Utah State University DigitalCommons@USU

Undergraduate Honors Capstone Projects

Honors Program

5-2013

Canoebis

Mitchel Robert Dabling Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/honors

Part of the Civil and Environmental Engineering Commons

Recommended Citation

Dabling, Mitchel Robert, "Canoebis" (2013). *Undergraduate Honors Capstone Projects*. 606. https://digitalcommons.usu.edu/honors/606

This Thesis is brought to you for free and open access by the Honors Program at DigitalCommons@USU. It has been accepted for inclusion in Undergraduate Honors Capstone Projects by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

Canoebis

by

Mitchel Robert Dabling

Thesis submitted in partial fulfillment of the requirements for the degree

of

HONORS IN UNIVERSITY STUDIES WITH DEPARTMENTAL HONORS

in

Civil and Environmental Engineering in the Department of Engineering

Approved:

Thesis/Project Advisor Dr. Richard Peralta **Departmental Honors Advisor** Dr. V. Dean Adams

Director of Honors Program Dr. Nicholas Morrison

UTAH STATE UNIVERSITY Logan, UT

Spring 2013

Concrete Canoe Design Report 2013

Utah State (Iniversity Canoebis

Table of Contents

Sections

Executive Summary	ii
Project Management	1
Organization Chart	2
Hull Design and Structural Analysis	3-4
Development and Testing	5-6
Construction	7-8
Project Schedule	9
Design Drawing	10

List of Figures

Figure 1: Distribution of team hours	. 1
Figure 2: Distribution of finances	. 1
Figure 3: Detail of gunwale and tension cables	. 3
Figure 4: Detailed analysis shear diagram	4
Figure 5: Gradation vs. modified fuller curve	5
Figure 6: Mixing cementious material	5
Figure 7: Compressive strength test	6
Figure 8: Form construction	. 7
Figure 9: Detail of inlay	7
Figure 10: Wooden cross-sections	. 7
Figure 11: Canoebis team photo	8
Figure 12: Construction of practice canoe	8
Figure 13: Detail of pulley tension system	8
Figure 14: Detail of lever arm	8

List of Tables

Table 1: Canoebis' concrete properties	ii
Table 2: Canoebis' specifications	ii
Table 3: Key milestones	1
Table 4: Comparison of canoe specifications	3
Table 5: Loading cases investigated	4
Table 6: Maximum stresses	4
Table 7: Comparison of concrete properties	6

List of Appendices

Appendix A: References	4-1
Appendix B: Mixture Proportions	B-1
Appendix C: Bill of Materials	C-1

Executive Summary

Egyptian mythology is full of legend and mystery. Ra, the Chief God of Ancient Egypt, used a mysterious canoe, named Meseket, to cross the underworld at night (Ions, 1983). Our fabricated legend begins with Aken, Ra's loyal ferryman. When Aken accidentally broke the canoe Meseket, he was left without a vessel to ferry Ra. Without proper materials to fashion another wooden boat, he asked Anubis, the god of embalming for assistance. Together they built a new canoe out of concrete using raw materials from the Egyptian landscape. The 2013 Utah State University Concrete Canoe Team has endeavored to recreate this concrete canoe of legend.

The Agricultural College of Utah was established in Logan, UT in 1888. As the programs offered by the school grew in diversity, the name was changed to Utah State University (USU) in 1957. USU is Utah's land grant institution and is known throughout the world for its groundbreaking research in agriculture, engineering, and science. The university enrolls over 28,000 students, offers 311 degrees, and has the second longest standing undergraduate research program in the country.

The Concrete Canoe Team has a longstanding tradition at USU, initially competing at the regional level in the 1980's. USU is a member of the Rocky Mountain Student Conference. After placing first in the regional competition in 2011 with Tribute, the team made their debut appearance at the National Concrete Canoe Competition (NCCC). After placing 16th at the NCCC, the USU team returned to the national competition with Old Ephraim in 2012. Old Ephraim was the second lightest canoe at the NCCC in 2012 at 108 lbs., and the team placed 18th.

This year, the team is proud to bring *Canoebis* to the Rocky Mountain Student Conference. The result of hours of preparation by the 2013 team, *Canoebis* is the best concrete canoe ever produced at Utah State.

The team focused on developing construction techniques that were labor and time efficient while reducing costs and the project's ecological footprint. The concrete mix used to build *Canoebis* was developed targeting a high strength/weight ratio. This allowed the team to build another extremely lightweight canoe, weighing only 127 lbs. (see canoe specifications in Table 2).

In addition to the structural mix, two separate finishing mixes were applied to *Canoebis* to fill voids and remove imperfections (see concrete properties in table 1).

Table 1:	Canoebis'	concrete	properties
----------	-----------	----------	------------

Concrete Mix:	Structural Mix (28-day)	Finishing Mix A (14-day)	Finishing Mix B (14-day)
Unit Weight (Wet)	53.2 pcf	74.8 pcf	74.4 pcf
Unit Weight (Dry)	46.7 pcf	65.6 pcf	67.2 pcf
Tensile Strength	270 psi	480 psi	470 psi
Compressive Strength	1,870 psi	2090 psi	2020 psi
Composite Flexural Strength	4,610 psi	N/A	N/A

Table 2: Canoebis' specifications

Design Specifications			
Weight	124 lbs		
Length	18' 6"		
Max. Width	2' 10"		
Hull Thickness	0.5"		
Concrete Color	Light Brown		
Stain Color	Dark Brown and Blue		
Reinforcement and Composite Details			
Passive Reinforcement	Fiberglass Mesh		
Active Reinforcement	Pre-stressed 1/16" steel cable		

In addition to the mix design, the team maximize the stability strove to and maneuverability of Canoebis. This is evident in the optimized hull shape. Based on the Wenonah Mixed Cruiser, the world's most popular racing canoe, the design allows a canoe be extremely stable to yet maneuverable. This will enable the team to gain the legendary status Canoebis deserves.

