Effects of Acute Acid Loading on the Risk of Calcium Phosphate and Calcium Oxalate Crystallization in Urine

P. J. Osther
Odense University Hospital, Denmark

J. Bollerslev
Odense University Hospital, Denmark

J. R. Nørård
Odense University Hospital, Denmark

K. Engel
Odense University Hospital, Denmark

P. Kildeberg
Odense University Hospital, Denmark

Follow this and additional works at: https://digitalcommons.usu.edu/microscopy

Part of the Biology Commons

Recommended Citation

Vol. 8 : No. 1 , Article 6.
Available at: https://digitalcommons.usu.edu/microscopy/vol8/iss1/6

This Article is brought to you for free and open access by the Western Dairy Center at DigitalCommons@USU. It has been accepted for inclusion in Scanning Microscopy by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.
EFFECTS OF ACUTE ACID LOADING ON THE RISK OF CALCIUM PHOSPHATE AND CALCIUM OXALATE CRYSTALLIZATION IN URINE

P.J. Osther, J. Bollerslev, J.R. Nørgård, K. Engel and P. Kildeberg

Divisions of 1Urology, 2Medical Endocrinology, 3Clinical Chemistry and 4Pediatrics, Institute of Clinical Research, Odense University Hospital, Odense, Denmark

(Received for publication May 3, 1993, and in revised form January 14, 1994)

Abstract

The aim of this study was to examine the risk of calcium phosphate and calcium oxalate crystallization during acute acid loading under controlled conditions. The effects of acute acid loading on rates of renal excretion of calcium, magnesium, phosphate, citrate, oxalate and urine pH were studied in healthy subjects. The risk of calcium phosphate and calcium oxalate crystallization were evaluated by estimates of the ion activity products of calcium phosphate [AP(CaP)-index] and calcium oxalate [AP(CaOx)-index] according to Tiselius. In addition, the risk of brushite [AP(Bru)-index] crystallization was estimated.

An acute acid load administered as ammonium chloride (NH₄Cl) produced increased urinary excretion of calcium, phosphate and oxalate, decreased urinary excretion of citrate, and a decrease in urine pH. Consequently, calcium-citrate-ratio in urine increased markedly in response to acid loading. AP(CaP)-index decreased markedly due to a fall in urine pH. AP(Bru)-index decreased slightly and remained low throughout the study. AP(CaOx)-index increased significantly, and acid loading is suggested as a risk factor for calcium oxalate stone formation.

Key Words: Acid-base, urine, calcium phosphate, calcium oxalate, kidney calculi, citrate, oxalate.

Introduction

Considerable evidence suggests that dietary protein is an essential factor in the pathophysiology of calcium stone formation. The exact mechanism whereby dietary protein leads to renal stone formation remains, however, to be elucidated.

It has been shown by several investigators that ingestion of a protein load results in an increase in urinary calcium excretion (Adams et al., 1979; Robertson et al., 1979a, b; Breslau et al., 1988) and a decrease in urinary citrate excretion (Breslau et al., 1988, Goldfarb, 1988), which theoretically would be expected to enhance the crystallization of calcium phosphate and calcium oxalate (Nicar et al., 1987; Berg and Tiselius, 1989; Tiselius et al., 1993). Concerning the role of dietary protein on urinary oxalate excretion the data in the literature are conflicting. Some studies have shown that a rise in the consumption of animal protein markedly increases renal oxalate excretion (Robertson et al., 1979a, b; Brockis et al., 1982; Fellström et al., 1983; Urvetksy et al., 1987; Holmes et al., 1993). Other investigators have been unable to confirm these findings (Breslau et al., 1988, Marangella et al., 1989, Trinchieri et al., 1991).

