A GPS-Based Attitude Determination System for Small Satellites (SSC06-VII-1)

20th Annual AIAA/USU Conference on Small Satellites
Wednesday, August 16, 2006 • 4:00 pm

Kristopher Young
Program Manager
CUSat Satellite Project
Overview

- Carrier phase Differential GPS (CDGPS) Primer
 - Centimeter resolution baseline vectors
 - Fast convergence time
 - Real-time attitude determination and relative navigation
 - Developed by Dr. Mark Psiaki and Shan Mohiuddin

- Attitude Determination
 - Absolute and relative attitude

- Design Considerations
 - Antennas
 - Orbits
 - Missions
Why fly a GPS-based ADS on small sats?

- Lightweight

- Multipurpose functionality
 - Absolute and relative position information
 - Absolute and relative attitude information

- Relatively Inexpensive

- Very accurate

- No extensive calibration
Operational Concept

- Use two baseline vectors to compute attitude
- One baseline vector between spacecraft
- These vectors come from differential GPS carrier signal measurements (CDGPS)
- Objective of CDGPS baseline vectors
 - Provide extremely accurate baseline vectors (cm, mm)
 - Construct a highly accurate attitude estimate
Hardware Design

Overview
Motivation
Concept
Hardware

CDGPS
Carrier Phase
CP Ranging
CDGPS Concept
Convergence
On Orbit Ops
Results

Attitude
Concept
Results

Design
Considerations
Antennas
Number
Spacing
Orbit
Pointing
Conclusions
CDGPS Primer
Why use carrier phase measurements?

- Modern GPS Receivers have ~1% measurement accuracy
 - 0.01\(\lambda\)

- Code solution (f=1.023 MHz, \(\lambda=293m\))
 - Best case accuracy of ~3m

- L1 Carrier signal (f=1.57542 GHz, \(\lambda=19cm\))
 - Best case accuracy of ~2mm

- Remember
 - There is substantial noise in the system
 - 3-10 meters
Carrier Phase Ranging

- **Known quantities (1):**
 - ϕ_A^j

- **Unknown quantities (5):**
 - $\rho_A^j(x,y,z)$
 - N_A^j
 - δ_{RA}

- **Range from GPS satellite j to receiver A**
 \[\rho_A^j = \lambda_{L1}(\phi_A^j + N_A^j) + f_{L1}\delta_{RA} \]

Notation:
- Superscripts denote GPS satellites
- Subscripts denote GPS receivers
CDGPS Concept

- Want a relative vector between points
 - Subtract absolute range solution vectors
 - Noisy
 - Double differenced carrier phase measurements
 - Carrier phase difference between two satellites (i,j) & between receiver A and B*
 - Noise cancels out
 - Phase offsets cancel out
 - Receivers are within 1km of each other
 - Transmission errors and satellite errors cancel
 - Ephemeris, satellite clock, ionospheric and tropospheric errors
 - Removes receiver errors
 - Oscillator drift, receiver clock

\[\mathbf{\rho}_A - \mathbf{\rho}_B = \nabla \Delta \mathbf{\rho} \]

\[\Phi_{RL}^{jj} = \mathbf{\rho}_A - \mathbf{\rho}_B \]

Search Spaces

- Double Difference: \[\nabla \Delta \tilde{p}_A^j = \lambda_{L1} (\nabla \Delta \phi_A^j + \nabla \Delta N_A^j) \]
- Find the correct \(\nabla \Delta N_A^j \)
- Least-squares Ambiguity Decorrelation Adjustment (LAMBDA) method
 - Ambiguity is an integer through receiver design
- Residual Error
 \[Z_A^j = \rho_A^j - P_A^j - c\delta_{RA} \]
Solution Convergence

(1 of 2)

- Line of sight vectors
 - If values are too similar, inconsistent integer ambiguities
 - Geometric Dilution of Precision (GDOP)
 - Difference of the ranging vectors from receiver A to multiple satellites should not close to 0
 - Rate of change