Project Management

In late April 2012, while preparing for the 2012 NCCC, a team captain and two cocaptains were elected to manage the *Canoebis* team, and the canoe theme was chosen. Completing this process early allowed the captains and returning team members to attend the 2012 NCCC with the 2013 canoe in mind.

In August, the captains met to outline the project schedule and establish the critical path. A duration window was planned for each project task and summary objective. Milestones were established to ensure small adjustments to individual task deadlines did not effect the final completion date. The critical path was defined as the activities and deadlines that had the largest influence on the project completion date. The schedule was acutely adjusted as needed throughout the project, but over 80% of all tasks were completed by the original deadlines (see Table 3 for key milestones and the Project Schedule on pg. 9 for all tasks and the critical path).

Table 3: Key mile	stones	
Milestone	Delay	Reason
Mold Completion	None	Proper scheduling
Cast Practice Canoe	None	Proper scheduling
Practice Canoe Float Test	l week	Additional finishing time required
Final Mix Selection	5 days	Additional testing
Cast Final Canoe	None	Proper scheduling

The three captains were given separate responsibilities that covered all aspects of the competition: paddling/general management, design, and construction. The captains then organized three sub-teams (see organization chart on pg. 2). All members were involved with key tasks (casting day, form construction, etc). This allowed the 26-member team (8 veterans, 18 new recruits) to remain focused on the entire project.

Clear and efficient team leadership and effective time management allowed the team to build the best canoe ever from USU. The team has dedicated over 2,600 person-hours to the project and a breakdown of hours is shown in Figure 1.

Figure 1: Distribution of team hours

Quality control was extremely important throughout the project, as it not only affects the final product, but the overall budget. The captains assigned individuals to peer-review calculations and measurements for the mix design, analysis, and mold construction. This attention to detail also provided a teaching opportunity for the experienced members to train new members of the team.

The budget for *Canoebis* was set at \$17,500. The largest percentage of funds was allocated to travel and registration for the 2013 NCCC. Reusing materials and equipment for the mold construction and canoe finishing, as well as seeking donations for admixtures, aggregates, and cementious materials also lowered the overall project cost. A cost breakdown is shown in Figure 2.

Safety was a top priority during all aspects of the project. Proper personal protection equipment was provided to team members at all times, and instructional safety sessions were held before construction and paddling activities. Detailed preparation allowed *Canoebis* to be completed without serious injury or safety violations.

Canoebis Utah State University つびつわ:明単道行の家員: 70 R 1:0: All 2 20 -7#: Organization Chart Paddling Team Mitch Dabling Alex Souvall Michael Budge Team Captain Anna Newman Nikki Tatton Jacob Crump Shantell Ostler Mark Stenguist Silvia Smith McKenna Lee Paddling Lead/General Trained and practiced for sprint Management and endurance races Construction Team Tyler Hansen Matt Gillespie Alex Souvall Forrest Kolle Anna Newman Tyson Alder Jacob Crump Nate Decker Mark Stenguist Co-Captain Robert Carpenter McKenna Lee **Gilbert Nichols** Michael Budge Johnny Hansen Nikki Tatton Shantell Ostler Mitch Dabling Silvia Smith Allison Albert Landon Kinney Kaitlyn Anderson Nate Fox Parker McGarvery Victor Torres Nate Lowe Ryan Warren Tested and developed concrete mix **Construction Lead** and constructed canoe Design Team Allison Albert Kaitlyn Anderson

Landon Kinney Co-Captain Nate Fox Victor Torres Ryan Warren Shantell Ostler Designed overall aesthetics of canoe, **Design Lead** cross-section, display, and stands

7081:0:111

2

Design Report 2013

Parker McGarvery

Nate Lowe

Anna Newman

Hull Design

Due to the fact that the slalom event was omitted from the 2012 competition, last years *Old Ephraim* canoe design intentionally sacrificed maneuverability in favor of a streamlined hull. With the slalom reinstated for the 2013 competition, *Canoebis* is designed to maintain the speed of *Old Ephraim* while adding increased maneuverability.

During early season paddling practice sessions, the team had access to a Wenonah Jensen V-1 Pro professional racing canoe. The canoe handled extremely well, and *Canoebis* is loosely based on the design of the Wenonah model, with a few modifications (see Design Drawing, pg. 10 for detailed canoe dimensions).

The V-1 Pro was designed to obtain high speeds while maintaining controllability (Wenonah, 2012). Wenonah's design only accommodates two paddlers; Canoebis features a deeper hull and increased length to account for the larger water displacement that occurs with four occupants during the co-ed sprint race. The bow protrudes higher out of the water than the stern to minimize water from the bow wave entering the canoe at racing speeds. A hard chine (steep angle of the bottom of the hull) near the bow and stern maintains stability, while a soft chine in the center of the canoe provides agility and decreases the wetted area. Design information for Canoebis can be found in Table 4.