A protein load results in an increased endogenous production of non-metabolizable acid (NA) to be excreted by the kidneys (Lemann et al., 1961; Lennon et al., 1962; Kildeberg, 1981). It has been shown that there is a significant positive correlation between increased renal acid excretion and hypercalciuria (Lemann et al., 1966). Furthermore, it is well-known that renal citrate excretion falls during non-carbonic acidosis due to increased proximal tubular citrate reabsorption (Simpson, 1964; Adler et al., 1971). The increased stone risk of protein consumption, therefore, may be a consequence of increased endogenous acid production. On the other hand, a lower urinary pH during acid loading reduces the ionization of phosphoric acid and may thereby counteract calcium phosphate stone formation (Breslau et al., 1988). Furthermore, neither the effect of an acid load on urinary oxalate excretion has been examined, nor has the effect of acid loading on the risk of calcium phosphate and calcium oxalate crystallization been evaluated.
The aim of this study was to examine the risk of calcium phosphate and calcium oxalate crystallization during acute acid loading under controlled conditions.

Material and Methods

Symbols

Quantities are presented as complete symbols, for example: \(c_{\text{Mg(U)}} \) = concentration (c) of magnesium (Mg) in urine (U) (mmol/l); \(n_{\text{Mg(U)}} \) = amount of (n) magnesium in urine (mmol), \(n_{\text{Mg(U)}} \) = rate of (\(n \)) magnesium excretion in urine (mmol/hour), \(V \) = flow (volume rate, l/hour) and \(\text{pH} (\text{aB}) \) = pH in arterialized blood (aB), according to recommended chemical and physiological usage (McGlashan and Paul, 1975).

Experimental subjects

Ten healthy men with a median age of 33 years (range 23-47 years) were included in the study. Body weight ranged from 65-115 kg (median 84 kg), and body mass index (BMI) from 22-32 (median 26) kg/m². Each subject was examined clinically, including physical examination and laboratory screening. All had sterile urine, and none of the subjects was taking any medication. All had normal endogenous creatinine clearance (median 131 ml/min, range 71-153 ml/min).

Study protocol

An acute acid loading study using oral ammonium chloride (1.9 mmol/kg body mass) as crushed tablets in order to ensure rapid and uniform absorption (Backman et al., 1976) were performed from 6 a.m. to 1 p.m. The participants voided at 6 a.m., and urine and samples of blood were collected at 8 a.m. (control period). The ammonium chloride tablets were ingested between 8:00 and 8:45 a.m. To ensure adequate diuresis 150 ml of demineralized water was given every hour during the study. Urine, and venous and arterialized capillary blood samples were collected hourly. Measurements included creatinine (serum); standard bicarbonate and pH (arterialized capillary blood samples); calcium, phosphate, citrate, magnesium, oxalate, creatinine, pH and volume (urine).

The acid loading study was preceded by an eight-hour fasting period, and for 24 hours prior to the fasting period the participants ate a fixed diet (calcium 7.5 mmol, phosphorous 25 mmol, sodium 81 mmol, potassium 86 mmol, and total protein 50 g, oxalate 200 mg\(^1\)). Protein constituted 11%, fat 40% and carbohydrate 48% of the total energy intake.

Analytical procedures

Concentrations of calcium and magnesium in urine were measured by atomic absorption spectrophotometry. Concentrations of citrate in urine was measured by the citrate lyase method (Boehringer). The intra-assay variation was 1.8%. All measurements were performed using only one analytical kit. Concentrations of oxalate in urine was measured by an enzymatic colorimetric method after removal of ascorbate with sodium nitrite (Kasidas and Rose, 1987). The intra-assay variation was 4.4%. All measurements were performed with only one analytical kit. Plasma standard bicarbonate and pH were determined immediately after sampling using ABL 520 (Radiometer; Siggaard-Andersen, 1974). Urine pH was measured anaerobically at 37°C immediately after sampling using a pH meter (Radiometer PHM 93). Concentrations of phosphate and creatinine were determined by autoanalyzer methodology (Technicon RA 1000). All measurements were performed in duplicate, and estimates of analytical accuracy were obtained by analysis of an aqueous standard solution with each batch of samples showing a coefficient of variation of less than 2.4% unless stated otherwise.

