DISCO - Develop Inertial Spin Created On-orbit: A Magnetic Spin-Rate Controller for STARSHINE 4

Jonathan A. Lovseth
Rockwell Collins Advanced Technology Center

Richard R. Schultz
University of North Dakota

Gil Moore
STARSHINE Project Director

Chris McCormick & Brian Giesinger
Broad Reach Engineering

Warren J. Wambsganss & Nicholas E. Hulst
Rockwell Collins

Technical Session VII: University Programs
August 16, 2006
STARSHINE Mission

• To learn about variations in rate of LEO satellite orbit decay caused by upper atmospheric response to bursts of solar Extreme Ultraviolet (EUV) radiation during solar cycle.
• Accomplished by visually tracking a sunlight-reflecting mirrored sphere with a ballistic coefficient independent of satellite attitude and calculating its orbit decay rate.
Why Build DISCO?

STARSHINE mirrors ground, polished and tracked by students. The satellite must spin at 5°/second.

Earlier STARSHINE satellites have stopped spinning, making amateur observations inaccurate.
Requirements

• The subsystem to Develop Inertial Spin Created On-orbit shall:
 – Maintain a spin-rate of 5°/sec to enhance optical visibility.
 – Function for a minimum of 3 years.
 – Operate on battery power.
 – Be capable of operating in a Low Earth Orbit environment.
 – Fit within a ½-meter sphere.
Electronics

Active System:

Sensors: 3 spin-rate sensors
1 three-axis magnetometer

Actuators: 3 magnetic torque rods

Controller: TI MSP430F149 (ultra low power)
Hardware Design

- Custom 8-layer PCB
- Power Regulation:
 - I/P 9VDC-13VDC
 - O/P 3.3VDC, 5VDC, 15VDC
- Microcontroller & JTAG
- Opto-FET H-Bridge for Torque Rods
- Signal Conditioning:
 - Low-Noise Amps
Embedded Software

- Algorithm Designed to Minimize Power Consumption:
 - Disable sensors when not running.
 - Disable unused microcontroller features.
 - Minimum magnetic field threshold (28 µT).
 - Push in direction of greatest spin.
 - Watchdog timer used to reboot system after radiation lock-up.
Power Budget

<table>
<thead>
<tr>
<th></th>
<th>Power Consumption</th>
<th>Time</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sleep Mode</td>
<td>0.011286 W</td>
<td>24 hours</td>
<td>99.977%</td>
</tr>
<tr>
<td>Sample and Torque</td>
<td>3.388286 W</td>
<td>20.4 seconds</td>
<td>00.023%</td>
</tr>
<tr>
<td>TOTAL (if spun)</td>
<td></td>
<td></td>
<td>30.35 Amp-hours</td>
</tr>
<tr>
<td>TOTAL (w/ spin-up)</td>
<td></td>
<td></td>
<td>30.45 Amp-hours</td>
</tr>
</tbody>
</table>

- Lifetime = 3 years
- Moment of Inertia = 1.08 kg*m²
- Torque Rod = 2 A*m²
- Average Field = 3.99 * 10⁻⁵ T
- Deceleration over 2 months (0.0015 rad/s each 24 hours)

Results in 20 seconds of torque per day
Ground Testing

Temporary housing built to hold components during ground testing.

Helmholtz coil used to amplify magnetic field to compensate for string and air friction.
Future

- Integration into STARSHINE 4
- Mechanical Mount
- Launch into LEO (2007/2008)

(Courtesy Planetary Systems Corp.)
Design Team

Electronics Design:
Warren J. Wambsganss

Software Design:
Jonathan A. Lovseth
Nicholas E. Hulst

Mechanical Design:
Adam Webster

Industry Advisement and Support:
Chris McCormick,
Broad Reach Engineering
Brian Giesinger,
Broad Reach Engineering

University Advisement:
Dr. Richard R. Schultz,
Univ. of North Dakota
Prof. Gil Moore,
STARSHINE Project Manager
Q & A

Prof. Gil Moore
STARSHINE Project Manager
GilMoore12@aol.com

Chris McCormick
President, Broad Reach Engineering
ccmcc@broadreachengineering.com

Jonathan A. Lovseth
Rockwell Collins Advanced Technology Center
jalovset@rockwellcollins.com

Richard R. Schultz
Chair, Electrical Engineering, Univ. of North Dakota
RichardSchultz@mail.und.edu

Technical Session VII: University Programs
August 16, 2006