Table 4: Comparison of canoe specifications

Specification	Old Ephraim	Canoebis
Length	18' 0"	18' 6"
Bow Depth	1' 2"	1' 6"
Stern Depth	1' 2"	1' 0.2"
Center Depth	1' 2"	1' 0.4"
Max. Width	2' 4"	2' 10"
Weight	108 lbs.	127 lbs.
Prismatic Coefficient	0.842	0.32
Length/Beam Ratio	7.7:1	6.5:1

Figure 3: Detail of gunwale and tension cables

The hull of Canoebis is ¹/₂-inch thick throughout to minimize weight. The gunwale (upper most line on either side of the hull) is

thicker, measuring 1-inch thick by 1.5-inches deep, to reduce the maximum tensile forces. Two pre-tensioned steel cables run through the center of the gunwale to maintain compression in the concrete during racing conditions (see Fig. 3). This gunwale design directs tensional forces away from the centerline of the hull to prevent fracture.

The effect of a ship's width on top speed is related to the length. Generally, increased beam width (the maximum width of a vessel) results in greater stability. If complimented with a long hull length and narrow bow/stern, high top speeds can be maintained. The ideal length to beam ratio is from 5.6:1 to 6.6:1 (Stevens, 1889). *Canoebis*' length-to-beam ratio is 6.5:1, which produces a very stable, yet quick, design.

Structural Analysis

The chosen hull design was evaluated using two-dimensional structural analysis techniques to determine the maximum stresses that Canoebis would experience. Two analysis methods were used. The first was a simplified analysis that determined the loading scenario that generated the largest maximum moment (and in turn the largest stresses) on the canoe. The loading cases examined were: transportation, two women paddlers, two men paddlers, and four total paddlers for the co-ed sprint. Transportation of the canoe was determined to create negligible stress as the canoe is fully supported along its length. All loading cases included a factor of safety

Canoebis 如形で完了。:前計多加加加一個人日共二丁四日的時間通過不可完了。

applied to the paddler's weights (200 lbs. for men, 150 lbs. for women) to account for dynamic loading while paddling. The critical loading case was determined to be two men in the canoe and generated a maximum moment of 423 lb-ft. (see Table 5).

Table 5: Loading cases investigated

Loading Case	Max. Moment
Two Men	423 lb-ft.
Two Women	317 lb-ft.
Two Men and Two Women (Co-Ed)	342 lb-ft.
Transportation	Negligible

Each simplified loading case was analyzed by applying point loads for each paddler on the top of a beam the same length as the canoe. A uniformly distributed load along the bottom length of the beam represented the buoyancy force of the water on the canoe.

The maximum tensile and compressive stresses were then calculated using the critical two men loading condition. The analysis indicated the tensile requirements of the concrete would far exceed the required compressive strength. This was consistent with previous team's experience, and the construction team created a concrete mix that exceeded the critical tensile loading strength requirements.

After the critical loading case was determined, and estimates of the maximum stresses were obtained using a simple analysis, a more detailed analysis was completed. For this model, the buoyancy force of the water was applied as a distributed variable load. The area of water displaced by the canoe and two men load case was calculated every six inches along Canoebis' hull. These area values were then multiplied by the unit weight of water to create uniform distributed loads at 6-inch intervals along the bottom of the hull. Point loads at appropriate racing positions were applied as representations of the paddlers, and a uniform distributed load was placed to represent the weight of the canoe.

Shear force at each interval was then calculated (See Fig. 4). By analyzing the shear diagram, the locations of extreme moment were located where the shear force equaled zero. The location of maximum moment was found to be 9.54 ft. from the bow of *Canoebis*. The moment at this location was calculated and used to obtain the maximum stress on a cross-section at that location based on flexure.

The tension cables in the gunwale were treated as discrete forces at the neutral axis combined with a moment to account for their eccentricity. While the construction design for Canoebis specified a jacking tension of 100 lbs to be applied to each cable, the analysis only modeled each cable as a 50 lb load to account for short and long-term losses. The moment created by the detailed loading case was then applied to the cross-section, and the maximum tensile stress at the top of the gunwale and maximum compression stress at the bottom of the gunwale were calculated.

The detailed analysis results, compared with the measured tensile and compressive strength of the concrete used for *Canoebis*, are presented in Table 6. The concrete used in *Canoebis* exceeds the analysis.

Table 6: Maximum stresses

Stress	Canoebis' Concrete	Required
Max. Tensile	267 psi	180 psi
Max. Compressive	1,872 psi	95 psi

1770名1:10:1913 225 A ## 20日日日日日日1:19世紀770名1:00 4 Design Report 2013

Development and Testing

The mix design used for *Old Ephraim* was Utah State's most successful concrete to date. Because of the high strength/weight ratio and workability, it was chosen as the baseline for improvement. The primary goal for the new mix design was to develop a concrete that maintained a low unit weight. The team also pushed to create a stronger mix to cope with the projected increased maximum stresses from the new hull design. Secondary goals included improving the workability of the mix and maintaining sustainability.

Innovation

Early on in testing, new aggregates were integrated in the mix to increase compressive strength. Starting from the baseline mix, the K37 microspheres [specific gravity (SG) = 0.37; Crush Strength (CS) = 3,000 psi] were replaced with iM16K (SG = 0.46; CS = 16,500 psi) and iM30K (SG = 0.6; CS = 28,000 psi) glass bubbles (3M, 2008; 2010; 2013). This increased the average specific gravity of our microsphere aggregates by 52%, but because it increased the average compressive strength by 732%, the replacement was desirable.