Estimates of the risk of crystallization in urine

The risk of calcium phosphate and calcium oxalate crystallization in urine were estimated by means of the AP(CaP)-index and the AP(CaOx)-index (Tiselius, 1984, 1985, 1986, 1991):

\[
\text{AP(CaP)-index} = 6.1 \times 10^{-3} \times n_{\text{Ca}}^{1.07} \times n_{\text{Pi}}^{0.7} \times \left(\text{pH} - 4.5\right)^{6.8} \times n_{\text{Ci}}^{-0.2} \times V^{-1.31}
\]

\[
\text{AP(CaOx)-index} = 8.8 \times n_{\text{Ca}}^{0.84} \times n_{\text{Ox}} \times n_{\text{Mg}}^{-0.12} \times n_{\text{Ci}}^{-0.22} \times V^{-1.03}
\]

where rates of renal excretion of calcium (\(n_{\text{Ca}} \)), total phosphate (\(n_{\text{Pi}} \)), citrate (\(n_{\text{Ci}} \)), magnesium (\(n_{\text{Mg}} \)) and oxalate (\(n_{\text{Ox}} \)) are expressed in mmol per hour, and urine flow (\(V \)) in liters per hour.

It has been shown by Tiselius (1984, 1991) that the AP(CaP)-index and the AP(CaOx)-index correspond to the ion-activity products of calcium phosphate (AP\(_{\text{CaP}}\)) and calcium oxalate (AP\(_{\text{CaOx}}\)) (Werness et al., 1985), respectively, as follows:

\[
\text{AP}_{\text{CaP}} \approx \text{AP(CaP)-index} \times 10^{-13}
\]

\[
\text{AP}_{\text{CaOx}} \approx \text{AP(CaOx)-index} \times 10^{-8}
\]

AP(CaP)-index and AP(CaOx)-index, therefore, represent estimates of the state of supersaturation with respect to calcium phosphate and calcium oxalate, respectively. From the AP(CaP)-index the ion-activity products of octacalcium phosphate (AP\(_{\text{OCP}}\)) and hydroxyapatite (AP\(_{\text{HAP}}\)) can be estimated (Tiselius, 1984):

- \(\text{log AP}_{\text{OCP}} = \left(1/0.021 \times (\text{AP(CaP)-index})^{0.025}\right) + 0.5 \)
- \(\text{log AP}_{\text{HAP}} = 1/0.0185 \times (\text{AP(CaP)-index})^{0.035} \)

The risk of brushite crystallization in one-hour urine samples was also estimated using the AP(Bru)-index (Tiselius, 1984):

\[
\text{AP(Bru)-index} = 4.7 \times 10^{-7} \times n_{\text{Ca}}^{1.07} \times n_{\text{Pi}}^{0.82} \times \left(\text{pH} - 6.8\right)^{6.8} \times n_{\text{Ci}}^{-0.46} \times V^{-1.33}
\]

\(^1\)The dietary content of oxalate was estimated from Kasidas (1980).
Acute acid loading and calcium stone risk

Table 1. Effects of acute NH₄Cl loading on blood and urine acid-base status. Values are means (standard error of mean, SEM).

<table>
<thead>
<tr>
<th>Hours after NH₄Cl loading</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH(aB)</td>
<td>7.40 (0.004)</td>
<td>7.35 (0.007)</td>
<td>7.33 (0.006)</td>
<td>7.34 (0.007)</td>
<td>7.35 (0.008)</td>
<td>7.37 (0.007)</td>
</tr>
<tr>
<td>cHCO₃(aB) mmol/l</td>
<td>25.0 (0.5)a</td>
<td>21.1 (0.6)</td>
<td>20.1 (0.4)</td>
<td>20.8 (0.4)</td>
<td>21.0 (0.4)</td>
<td>21.3 (0.4)</td>
</tr>
<tr>
<td>pH(U)</td>
<td>5.7 (0.1)b</td>
<td>5.6 (0.1)</td>
<td>5.2 (0.1)</td>
<td>5.0 (0.1)</td>
<td>4.9 (0.05)</td>
<td>4.8 (0.04)</td>
</tr>
</tbody>
</table>

*aValues at the end of control period.

bP(H(U) was measured in one freshly voided urine sample during the control period.

Table 2. Effects of acute NH₄Cl loading on urine composition. Values are means (SEM).

