Minnesat: GPS Attitude Determination Experiments Onboard a Nanosatellite

Vibhor L. Bageshwar, Demoz Gebre-Egziabher, & William L. Garrard

Department of Aerospace Engineering & Mechanics

University of Minnesota
Minnesat Program

Objective: to design and evaluate the performance of an ultra-short baseline GPS attitude determination system
GPS Attitude Determination

GPS Satellite

LOS Vector

GPS Signal Carrier

GPS Antenna

Baseline Vector

Relative Range

GPS Signal Carrier

GPS Antenna

University of Minnesota
GPS Antenna Gain Patterns

Los Vector

Antenna Gain Pattern

Los Vector

Antenna Gain Pattern

University of Minnesota
Carrier Phase Calibration

Attitude Errors, without phase delay estimation: 2° - 5°

Attitude Errors, with phase delay estimation: < 1°
General Design

- 8 GPS sensors
- Axi-symmetric hexagonal frame
- Physical Dimensions
 - circumscribed radius: 22.5 cm
 - height: 45 cm
 - mass: < 30 kg
- Dynamically Stable
GPS Antenna Configuration

Minnesat

GPS Satellite

Minnesat

University of Minnesota
GPS Antenna Baselines

24 Antenna Baselines

- Blue: 19.5 cm
- Green: 31.8 cm
- Red: 33.8 cm
System Overview

- **Navigation System**
- **Primary AD System**
- **GPS AD System**

Orbit Insertion → **Collect Sensor Data**
- 8 GPS Sensors
- Inertial Sensors
- Magnetometer

Flight Computer
- Archival Memory

Communication System
- Transmit to Ground Station

University of Minnesota
Acknowledgments

AFRL University Nanosatellite Program Office

Team Leads

Jason J. Mintz
Jason V. Andersen
Vincent Jusuf
Nathan A. Moehnke

Ella S. Field
Abdul A. Khan
James A. Pogemiller

Industrial Partners

NASA, Minnesota Space Grant
Honeywell International, Inc.
Goodrich, Co.

Richard DeLeo
Lockheed Martin, Co.
Tennant Company

University of Minnesota