Increased strength was also achieved by designing the aggregate proportions to match a modified version of the gradation curve for maximum density proposed by Fuller and Thompson (1906). An optimal gradation would minimize the voids between the aggregates, providing a more cohesive mix and greater strength. The aggregate proportions were initially adjusted according to the standard Fuller Curve. This provided a concrete mix that was too coarse to be used, so the team modified the Fuller Curve to compensate for finer aggregates. This produced a gradation that resulted in a very workable mix. This gradation increased the compressive strength by 37%, while only increasing the total aggregate weight by 6.4% compared to last year's mix. A comparative

graph between the gradations used for *Old Ephraim* and *Canoebis* against the modified Fuller curve is shown in Figure 5.

Improved concrete tensile capacity was obtained by adding fibrous material to the structural mix. Old Ephraim's two fiber sizes were 8 and 130 deniers. The team added two additional sizes of PVA fibers, 20 and 40 deniers, to provide a greater range. Because fibers of similar size tend to clump together, this range allowed the concrete to have more fibers without sacrificing workability. Tensile strength was increased by 50% over last year's mix.

Striving to minimize voids in the aggregate gradation resulted in a stiffer, denser concrete mix. This made it difficult to entrain air using the standard method of mixing. A new mixing

Figure 6: Mixing cementious material

technique was used to reach the desired air content. First, the water, air entrainer. and other admixtures were added to the cementitious material and mixed high at speeds for several minutes (see Fig.

6). This long mixing time ensured air was thoroughly entrained in the slurry. The

Canoebis Utah State University

aggregates were then slowly added to the slurry during a constant mixing process. This method allowed the concrete to be very workable and achieve a zero-inch slump (ASTM C143, 2012c) with a 4.38% air content.

Adding admixtures further enhanced the workability of the mix. Admixtures were tested independently to determine the correct dosage for the overall mix. The team used a higher dosage of air entrainer compared to *Old Ephraim*'s concrete mix. This ensured the mix would obtain a high enough air content to achieve the desired unit weight. A high range water reducer and super-plasticizer were also added to retard the setting time and improve the workability of the concrete.

The team stored all aggregates at their saturated surface-dry (SSD) state to increase workability time and ensure a consistent mix. An aggregate at SSD has reached its absorption potential without excess water clinging to the surface, which means it will not contribute or absorb any free water to the mix (NPCA, 2010). First, the dry aggregates were premeasured into manageable batches. The amount of water required for aggregate absorption was calculated and thoroughly mixed into each batch. The individual batches were then sealed until ready to mix. Ensuring the aggregates were SSD prior to the final mixing meant that they would not absorb the water required by the cement. This helped maintain a consistent workability level throughout the casting process.

Sustainability

In an effort to keep our mix design sustainable, *Canoebis* was built using recycled aggregates, such as Poraver[©] and CW300 cenospheres. Poraver[©] uses crushed recycled glass to create their product. Cenospheres are created from a byproduct of burning coal. Both of these processes require no new raw materials and reduce the impact on landfills. The team also used fly ash, an industrial byproduct of combustion, as a main component of the cementitious material. The use of fly ash as a substitute for Portland cement increased the strength and workability of the mix while reducing the environmental impact of *Canoebis*. The production of Portland cement is a major contributor to worldwide CO_2 emissions (Mehta, 2004). By replacing Portland cement with fly ash at a 5:8 ash/cement ratio, the team used an available resource that would otherwise take up space in a landfill and reduced the use of a product with a large carbon footprint.

Test Results

Test cylinders were cast and tested according to ASTM standards (see Fig. 7) with

Figure 7: Compressive strength test

each new mix to help the team track improvements. These cylinders were used to calculate the compressive strength (ASTM C39. 2012a). tensile strength (ASTM C496.

2011), the unit weight, and air content. Test beams were cast to measure the composite flexural strength, using a modified third-point load test (ASTM C78, 2010). Over 15 mix designs were developed before the selection of a final structural mix for *Canoebis*. The final properties of the structural mix used in *Canoebis*, compared to the requirements found by analysis and *Old Ephraim*'s concrete properties are displayed in Table 7.

Table 7: Comparison of concrete properties

Property	Old Ephraim	Canoebis
Comp. Strength	1368 psi	1872 psi
Tensile Strength	178 psi	267 psi
Unit Weight	49.95 pcf	53.18 pcf
Air Content	8.86 %	4.38%

Construction

Canoebis' drastically different hull design presented many challenges to the construction team. Building upon past experience, the team was able to develop new techniques for building the mold, ensuring casting day efficiency, and maintaining tension on the steel cables in the gunwale throughout the curing process. These innovations allowed the construction of *Canoebis* to be quick and sustainable while increasing the quality of the final product.

Form Construction

The form for *Canoebis* was constructed by placing 6-inch thick pieces of low density Styrofoam between tin cross-sections, using a

Figure 8: Form construction

hotwire to cut the shape, and forming a male mold (see Fig. 8). Styrofoam was selected because it is inexpensive,

strong enough

to support the concrete, lightweight, and easy to shape. When the foam mold was complete, the team covered the foam in plaster to fill in

the seams and uneven spots. The

plaster was then sanded to a smooth finish.