<table>
<thead>
<tr>
<th>Hours after NH₄Cl loading</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>tCa(U) mmol/hour</td>
<td>0.2 (0.06)</td>
<td>0.2 (0.03)</td>
<td>0.5 (0.05)</td>
<td>0.5 (0.04)</td>
<td>0.4 (0.04)</td>
<td>0.3 (0.04)</td>
</tr>
<tr>
<td>tMg(U) mmol/hour</td>
<td>0.2 (0.007)</td>
<td>0.2 (0.04)</td>
<td>0.5 (0.05)</td>
<td>0.4 (0.05)</td>
<td>0.3 (0.05)</td>
<td>0.3 (0.04)</td>
</tr>
<tr>
<td>tP(U) mmol/hour</td>
<td>0.4 (0.1)</td>
<td>0.7 (0.1)</td>
<td>0.8 (0.1)</td>
<td>0.7 (0.1)</td>
<td>0.9 (0.2)</td>
<td>1.1 (0.2)</td>
</tr>
<tr>
<td>tCl(U) mmol/hour</td>
<td>0.1 (0.03)</td>
<td>0.06 (0.01)</td>
<td>0.04 (0.01)</td>
<td>0.04 (0.01)</td>
<td>0.05 (0.01)</td>
<td>0.05 (0.01)</td>
</tr>
<tr>
<td>tOx(U) µmol/hour</td>
<td>2.5 (1.0)</td>
<td>1.6 (0.3)</td>
<td>7.7 (1.6)</td>
<td>11.4 (2.1)</td>
<td>15.8 (2.3)</td>
<td>12.0 (2.7)</td>
</tr>
</tbody>
</table>

*aValues for control period.

Table 3. Crystallization risk: Effects of acute NH₄Cl loading on risk of calcium phosphate [AP(CaP)-index], octacalcium phosphate [AP(CapoP)], hydroxyapatite [AP(HAP)], brushite [AP(Bru)-index] and calcium oxalate [AP(Caox)-index] crystallization. The risk indices have been calculated according to Tiselius (1984, 1991). Values are means (SEM).

<table>
<thead>
<tr>
<th>Hours after NH₄Cl loading</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP(CaP)-index</td>
<td>0.8 (0.4)</td>
<td>0.08 (0.04)</td>
<td>0.06 (0.003)</td>
<td>0.004 (0.002)</td>
<td>0.0002 (0.0001)</td>
<td>0.0001 (0)</td>
</tr>
<tr>
<td>AP(Bru)-index</td>
<td>1.9 (0.5)</td>
<td>1.48 (0.4)</td>
<td>2.0 (0.4)</td>
<td>1.6 (0.3)</td>
<td>1.0 (0.2)</td>
<td>1.0 (0.2)</td>
</tr>
<tr>
<td>-log AP(CapoP)</td>
<td>52 (2)</td>
<td>53 (1)</td>
<td>55 (1)</td>
<td>58 (1)</td>
<td>60 (2)</td>
<td>61 (2)</td>
</tr>
<tr>
<td>-log AP(HAP)</td>
<td>61 (2)</td>
<td>63 (2)</td>
<td>66 (2)</td>
<td>72 (3)</td>
<td>76 (3)</td>
<td>79 (3)</td>
</tr>
<tr>
<td>AP(Caox)-index</td>
<td>0.2 (0.1)</td>
<td>0.1 (0.02)</td>
<td>0.9 (0.2)</td>
<td>1.4 (0.3)</td>
<td>1.7 (0.3)</td>
<td>1.0 (0.2)</td>
</tr>
</tbody>
</table>

*aValues for control period

Statistical analysis

Measurements are given as mean values ± standard error of the mean (SEM). Statistical analysis was performed using one-way analysis of variance and F-test. P < 0.05 was considered significant.

The study was approved by the local scientific ethics committee of the counties of Vejle and Funen, and informed consent was obtained from each individual.

Results

Urine flow

Mean urine flow per hour (\bar{V}) was 0.10 ± 0.02 liters in the control period, and 0.13 ± 0.02 liters during NH₄Cl-loading ($p < 0.05$).

Systemic and urine acid base status

Plasma standard bicarbonate ($cHCO₃(aB)$) and blood pH ($pH(aB)$) decreased in all subjects in response
to acid loading compared to the control period (p < 0.0001; Table 1). Urine pH [pH(U)] values decreased significantly from the values observed during the control period (p < 0.01; Table 1).

