., 2000).

Hematite He thermochronometry informs fault slip timing and processes (Figure 9). Accurate interpretation of hematite He data requires hematite textural characterization, grain size (T_c) distribution data, and constraints on ambient thermal conditions during and after hematite formation from apatite He thermochronometry (e.g., Ault, Reiners, et al., 2015; McDermott et al., 2017; Moser et al., 2017). For example, hematite fault mirrors in the exhumed Wasatch fault damage zone, UT, preserve textural and thermochronometric evidence for asperity flash heating during earthquake aftershocks <4.5 Ma (Figures 9d–f; Ault, Reiners, et al., 2015; Evans et al., 2014; McDermott et al., 2017). In the Mecca Hills, CA, adjacent to the San Andreas fault, hematite textures analogous to “scaly” fabrics observed in clays and thermochronometric data document Late Pleistocene synkinematic mineralization in fault damage zones via creep processes (Figures 9a–9c; Moser et al., 2017). Similar scaly hematite fabrics are documented on small faults in the Kuh-e-Faghan strike-slip fault system, central Iran, from punctuated Miocene mineralization during fault-related exhumation (Calzolari et al., 2018).

Fluids circulating in fault systems advect heat, influencing local and regional temperature gradients and low-thermochronometry systematics in fault-bounded mountain ranges (e.g., Whipp & Ehlers, 2007). Minerals forming from fluids and entrained in fault zones also provide a record of these processes. (U–Th)/He and FT thermochronometry of minerals precipitated from fluids (e.g., hematite and Mn–K oxides) and entrained in faults (e.g., apatite and zircon) inform the timing and geologic significance of modern
and paleofluid migration (Ault et al., 2016; Garcia et al., 2017; MacNamee & Stockli, 2015; Reiners et al., 2014; Tagami, 2019; Tagami & Murakami, 2007; Wolfe et al., 2010). For example, faults in the Gower Peninsula, Wales contain hematite that preserves a thermochronologic fingerprint of hydrothermal fluid circulation and hematite growth, contemporaneous with the opening of the North Atlantic Ocean ~140 million years ago (Ault et al., 2016). Some fault systems host paleo and juvenile geothermal systems. Bedrock and borehole apatite He thermochronometry can document transient and long‐lived thermal anomalies in faults and, together with other low‐temperature thermochronometers, are useful tools for geothermal research and exploration (Gorynski et al., 2014; MacNamee & Stockli, 2015; Valla, Rahn, et al., 2016; Whipp & Ehlers, 2007).

5.4. Weathering and Paleoclimate Changes

Earth’s landscapes evolve by physical erosion and chemical weathering, processes that reflect tectonics and climatic change (West et al., 2005). The dynamics of the Earth’s surface and especially of soils that cover most of it influence climate through the production and consumption of greenhouse gases such as CO₂ (Berner et al., 1983). Up to ~30% of continental surfaces comprise tectonically quiescent, low‐relief landscapes in intertropical regions with deep weathering profiles (i.e., laterites). As such, laterites and their components (e.g., primary and secondary minerals, water, and plants) are a tropical expression of the CZ (Anderson et al., 2007). The formation of laterites, like that of all soils, results from the transfer of chemical elements between different compartments of the CZ (Brantley & Lebedeva, 2011). The release of chemical elements from the parent rock will lead to the precipitation of secondary supergene phases such as clays (e.g., kaolinite), Fe oxides (e.g., hematite and goethite), and Mn–K oxides, which host less soluble elements such as Al, Fe, or Ti (Nahon, 1991).

Laterites factor significantly in the global geochemical budget of weathering and erosion processes. The deep weathering profiles can accumulate only through the combination of intense chemical weathering and slow physical erosion (Retallack, 2010). Figure 10 depicts a typical lateritic profile and its mineralogical compartments, capped by a strong Fe‐enriched weathering horizon, referred to as a duricrust horizon. Mesozoic to Cenozoic laterite chronology has enhanced our understanding of soil formation and opens new research.

Figure 10. Schematic illustration of a typical lateritic profile that develops in intertropical regions with associated goethite He and hematite He thermochronometry. (a) Lateritic profile from surface to bedrock, with mineralogical constituents. Top of profile comprises a duricrust, formed during intense weathering. Depth scale is approximate, as weathering profile thickness is variable and can be >100 m. Insets (b, c) show metallic, Fe oxide enrichment and a scanning electron microscope image of a goethite concretion (Allard et al., 2018), respectively. (d) Frequency of supergene goethite He and hematite He dates from northern Brazil (Allard et al., 2018; Monteiro, Vasconcelos, & Farley, 2018; Monteiro, Vasconcelos, Farley, & Lopes, 2018; Shuster et al., 2005, 2012). (e) Temperature variations based on δ¹⁸O isotopic composition over the Cenozoic (Zachos et al., 2001). Fe oxide He dates may reflect generations of hematite or goethite mineralization associated to multiple weathering episodes due to climatic change since −65 Ma.