A threedimensional inlay was carved using a Dremel[©] tool (see Fig. 9). This was a new technique for the team, as *Old Ephraim*'s inlay pieces were cast separate from the main body of the

Figure 9: Detail of inlay

canoe and attached during the finishing process. Carving the inlay directly into the form allowed the canoe and inlay to be cast simultaneously without a bonding layer. This resulted in a much stronger inlay for *Canoebis*.

To finish the mold, a Styropoxy^{\odot} layer was applied to the foam. This epoxy coat protected the form by ensuring water from the concrete didn't dissolve the plaster form. It also facilitates the removal of the form from the canoe after the concrete has cured.

Casting

In less than two hours, a group of 29 team members and volunteers cast *Canoebis*. All concrete materials were premeasured as individual batches prior to casting day to ensure efficiency and quality control.

> Figure 10: Wooden crosssections

for *Canoebis* was applied by hand in two even ¼-inch lifts. In accordance with the design, two steel cables with anchors spaced every three feet

The concrete

were placed in the gunwales and tensioned to 100 lbs. These cables were maintained in tension using a spring scale throughout the curing process. Fiberglass geo-fabric mesh was placed between the two concrete lifts as passive reinforcement. Wooden cross-sections were used to gauge the concrete thickness without damaging the cast concrete (see Fig. 10). After curing for 21 days, *Canoebis* was manually removed from the mold by cutting out the foam.

Finishing

After *Canoebis* was separated from the form the finishing process began. Multiple iterations of sanding and finishing mix application were used to fill all voids and remove imperfections. The final sanding

Canoebis Utah State University 的形で象別の常見:会:別計算を意識が一世人日共につびつわいり通道が示します:。

process used 2,000-grit sandpaper to create a polished look. Two coats of decorative concrete stain were applied. A high-gloss sealer was applied followed with further sanding, up to 5,000-grit, creating a smooth and polished finish. Figure 11 shows the final product and team at the 2013 Rocky Mountain Student Conference.

Figure 11: Canoebis team photo

Practice Canoe

Each year, the USU Concrete Canoe Team builds two canoes. The paddling team uses the first "practice canoe" during training.

Figure 12: Construction of practice canoe

Construction methods for this canoe followed the same pattern as the competition canoe (see Fig. 12). This allows the team to learn what processes and procedures to need be improved for the

final product. It also gives the opportunity for new members of the team to learn what is required for the construction process.

Innovation

During the construction of the practice canoe, it was apparent that a new method of maintaining tension in the gunwale cables was necessary. The cables relaxed during the curing process and the necessary tension was not being applied. As an innovative way to fix the problem a pulley/lever-arm tensioning

system was developed. The cables were stretched down one side of the canoe. guided through two pulleys, and positioned back down the other side of the mold

Figure 13: Detail of

pulley tension system

(see Fig. 13). Spacers were used to maintain the appropriate distance between the cables

Figure 14: Detail of lever

and the mold. At the other end of the canoe, the cables were connected to a wooden lever (see Fig. 14). This lever arm was connected to a spring scale

and anchored to the table. This system allowed for a constant, measurable, tension to be applied in the cable while *Canoebis* cured.

Sustainability

To make the construction process of sustainable items Canoebis many and materials were reused or recycled from previous years. The table that held the mold was built using recycled wood. Leftover aggregates from the construction of Old Ephraim were used in the concrete mix for this year's practice canoe. Concrete stain and sealant leftover from previous projects were used to save the cost of buying new stain, and decrease environmental impact. The foam used for the mold of the practice canoe was recycled to construct the stands and display. The reuse of these materials saved money and provided an opportunity to reduce the project waste.