- Carrier to noise ratio
 - Affects measurement accuracy

- Multipath
 - < 1us transmission bounces (300m)
Solution Convergence

(2 of 2)

- Large residual errors
 - GDOP issue
 - Increases the search space

- Cycle slips
 - Receiver loses track briefly
 - Have to recompute solution

- Number of satellites
 - 5 is the minimum
 - More satellites reduce convergence time
On Orbit Considerations

- Mitigates many of the convergence concerns
- Low multipath environment
 - Ensure spacecraft doesn’t interfere with itself
- High line of sight dynamics
- High GPS satellite visibility
 - Relative little elevation mask
Results – Simulated

- Spirent GSS7700 GPS
 - 3σ error of 4mm
 - Converge within minutes

![Graph showing CDGPS error magnitude over time for different numbers of GPS satellites (5, 6, and 7). The x-axis represents time in seconds, and the y-axis represents CDGPS error magnitude in meters.]
Results – Measured

- Terrestrial Field Test
 - Cornell University GPS Autonomous Receiver (COUGAR)
 - GPS Patch Antennas (Synergy Systems AN-10SC)
Results – Measured

- 3σ Error of 4mm

![Graph showing CDGPS Error Magnitude over time](image)
Results Comparison

- Noise model matches
- Convergence time
 - Line of sight dynamics
 - Multipath

<table>
<thead>
<tr>
<th>Test</th>
<th>Mean Error (cm)</th>
<th>Std. Dev Error (cm)</th>
<th>Convergence time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEO Simulation</td>
<td>0.22</td>
<td>0.1</td>
<td>1-70</td>
</tr>
<tr>
<td>Terrestrial</td>
<td>0.19</td>
<td>0.12</td>
<td>150</td>
</tr>
</tbody>
</table>
Attitude Estimation
Attitude Estimation

- Find the direction cosine matrix (DCM) that rotates CDGPS vectors in ECEF to the body frame
- CDGPS vectors from two bodies

- Markley’s SVD Method
 - Stable
 - Robust
 - Scalable
Results – Simulated

- Monte Carlo simulation
 - 100,000 iterations
 - 25cm baseline distance, 3 vectors
 - 7.5 mm 3σ error

PDF as a histogram of 100,000 cases

Mean Error: 2.033 degrees
Std. Dev: 0.884 degrees
Design Considerations
Antenna Considerations

- Phase center
 - Not necessarily in the physical center
 - Changes with attitude
 - Place antennas in same orientation
 - Cancel in the double difference
 - Only occurs for fixed relative distances
- Visibility
 - Must ensure that each antenna has nearly identical field of view
- Grounding
 - Antenna radiation patterns can be negatively affected
How many antennas should I use?

- Minimum
 - 3 for 2 baseline vectors (can compute 3)

- Generalization
 - \(N \text{ antennas} = \frac{N(N-1)}{2} \text{ possible independent vectors} \)
 - Adds fault tolerance
 - Reduces noise in attitude estimate

Simulation Parameters
- 7.5mm 3\(\sigma \) error
- 25cm baseline distance
- 10k iterations

![Graph showing angular error magnitude vs. number of baseline vectors.](image)
How far apart do I need my antennas?

- The close the antennas, the greater percentage error is with respect to baseline distance
- Want
 - To find the closest distance that meets your pointing requirements

Simulation Parameters
- 7.5mm 3σ error
- Varied baseline distance
- 10k iterations

Good separation distance
- 20-25 cm
- 1-2 degree pointing accuracy
- Lower limit: 15cm
What are my orbital constraints?

- Altitude
 - LEO altitude is significantly smaller than GPS altitude
What are my orbital constraints?

- Independent of altitude in LEO
- Independent of inclination in LEO
 - GPS orbital planes are at 55 degrees
 - Is there poor visibility at high inclinations?
- Simulation

![Graph showing number of generated SVs vs time](image)

Statistics:
- Mean: 7.6282
- STD: 2.2760
What are my pointing constraints?