Urine composition

Renal excretion of calcium [\(\text{Ca}^{2+}(U) \)] increased during \(\text{NH}_4\text{Cl} \)-loading compared to the control period (p < 0.01; Table 2). Renal excretion of magnesium [\(\text{Mg}^{2+}(U) \)] rose slightly but insignificantly (p > 0.1; Table 2). Renal excretion of total phosphate [\(\text{P}^{3+}(U) \)] rose significantly in response to acute acid loading (p < 0.01), as did renal excretion of oxalate [\(\text{Ox}(U) \)] (p < 0.0001; Table 2). Citrate excretion [\(\text{Ci}(U) \)] decreased to very low values during \(\text{NH}_4\text{Cl} \)-loading compared to the control period (p < 0.0005; Table 2). The molar calcium/citrate ratio (Ca/Ci-ratio), therefore, rose significantly during acid loading (p < 0.0001).

Risk of calcium phosphate crystallization

AP(CaP)-index decreased markedly during \(\text{NH}_4\text{Cl} \)-loading compared to the control period (p < 0.01; Table 3). The decrease was largely determined by the fall in pH(U). In consequence of the decrease in AP(CaP)-index, AP(CaOx) and AP(HAP) both decreased markedly during acid loading (p < 0.01), whereas the AP(Bru)-index did not change significantly (Table 3). All index-values were, however, far below the corresponding formation products (Tiselius 1984, 1986).

Risk of calcium oxalate crystallization

AP(CaOx)-index increased significantly during \(\text{NH}_4\text{Cl} \)-loading compared to the control period (p < 0.0001; Table 3).

Discussion

Renal calcium excretion increased and renal citrate excretion decreased in response to acute acid loading in each subject. These findings are in accordance with previous observations, and the mechanisms of hypercalciuria and hypocitraturia in response to acid loading have been discussed previously (Lemann et al., 1967, 1979; Lennon and Piering, 1970; Coe et al., 1975; Adams et al., 1979; Simpson, 1964). Consequently the Ca/Ci-ratio in urine rose significantly, which theoretically would be expected to enhance the crystallization of both calcium phosphate and calcium oxalate (Tiselius et al., 1993). The increase in urinary phosphate excretion during acid loading, probably a result of mobilization of phosphorus from bone and intracellular stores (Coe et al., 1975), would also contribute to an increased risk of calcium phosphate crystallization. However, due to a fall in pH(U) during acid loading, the AP(CaP)-index decreased to very low values, indicating a decreased risk of calcium phosphate crystallization.

As expected, the risk-indices of octacalcium phosphate and hydroxyapatite crystallization also decreased markedly in response to acid loading, since these are the calcium phosphate crystals most frequently encountered in alkaline urine (Tiselius, 1984). The calcium phos-
Acute acid loading and calcium stone risk

The conflicting data in the literature on the effect of dietary protein on renal oxalate excretion are difficult to explain (Robertson et al., 1979a, b; Brocksis et al., 1982; Fellström et al., 1983; Urvetsky et al., 1987; Breslau et al., 1988; Marangella et al., 1989; Trinchieri et al., 1991; Holmes et al., 1993). However, if acid loading influences renal oxalate excretion as indicated by the present study, the differences could be explained by differences in acid (base) content of the different diets. It should be emphasized, however, that renal stone patients may react differently to an acid load than healthy men, and that the acid load achieved by NH₄Cl-loading probably is not identical to the acid load represented by the increased endogenous acid production resulting from protein catabolism. Also, 1.9 mmol NH₄Cl per kg body mass is a rather large dose compared to physiological conditions.

Other factors than supersaturation are involved in calcium stone formation, and these factors may vary differently in response to acid loading, and thus modulate the stone promoting effect. It has been shown that a high cCa(U) as well as pH(U) < 7 promotes self-aggregation of Tamm-Horsfall glycoprotein (THP) (Hess et al., 1991). The effects of acid loading on urine composition [increased cCa(U), decreased cCl(U) and low pH(U)], therefore, probably would increase the risk of THP-self-aggregation, which would reduce inhibition of calcium oxalate monohydrate crystal aggregation, and increase the risk of stone formation (Hess et al., 1991). This further emphasizes that acid loading probably plays a role in the pathophysiology of calcium oxalate stone formation.