081:0:111

Canoebis Project Schedule

1 Pro 2 1 3 1 4 Mix 5 5 6 1 7 1	oject start Recruiting Lab clean up and resurfacing	Mon 8/27/12	Finish Sat 10/13/12	Mon 8/27/12	Sat 10/13/12	F 5	з M T	W I F	2 2	W I W	1 F	3 3 IVI	1 99	1 3	- IVI - 1
2 3 4 Mix 5 (5 6 7	Recruiting Lab clean up and resurfacing	Mon 8/27/12													
3 i 4 Mix 5 5 6 [Lab clean up and resurfacing	NOT ONLY TE	Sat 9/1/12	Mon 8/27/12	Sat 9/1/12										
4 Mix 5 5 6 L 7 I		Sat 10/13/12	Sat 10/13/12	Sat 10/13/12	Sat 10/13/12			+							
5 : 6 7	x design	Wed 9/19/12	Sat 1/19/13	Wed 9/19/12	Thu 1/24/13		-								
6 7	Set mix design goals	Wed 9/19/12	Wed 9/19/12	Wed 9/19/12	Wed 9/19/12		-								
7 1	Develop initial mix design	Wed 9/19/12	Thu 9/27/12	Wed 9/19/12	Thu 9/27/12			_							
	Initial mix design and testing iterations	Sat 9/29/12	Sat 11/3/12	Sat 9/29/12	Sat 11/3/12										
8 1	Mix design ready for cance 1	Sat 11/3/12	Sat 11/3/12	Sat 11/3/12	Sat 11/3/12				•						
9 F	Final mix design and tesing iterations	Sat 12/8/12	Sat 1/19/13	Sat 12/8/12	Tue 1/22/13										
10 F	Final mix design ready	Sat 1/19/13	Sat 1/19/13	Thu 1/24/13	Thu 1/24/13								•		
11 Hul	ll design	Wed 9/12/12	Sat 12/29/12	Wed 9/12/12	Sat 12/29/12										
12	Research hull shapes	Wed 9/12/12	Mon 9/17/12	Wed 9/12/12	Mon 9/17/12		_								
13 /	AutoCAD model	Fri 9/21/12	Sat 10/20/12	Fri 9/21/12	Sat 10/20/12		_		_		_				
14	Adjust drawings if needed	Sat 12/15/12	Sat 12/29/12	Sat 12/15/12	Sat 12/29/12		-								
15 Ana	alysis	Wed 9/19/12	Fri 2/15/13	Wed 9/19/12	FH 2/22/13										
16	Determine loading scenarios	Tue 9/25/12	Sat 10/6/12	Wed 9/19/12	Sat 10/6/12										
17 (Complete preliminary analysis	Sat 10/13/12	Sat 10/20/12	Sat 10/13/12	Sat 10/20/12										
18	Complete detailed analysis for report	Sat 10/13/12	FI 2/15/13	Sat 10/13/12	Thu 12/22/13		_				_	-			
19 Cor	nstruction (canoe 1)	Sat 9/22/12	Sat 12/15/12	Sat 9/22/12	Sat 10/19/19										
20	Gather materials	Sat 9/22/12	Sat 10/13/12	Sat 9/22/12	Sat 10/13/12				-						
21	Form construction	Sat 11/20/12	Sat 11/3/12 Sat 11/10/12	Sat 11/2/12	Sat 11/10/12										
22	rinal preparations	Sat 11/3/12	Sat 11/10/12	Sat 11/10/12	Sat 11/10/12					•					
23	Curing day	Sat 11/10/12	Sat 12/1/12	Sat 11/10/12	Sat 12/1/12					*					
24	Rull from form	Sat 12/1/12	Sat 12/1/12	Sat 12/1/12	Sat 12/1/12						•				
25	Finishing (cape 1)	Thu 12/6/12	Sat 12/15/12	Thu 12/6/12	Thu 12/20/12						-	-			
26	Sanding/finishing mix	Sat 12/1/12	Sat 12/8/12	Thu 12/6/12	Sat 12/8/12						-				
2/	Staining/sealing	Sat 12/8/12	Sat 12/15/12	Sat 12/8/12	Thu 12/20/12						-				
28	Float test	Sat 12/15/12	Sat 12/15/12	Thu 12/20/12	Thu 12/20/12						•				
29	notruction (canos 2)	Sup 12/16/12	Sat 3/30/13	Thu 12/20/12	Wed 4/3/13							-			
30 000	Gather materials	Sun 12/16/12	Sat 1/5/13	Thu 12/20/12	Sat 12/29/12										
22	Form construction	Sat 1/5/13	Sat 1/19/13	Sat 1/5/13	Sat 1/19/13								×		
33	Final preparations	Sat 1/19/13	Sat 1/26/13	Sat 1/19/13	Sat 1/26/13								T		
34	Casting day	Sat 1/26/13	Sat 1/26/13	Sat 1/26/13	Sat 1/26/13								•		
35	Curing	Sat 1/26/13	Sat 2/16/13	Sat 1/26/13	Sat 2/16/13								<u> </u>		•
36	Pull from form	Sat 2/16/13	Sat 2/16/13	Sat 2/16/13	Sat 2/16/13									•)
37	Finishing (canoe 2)	Sat 2/16/13	Sat 3/30/13	Sat 2/16/13	Wed 4/3/13									-	-
38	Sanding/finishing mix	Sat 2/16/13	Sat 3/9/13	Sat 2/16/13	Wed 3/20/13									-	*
39	Staining/sealing	Sat 3/9/13	Sat 3/30/13	Wed 3/20/13	Wed 4/3/13										
40 Co	onditioning	Sat 9/8/12	Sat 3/23/13	Sat 9/6/12	Wed 4/3/13		-								
41	Initial recruiting/practice	Sat 9/8/12	Sat 9/29/12	Sat 9/8/12	Sat 9/29/12										
42	Tryouts	Sat 9/29/12	Sat 9/29/12	Sat 9/29/12	Sat 9/29/12			+							
43	Practice paddling/team workouts	Sun 9/30/12	Wed 4/3/13	Sun 9/30/12	Wed 4/3/13			-							
44 Fur	Indraising	Wed 9/19/12	Wed 3/27/13	Wed 9/19/12	Wed 3/27/13		-								
45	Set fundraising goals	Wed 9/19/12	Wed 9/19/12	Wed 9/19/12	Wed 9/19/12		*								
46	Contact companies	Wed 9/19/12	Wed 2/27/13	Wed 9/19/12	Wed 2/27/13										
47	Order T-shirts	Wed 2/27/13	Wed 3/27/13	Wed 2/27/13	Wed 3/27/13								_		
48 Dis	splay	Sat 11/10/12	Sat 3/30/13	Sat 11/10/12	Wed 4/3/13										
49	Themed stands	Sat 11/10/12	Sat 12/15/12	Sat 11/10/12	Mon 4/1/13										
50	Cutaway section	Sat 12/15/12	Sat 3/30/13	Sat 1/5/13	Mon 4/1/13						-				
51	Display table	Sat 1/26/13	Sat 3/9/13	Sat 1/26/13	Wed 4/3/13										
52 De	esign paper	Fri 12/21/12	Wed 3/20/13	Fri 12/21/12	Mon 3/4/13										•
53	Sections due for initial review	Fri 12/21/12	Fri 12/21/12	Fri 12/21/12	Fri 12/21/12							•		_	
54	Final draft	Fri 12/21/12	Fri 2/1/13	Fri 12/21/12	Fri 2/1/13										
55	Peer review	Fri 2/1/13	Wed 2/27/13	Sat 2/23/13	Wed 2/27/13										_
56	Final editing	Wed 2/27/13	Sat 3/2/13	Wed 2/27/13	Mon 3/4/13										•
57	Submission	Mon 3/4/13	Mon 3/4/13	Mon 3/4/13	Mon 3/4/13										•
58 Ro	ocky Mountain Conference	Thu 4/4/13	Sat 4/6/13	Thu 4/4/13	Sat 4/6/13										
59 Pre	epare for 2013 NCCC	Sun 4/7/13	Wed 6/19/13	Sun 4/7/13	Wed 6/19/13 Sat 6/22/13										
Broject: (Canoshis Summary		Task		Critical Ta	sks	Milesto	one 🔶							
Date: Thu	u 5/9/13		TUSK		chicorro	5.5				-	_				
-	8118 A BA			7110	XE	A.D.	LL A	DAG	>R.	· 811	Sac	Bun	10	D-7H	2700
0.	日本 分20 風入	mp		1++-	DE L	101.44	田田と	2 O V	01.00	· 17++	1320	Bow			