10.1029/2018TC005312
avenues as laterites also record past climatic conditions (e.g., Vasconcelos et al., 2015) or landscape evolution (e.g., Bonnet et al., 2016). 40Ar–39Ar analysis of Mn oxides, and more recently, hematite and goethite He geochronology from laterites inform the timing, tempo, and geochemical processes of laterite formation via past climate change (Allard et al., 2018; Deng et al., 2017; Monteiro et al., 2014; Monteiro, Vasconcelos, Farley, & Lopes, 2018; Shuster, Vasconcelos, et al., 2005; Vasconcelos et al., 1994; Vasconcelos et al., 2013). For example, Figure 10d presents a compilation of published supergene goethite and hematite (U–Th)/He dates from northern Brazilian laterites. For comparison, temperature changes over the Cenozoic are shown inferred from stable isotope data. This compilation highlights the longevity of continental landscapes and protracted laterite formation during multiple weathering episodes. In addition, supergene hematite or goethite formation can also be used to date paleochannel evolution and water table drawdown during climate (e.g., Danišík et al., 2013; Heim et al., 2006) or landscape (Monteiro, Vasconcelos, & Farley, 2018; Riffel et al., 2015) changes.

6. Frontiers in Low-Temperature Thermochronometry

In this contribution we highlight advances and new directions in FT, (U–Th)/He, and trapped charge thermochronometry. The power and utility of these approaches to resolve Earth surface and upper crustal thermal histories has enabled researchers to quantify the timing and tempo of a cornucopia of fundamental Earth processes (Figure 6). In the coming decades, researchers will continue to push the boundaries of each of these methods and their applications to constrain increasingly complex—from seconds to billions of years—thermal histories. Innovation in theory and analytical methods, combined with numerical modeling, materials science, integrated thermochronometric approaches, and leveraging independent textural, geochemical, geophysical, and/or climatic observations, will usher in new Earth science discoveries and breakthroughs.

6.1. Theory and Systematics

Empirical, experimental, and theoretical observations fuel the low-temperature thermochronology community’s desire to improve our understanding of diffusion, radiation damage accumulation, damage annealing, and trapped charge saturation ratios. Important advances in these topics will occur as thermochronologists engage with other scientific communities, such as theoretical chemists, nuclear or material physicists, and mineralogists. Investigations of atomic to crystal-cell-scale phenomena will allow us to address persistent questions centered on He diffusion and/or annealing behavior. For example, DFT calculations provide foundational insights into He diffusion in crystal structures (e.g., Djimbi et al., 2015), and ongoing analysis of apatite, zircon, goethite, magnetite, and quartz will allow us to better understand noble gas diffusion in those minerals. In addition, new material science characterization of radiation damage using Raman spectroscopy, transmission electron microscopy, atom microprobe, and/or ion beam techniques (e.g., elastic recoil detection analysis, nuclear reaction analysis, and Rutherford backscattering spectroscopy) can refine our understanding of damage annealing. Complementary laboratory and empirical characterization of crystal damage accumulation and annealing will help improve damage-He diffusivity and FT annealing models (Gerin et al., 2017; Ginster et al., 2019; McDannell et al., 2019; Recanati et al., 2017; Willett et al., 2017).

Trapped charge thermochronometry will also benefit from material science investigations into the physical nature of defects within quartz and feldspar, as well as new approaches to probing their trapped charge populations using spectroscopic methods (e.g., photoluminescence, radioluminescence, ESR, and time-resolved luminescence; cf. Krbetschek et al., 1997; Prasad et al., 2017; Riedesel et al., 2018). Understanding the nature of these defects will aid the development of robust physical models that accurately describe the processes of electron trapping and detrapping in these minerals, reducing the potential error caused by the extrapolation of thermal histories from poorly estimated kinetic parameters. Collectively, these advances directly translate to our ability to decipher more precise thermal histories over a variety of timescales and improve modeling packages that quantify the thermal evolution of rocks and minerals.

6.2. Emerging Tools and Analytical Approaches

Analytical improvements to low-temperature thermochronometry systems will similarly promote discovery and innovation. For example, ongoing application of a new continuous ramped heating approach can assess anomalous He diffusion behavior (Idleman et al., 2018; McDannell, Zeitler, Janes, et al., 2018). This
approach, currently used for apatite, offers the promise of identifying the source(s) of (U–Th)/He data dispersion during near routine He degassing analysis and, importantly, provides new insights into He mobility in target grains. Improved understanding of He diffusion in accessory and secondary phases from atomistic calculations and 4He/3He diffusion experiments will expand applications. For example, 4He/3He thermochronometry allows us to recover thermal history information from a single crystal or aliquot (e.g., Farley & McKeon, 2015; Flowers & Farley, 2012; Garcia et al., 2017; Schildgen et al., 2010; Tripathy-Lang et al., 2015; Valla et al., 2011). Advances in our understanding of He diffusion in hematite, magnetite, goethite, and Mn oxides (e.g., Balout et al., 2017; Farley, 2018; Garcia et al., 2017), new aliquot selection approaches (e.g., Jensen et al., 2018), and integration of nanotextural observations with oxide thermochronometry (e.g., Ault et al., 2016; Ault, Reiners, et al., 2015; McDermott et al., 2017; Moser et al., 2017) enable robust application of these thermochronometry tools to hydrothermal systems, faults, and surficial deposits in recent and deep time.

