Abstract
Junior livestock projects provide excellent opportunities for education and positive agricultural experiences for 4-H youth. As genetic testing advances become widely available to livestock producers, youth benefit by learning the benefits and applications of genetic testing. Porcine stress syndrome (PSS), which springs from the HAL gene, is an inherited neuromuscular disorder in pigs that is triggered by stressful situations, such as exercise, fighting, marketing, vaccination, castration, parturition, hot weather, etc. The symptoms exhibited by pigs experiencing PSS include muscle/tail tremors, labored/irregular breathing, blanching/reddening of skin, high body temperatures, collapse, muscle rigidity, and eventual death. (Stradler & Conaster). The HAL gene is not completely recessive meaning that heterozygous stress carrier pigs can also exhibit traits of PSS. Traits of swine with PSS include sudden death and pale soft exudative (PSE) meat. Research has found that stress carriers are much less likely to suffer sudden death, but are more likely to exhibit poor meat quality (Worwood). Research has found that two alleles for the RN gene, RN* and RN+, the RN- gene is completely dominant. This dominance implies that a copy of the RN- gene inherited from one parent can cause poor meat quality (Heaton, Howard, & Dallin, 2016).

Rendement Napole
• Found to lead to PSE in swine.
• Poor pork quality caused by low pH and low water holding capacity in pork with the RN gene.
• Two alleles for the RN gene, RN- and RN+. The RN- gene is completely dominant meaning that just one copy of the RN- gene inherited from one parent can cause poor meat quality (Heaton, Howard, & Dallin, 2016).

Some Bad Combination
• Some recessive genes can be additive, such is the case with PSS and RN.
• The detrimental effects of the HAL and RN gene on pork quality are amplified in pigs carrying both.
• 3.3% of pigs tested carried both the HAL and RN gene.

CONCLUSION
• These findings are alarming because the negative effects caused by the HAL and RN gene are completely avoidable.
• The majority of swine are artificially inseminated. Boar stud services perform genetic testing on their sires before collecting and selling their semen. These results are available from the producer:
 o 18% of sires on a boar semen website were carriers of the HAL gene.
• It is not economically viable for producers to test all of their sows for the HAL and RN gene. By utilizing genetic testing that is performed on boars before artificially inseminating or breeding sows, producers can greatly reduce the threat of PSE meat or other issues.
• 4-H junior livestock projects are a great vehicle for conducting educational workshops that will help cut back on the economic losses caused by the HAL and RN gene and that will help prepare 4-H youth to be better producers.

Works Cited
Utah State University is an affirmative action/equal opportunity institution.

Table 1. The percentages of hogs affected by Porcine Stress Syndrome (PSS) and Rendement Napole (RN) (n=11) in Utah counties’ junior livestock shows.

<table>
<thead>
<tr>
<th></th>
<th>PSS (%)</th>
<th>RN (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>93.3</td>
<td>58</td>
</tr>
<tr>
<td>Carriers</td>
<td>6.7</td>
<td>42</td>
</tr>
<tr>
<td>R-NHN</td>
<td>51.4</td>
<td>49</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

• Approximately 49% of pigs tested had a genetic defect that could lead to poor meat quality (PSE meat) and/or other issues such as sudden death.
• The negative effects on meat quality caused by these genes causes economic losses in the pork industry and can have a negative impact on the public support of junior livestock shows (Du, 2004).