Canoebis

Canoebis Design Drawing

1:0

Utah State University

m

10

081:0:11:020

Canoebis Design Drawing									
Form Bill of Materials									
Item No.	Qty	Description							
1 84 Cu ft. of expanded polyurethane foam									
2 6 4 ft X 8 ft particle board (2 layers)									
3	3 85 Ft of 1/16 in. wound steel cable								
4	4 2 Wood anchor block								
5 8 Steel washers									
6 111 Screws									
7 48 lbs. drywall compound									
8	8 2 Gallons of Styropoxy								
9	9 1 Tension scale								
10	20 Cable guide blocks								
11	2	Pulleys							
(12)	20	Cable anchors							
 Notes: Build wood base Cut 37 foam sections according to individual dimensions (insufficient room to show all detail on this drawing) Secure foam sections together & secure to wood using screws and glue Apply drywall compound to fill cracks in foam and sand smooth. Apply two coats of styropoxy Place tension cables Anchor cables to end block and apply tension to 100 lbs. using scale. 									
UtahStateUniversity									
Drawn by	: Mi	ichael Budge							
Checked	by: Mi	itch Dabling							

Appendíx A: References

Design Report 2013

3M. (2008). "3M (TM) iM30K Hi-Strength Glass Bubbles." <www.3m.com> (Feb. 14, 2013)

- 3M. (2010). "3M (TM) Glass Bubbles K37." <www.3m.com> (Feb. 14, 2013)
- 3M. (2013). "3M (TM) Glass Bubbles iM16K." <www.3m.com> (Feb. 14, 2013)
- American Society for Testing and Materials (ASTM). (2010). "Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading)." C78 / C78M – 10. ASTM International, West Conshohocken, PA.
- ASTM. (2011). "Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens." C496 / C496M 11. ASTM International, West Conshohocken, PA.
- ASTM. (2012a). "Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens." C39 / C39M 12a. ASTM International, West Conshohocken, PA.
- ASTM. (2012c). "Standard Test Method for Slump of Hydraulic-Cement Concrete." C143 / C143M 12. ASTM International, West Conshohocken, PA.
- Fuller, W. B., & Thompson, S. E. (1906). "The Laws of Proportioning Concrete." *Transactions* of the American Society of Civil Engineers, 57(2), 67-143.

Ions, Veronica. (1983). "Egyptian Mythology." The Deities, P. Bedrick Books, 42.

- Mehta, P. Kumar. (2004). "High-performance, high-volume fly ash concrete for sustainable development." *International workshop on sustainable development and concrete technology*. Beijing: Kejin Wang.
- National Precast Concrete Association (NPCA). (2010). "Water-to-Cement Ratio and Aggregate Moisture Corrections." <www.precast.org> (Jan. 5, 2013).
- Stevens, W.P. (1889). "Canoe & Boat Building. A Complete Manual for Amateurs." Designing. Forest and Stream Publishing Co. New York.
- Wenonah Canoe Inc. (2012). "Jensen V-1 Pro 18'6" Racing Canoes." <www.wenonah.com> (Sept. 21 2012).