Recent development of (U–Th)/Ne thermochronometry opens up new and exciting research avenues. This system is based on 21Ne production during alpha decay, capture on 18O in O-rich minerals, and strong retention in O-bearing phases and requires measurement of U, Th, and 21Ne in excess of atmospheric neon (Cox et al., 2015; Farley & Flowers, 2012; Farley & McKeon, 2015; Gautheron et al., 2006). For example, (U–Th)/Ne dating can provide Fe oxide formation ages and complementary thermal history information from oxides, apatite, and zircon to the (U–Th)/He and FT systems. This method offers the potential to date fluid circulation and concomitant mineralization in faults as well as deformation processes.

Analytical advances in detrital low-temperature thermochronometry will facilitate tracking sediment routing patterns in ancient basins due to tectonics and/or paleoclimate change as well as modern systems in response to anthropogenic climate change. Refinement of double- and triple-dating analytical procedures and expansion of these approaches to other detrital accessory phases is critical to this. For example, ongoing development of laser ablation (U–Th)/He thermochronometry and evaluation of method challenges will enable high sample throughput necessary for detrital studies in sedimentary rocks and modern drainage systems (e.g., Horne et al., 2016, 2019).

6.3. Emerging Applications

New applications will combine multiple low-temperature and trapped charge thermochronometry data sets (e.g., King, Herman, & Guralnik, 2016), as well as leverage other geochemical, geophysical, and geobiological data to tackle new science questions in the societally relevant fields of climate change, planetary geology, geomicrobiology, and sustainable resource development. For example, hematite He, goethite He, and magnetite He dating will be combined with stable isotope geochemistry to reconstruct paleoclimate (e.g., Miller et al., 2017; Yapp & Shuster, 2017). This also opens new avenues of soil science research, shedding light on paleoenvironmental and modern climate change. Comparison of magnetite, hematite, and goethite He dates can also reveal changes in oxidation-reduction conditions of Earth’s surface in recent and deep time. These changes may be microbiologically mediated and future thermochronometry research will sit at the intersection of geochemistry and geomicrobiology. The aforementioned lines of inquiry are not restricted to Earth. Hematite and goethite He dating can be used to date weathering and thus the presence of water on Mars (Heim et al., 2006; Kula & Baldwin, 2012; Riffel et al., 2016). Investigation of oxide minerals on Mars may shed light rock-powered life on another planet. (U–Th)/He thermochronometry has been used to document terrestrial (van Soest et al., 2011; Young et al., 2013) and lunar (Kelly et al., 2018) impacts events and, in the future, may be applied to such events on Mars.

Applications of thermochronometry are also relevant for current and future geothermal, hydrocarbon, and mineral resource research and exploration. Apatite He and AFT thermochronometry have long been used to characterize basin and reservoir thermal histories, owing to the overlap between the T_c of these systems and oil production window temperatures (~120–60 °C, Hunt, 1996). High radiation-damaged zircon is sensitive to temperatures less than the apatite He T_c (e.g., Johnson et al., 2017), in line with hydrocarbon maturation temperatures. High damage and thus high eU zircon can be identified via visual metamictization (e.g., Ault et al., 2018). Together with greater preservation potential versus apatite in continental and submarine basin systems and ongoing refinement to zircon damage-diffusivity models (Ginster et al., 2019), the zircon He system is attractive and complementary tool for reconstructing basin and basin thermal histories for hydrocarbon research. FT, (U–Th)/He, and 4He/3He thermochronometry of minerals on and adjacent to fault
Acknowledgments
We thank Pierre Valla, Matthew Fox, and Associate Editor Andrew Carter for constructive reviews; Laurent Tassin-Got, Peter Reiners, Gabriele Calzolari, and Robert McDermott for helpful discussions and perspectives during writing of the manuscript; and feedback from William Guenthner, Jessica Stanley, Leah House, Devon Orme, Kendra Murray, and Cailey Condit on earlier versions of the manuscript and figures. A. K. acknowledges the National Science Foundation for support via NSF CAREER EAR-1654628 and NSF EAR-1419828. C. G. acknowledges support from the HeDiff ANR-12-NS06-0005-01 and RECA ANR-17-CE01-0012-01 projects. G. E. K. acknowledges support from Swiss National Science Foundation (SNF) Grant PZ00P2_167960. All presented data are available in contributions cited and provided in the reference list.

References

damage zone slip surfaces and in fault cores are well suited to detect signatures of fluid circulation in these systems and thus serves as a tool for geothermal exploration. Fe oxide and Mn oxide He thermochronometry will be applied to ore deposit research. For example, hematite and goethite coprecipitate with economically valuable ore minerals and thus hematite and goethite He chronology will be applied to Ni-rich laterites and Au–Ag–Cu–Zn deposits (Reich & Vasconcelos, 2015; Wernicke & Lippolt, 1997) to guide resource development.

AULT ET AL. 26

Tectonics 10.1029/2018TC005312

AULT ET AL. 28