- Visibility is highly dependent on spacecraft attitude
 - Best case: Zenith pointing
 - Worst case: Nadir pointing
Satellite visibility over pointing scheme

Number of Generated SVs

Visible GPS Satellites
GPS Satellites Required for CDGPS

Mean: 5.9796
STD: 5.0395
Conclusions

- Benefits of CDGPS
 - High performance to cost ratio
 - Low cost implementation
 - Cm level accuracy
 - Adaptable, modular package
 - Offers complete coverage using existing technology (GPS)
 - Independence of design
 - Only need three antennas (or more)
 - Modest pointing constraints
 - Calibration free

- Provides accuracy sufficient for most small satellite missions
Future Work

- Incorporation of an attitude estimation filter
 - Further reduces error

- Flying these algorithms
 - Cornell University Satellite (CUSat) Project
Questions
Backup Slides
Double Differencing Carrier Phase

- **Single Difference**
 \[\Delta(\hat{\phi})_{AB}^j = (\hat{\phi})_{A}^j - (\hat{\phi})_{B}^j \]
 - Carrier phase difference of the same satellite (j) between receiver A and B
 \[\Delta \rho_{AB}^j = \lambda_{L1} (\Delta \phi_{AB}^j - \Delta N_{AB\rho}^j) \]
 - Receivers are within 1km of each other
 - Transmission errors and satellite errors cancel
 - Ephemeris, satellite clock, ionospheric and tropospheric errors

- **Double Difference**
 - A differenced single difference
 \[\nabla \Delta(\hat{\phi})_{AB}^j = \Delta(\hat{\phi})_{iAB}^i - \Delta(\hat{\phi})_{AB}^j \]
 - Carrier phase difference of two satellite (i,j) between receiver A and B
 \[\nabla \Delta \rho_{AB}^{ij} = \lambda_{L1} (\nabla \Delta \phi_{AB}^{ij} - \nabla \Delta N_{AB\rho}^{ij}) \]
 - Removes receiver errors
 - Oscillator drift, receiver clock
The Integer Ambiguity

- Tracking a GPS satellite \((j)\)
 - Lock onto satellite with initial \(N_A^j\)
 - \(N_A^j\) stays constant while tracking satellite \(j\)
 - Removes a variable in subsequent time steps
- There are more phase offsets to the system
 - Also constant when tracking a satellite
- L1 replica phase offset \((\eta_A^j)\)
 - Same for each channel in a receiver
- Epoch phase offset \((\Gamma_e^j)\)
 - Each GPS satellite has a phase offset at epoch time
 - Same offset for each GPS satellite
 - To within the accuracy of the GPS satellite clock

Overview
Motivation
Concept
Hardware
CDGPS
Carrier Phase
CP Ranging
CDGPS Concept
Convergence
On Orbit Ops
Results
Attitude
Concept
Results
Design
Considerations
Antennas
Number
Spacing
Orbit
Pointing
Conclusions
Phase Ambiguities

- Combine the integer ambiguity with phase offsets
 \[N_A^j = N_{AP}^j - (\eta_A^j + \Gamma_A^j) \]

- Single differencing can be used to obtain a relative solution, but the single differenced phase ambiguity is difficult to obtain a solution

- Double differencing can remove these phase offsets and guarantee that \(\nabla \Delta N_A^j \) is an integer
Phase Ambiguities

- Who cares if the ambiguities are actually integers?
 - Convergence time for real-valued ambiguities: minutes
 - Convergence time for integer ambiguities: seconds
SVD Attitude Estimation

- Davenport’s Attitude Matrix
 \[B = \sum_{i=1}^{N} a_i \cdot B_{CBF} \cdot R_i \cdot ECEF \cdot R_i^T \]
 - Scale influenced by length of baseline vectors

- Perform SVD
 \[B = U \Sigma V^T \]

- Find the DCM
 \[ECEF^T Q_{CBF}^T = U \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \det(U) \det(V) \end{bmatrix} V^T \]