The BRITE Space Telescope: High-Precision Photometry of the Brightest Stars

Norman Deschamps
C. Cordell Grant, Daniel G. Foisy, Robert E. Zee, Space Flight Laboratory
University of Toronto Institute for Aerospace Studies
Anthony F. J. Moffat, Université de Montréal
Werner W. Weiss, University Vienna
The BRITE Constellation

- 4 Satellites built on SFL’s 20x20x20cm Generic Nanosatellite Bus (GNB)
- Launch of the first satellites in 2008
- BRITE-Constellation’s goal: To study the most luminous stars using precise differential photometry
- Observe stellar oscillations with periods of days to weeks
BRITE Photometer

- 14 Mpixel CMOS detector
- 5 lens elements
- External aperture stop optics design
- 24° field of view
- 70 mm focal length
- 30 mm aperture
- Will use a red or blue nearly square filter
Variability of Luminous Stars

- Magnetic field variations
- Density variations
- Internal rotation
- Constrain Surface Convection models
Driving Requirements for BRITE

<table>
<thead>
<tr>
<th>Mission Requirement</th>
<th>Minimum Scientific Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual Magnitude Limit</td>
<td>+3.5</td>
</tr>
<tr>
<td>Differential Photometry Error per Observation</td>
<td>< 0.1%</td>
</tr>
<tr>
<td>Error of Amplitude Spectrum</td>
<td>< 2×10^{-5} (20 ppm)</td>
</tr>
<tr>
<td>Length of Observational Campaign</td>
<td>< 100 days</td>
</tr>
<tr>
<td>Duty Cycle of Observations</td>
<td>< 15%</td>
</tr>
<tr>
<td>Duration of the Mission</td>
<td>> 2 years</td>
</tr>
<tr>
<td>Potential Observational Regions</td>
<td>All parts of the sky with exclusion zones around the Sun, Earth, & Moon</td>
</tr>
</tbody>
</table>
BRITE Constellation

- Four satellites – two using a red filter, two using a blue filter
- Observe each star with two different colour filters without moving parts
- Increase the duty cycle of observation
- Increase number of stars of observed
Generic Nanosatellite Bus

- 5 kg mass
- 5.6 W power nominal
- Three orthogonal reaction wheels
- S-Band downlink: 32 kbps
- UHF uplink: 4 kbps
- Three ARM7 processors
- Dual tray design
- Central volume for payload
Photometer Design: Optics

- External stop design
- Different designs for red and blue filters
Photometer Design: Structure
Photometer Design: CMOS Detector

IBIS4-14000 (Cypress)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Typical Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imager size</td>
<td>35x24 mm</td>
</tr>
<tr>
<td># of pixels</td>
<td>4560x3048</td>
</tr>
<tr>
<td>Pixel size</td>
<td>8x8 μm²</td>
</tr>
<tr>
<td>Full well charge</td>
<td>65000 e⁻</td>
</tr>
<tr>
<td>Dark current</td>
<td>223 e⁻/s</td>
</tr>
<tr>
<td>Power</td>
<td>< 176 mW</td>
</tr>
</tbody>
</table>
Photometer Design: Electronics

- 32 MB SDRAM
- 16.6 cm A/D Converters (4)
- IBIS CMOS Imager

5 cm
Conclusion

- BRITE Constellation is the first nanosatellite constellation astronomy mission
- A custom built CMOS based photometer on BRITE will provide the combination of low power and high precision required for the mission
- Complements the MOST mission by extending our knowledge of the fundamental parameters of luminous stars.
Sun Stare Analysis

- In FEM detector is isothermal to a few degrees
Sun Stare Analysis

• Assuming a uniform detector temperature:

\[T_{CHIP} = \left[T_s^4 + \frac{\pi D_A^2 G_S C_L C_F \alpha}{4\sigma (\varepsilon_D A_D + \varepsilon_P A_P)} \right]^{1/4} \]

• Average temperature = 54°C (Steady state)
 - Agrees with FEM
 - No door required
Availability of Stars

24x19.2° Rectangular Field of View

16x10° Rectangular Field of View

Number of Stars

16 14 12 10 8 6 4 2 0
BRITE Target Stars

+3.5 Stars inside 24 degree FOV
Stellar Life Cycle
BRITE Control

boundary window

stability

repeatability zone