Acknowledgements

This study was supported by "Fonden af 1870" and "Carla Cornelia Storch Mollers fond". Mrs. Karin Hansen is thanked for skilful technical assistance.

References

Adams ND, Gray RW, Lemann J (1979). The calcium of increased fixed acid production in humans: Evidence against a role for parathyroid hormone and 1,25(OH)₂-vitamin D. Calcif Tissue Int 28, 233-238.

P.J. Oster et al.

Discussion with Reviewers

B. Hess: Do calcium stone formers behave exactly as healthy men?
Authors: Possible not. We have shown that the calcui­

B. Hess: How can we be sure that acid loading by am­

B. Hess: What is the kind of load caused by NH4Cl loading from that resulting from catabolism of ingested protein: (1) As far as loading with native protein is concerned, the consequence of protein loading will include release of free amino acids, subsequent de­

B. Hess: What is the nature of urine with respect to uric acid. The state of ionization of ingested proteins (determined by "titration" with other food constituents) will influence the ratio between amounts of metabolizable and non-metabolizable acid liberated. (4) Dietary loads of protein containing neutral (unoxidized) sulfur will result in endogenous production of (non-metabolizable) sulfuric acid. Surprising­ly, however, methionine-loading in the young rat does not lead to "sulfuric acidosis" but rather to accumulation of metabolizable acids in blood (Wamberg et al., 1987). Any difference between NH4Cl and protein loading with respect to stone formation remains to be elucidated. We have implied a mechanism involving the extracellular pH.

W.G. Robertson: Have you measured the supersatura­

W.G. Robertson: If acidification is the cause of the mild hyperoxaluria observed in this study, why did urin­

68
Acute acid loading and calcium stone risk

Authors: One explanation to the conflicting data in the literature regarding the effect of dietary protein on renal oxalate excretion may be variations of the protein composition with respect to amino acids from which oxalate may be derived (phenylalanine, tyrosine and tryptophan). Also, it has been shown that the apparent endogenous acid production in normal subjects on self-selected diets may differ by nearly ten-fold, with a range of approximately 20 to 120 mmol/day (Kurtz et al., 1983). If an increased load of non-carbonic acid influences renal oxalate excretion as suggested by our study, differences in the rate of endogenous acid production resulting from different diets might explain differences in renal oxalate excretion.

H.-G. Tiselius: The urine samples in this study are obviously collected in bottles without any preservative. There might, however, be a risk of forming crystals of calcium oxalate in the samples. Did you take any precautions to avoid analytical errors from such a mechanism?

Authors: We agree with your concern. Throughout the study urine was collected in bottles without preservative. During ammonium chloride loading, the urine was actually acidified, pH(U) falling to below 5.0, which means that more oxalate may have been available for measurement.

H.-G. Tiselius: The data in Table 2 show that whereas the excretion of Ca, Mg, P and Cl extrapolated to 24 hours period is normal, that of Ox is low (2.5 x 24 = 0.06 μmol). After 4 hours, the corresponding excretion would be 0.38 μmol. How do you explain the low oxalate excretion during the 2-hour control period and what is your experience of the effects of a fasting period on urinary oxalate?

P.O. Schwille: The diet antecedent to acid loading was poor in calcium (300 mg/day) but somewhat rich in carbohydrates (almost 50%), why?

Authors: This diet was chosen because it was the only fixed diet available in our laboratory at that time. We do not believe that the calcium content of the diet influenced oxalate absorption significantly in this study, since the subjects fasted 8 hours prior to the acid loads.

P.O. Schwille: What is the relationship between calculated risk and observed crystallization, and was the latter evaluated by appropriate means (particle analysis, microscopy etc.)?

Authors: We did not examine the urine samples for crystalluria. The used risk-indices have been shown to give rather accurate information on supersaturation of the different calcium salts. Thus, a rise in AP(CaOx)-index would be expected to increase CaOx-crystalluria.

Additional References