B-1

Utah State University Canoebis

Appendix B: Mixture Proportions

	Mixture ID: St	ructura	Mix		Design P	roportions	Actual	Batched	Yielded Proportions	
YD	Design Batch Si	ze (ft ³):	000	0.25	(INOP	1.550)	Propo	ortions		
	Cementitious Mater	rials		SG	Amount	Volume	Amount	Volume	Amount	Volume
CMI	White Deutland Concent	_	_	2.15	(1b/yd ³)	(ft ³)	(1b)	(ft ³)	$\frac{(lb/yd^3)}{2(4.40)}$	(ft^3)
CMI	CM1 White Forhand Cement				256,36	0.304	2.37	0.012	204.40	1.345
CM2	Flu Ash		-	2.00	64.09	0.395	0.59	0.004	164.91	0.407
CM3	Fly Asn			2.15	159.80	1.191	1.48	0.011	104.81	0.126
CIVI4	Total Comontiti	oue Ma	torials	2.40	19.75	2,022	0.18	0.001	20.57 E1E 69	0.130
-	Total Cementiti	ous Ma	terials;		500.00	3.022	4.03	0.020	515.00	3.117
T1	DVA DOGUS			1.20	Fibe	0.040	0.04	0.000	4.12	0.061
FI	PVA RSCIS			1.30	4.00	0.049	0.04	0.000	4,13	0.051
FZ	PVA RECS 100		-	1.30	4.00	0.049	0.04	0.000	4.13	0.051
E4	PVA RES 400			1.30	4.00	0.049	0.04	0.000	4.13	0.051
<u>r4</u>	r vA Kr4000	Total	Fiborer	1.30	4.00	0.049	0.04	0.000	4.15	0.051
-		Total	ribers:		10.00	0.197	0,15	0.002	10.50	0.203
					Aggreg	ates				
Al	Cenospheres	Abs:	15%	0.35	91.80	4.203	0.85	0.039	94.68	4.335
A2	K20	Abs:	1%	0.20	49.00	3.926	0.45	0.036	50.54	4.049
A2	IM16K	Abs:	10%	0.46	27.00	0.941	0.25	0.009	27.85	0.970
A3	IM30K	Abs:	9%	0.60	75.06	2.005	0.69	0.019	77.41	2.068
A4	Poraver .255	Abs:	20%	0.88	85.78	1.562	0.79	0.014	88.47	1.611
AS	Poraver .5-1	Abs:	20%	0.71	107.23	2.420	0.99	0.022	110.59	2.496
Ab	Poraver 1.0-2.0	Abs:	20%	0.53	64.34	1.945	0.60	0.018	66.35	2.006
	100	al Aggr	egates:		300.20	17.003	4.03	0.157	515.89	17.530
W/1	Water C. Chi Undention		_		200.00	4 909	2.70	0.045	200.41	1.059
WV I	Wile Water from Admint			1.00	12 71	4.808	4.70	0.043	14.14	4.938
	With Additional Water	ures		1.00	13./1		0.15		205.26	
11/2	Wrb. Additional water	D	_	1.00	250.29		2.05		295.20	
W 2	Water for Aggregates, 55	Tatal	Water .	1.00	375.18	4.808	3.47	0.045	386.05	4.958
		10(4)	Solids (Content of L	atex. Dyes and	d Admixtures i	n Powder For	0.045	500.75	4,720
P1	Pigment 1 (Powder Form)		conds (4 50	0.82	0.003	0.01	0.000	0.85	0.003
	Total Solids o	of Admi	xtures:	nov	0.82	0.003	0.01	0.000	0.85	0.003
					0101				0100	
1						Water in		Water in		Water in
	Admixtures			% Solids	Dosage (fl. om/out)	Admixture	Amount	Admixture	Dosage (fl. ort/out)	Admixture
i -					(11 02/CWI)	(lb/yd ³)	(11 02)	(1b)	(11 02/001)	(1b/yd ³)
Ad1	polyheed 997	10.6	lh/gal	48.00	32.00	6.89	1.48	0.064	33.0	7.11
Ad2	glenium 3030	8.7	lb/gal	20.00	9.00	2.45	0.42	0.023	9.3	2.52
Ad3	Bonding Adhesive	9.2	lb/gal	26.00	0.00	0.00	0.00	0.000	0.0	0.00
Ad4	Micro-Air	7.9	lb/gal	11.40	16.00	4.37	0.74	0.041	16.5	4.51
	Water from	n Admi	xtures:			13.71		0.127		14.14
Ceme	nt-Cementitious Materials	Ratio	-		0.	513	0.:	513	0.	513
Water	Water-Cementitious Materials Ratio				0.	.600	0.600		0.600	
Slump, Slump Flow, in.					0	.00	0.00		0.00	
M Mass of Concrete. Ibs					139	92.21	12.89		143	5.86
V Absolute Volume of Concrete ft ³					25	.033	0.232		25.818	
T Theorectical Density Ib/ft ³					55	5.62	55.62		55.62	
D	Design Density <i>lb/ff³</i>				5	1.56				
D	Measured Density, 1b/ft3						53.	.180	53.	.180
A	Air Content, %		1		7	.29	4.	4.38		.38
Y	Yield, fr ³					27	0,2	242	-	27
Ry Relative Yield					and the second second second	Consideration of the	0.	970	a a state	ALL OF COMPANY

Design Report 2013

	Mixture ID: Fin	Mix A		Design F	Proportions	Actual	Batched	Vielded Proportions		
Yp	Design Batch Si	ze (ft ³):		0.1	(No	n SSD)	Prop	ortions	ricioca i roportions	
	Cementitious Mater	rials		SG	Amount	Volume	Amount	Volume	Amount	Volume
_	Contentitions infinite			50	(lb/yd ³)	(ft ³)	(lb)	(ft ³)	(lb/yd^3)	(ft ³)
CMI	White Portland Cement			3.15	725.53	3.691	2.69	0.014	724.07	3.684
CM2	VCAS			2.60	140.53	0.866	0.52	0.003	140.25	0.864
CM3	Fly Ash		_	2.15	173.26	1.291	0.64	0.005	172.91	1.289
CM4	Xypex C-500			2.40	43.67	0.292	0.16	0.001	43.58	0.291
	Total Cementitie	ous Mat	terials:		1082.99	6.140	4.01	0.023	1080.81	6.128
<u> </u>					Fibe	rs				
F1	PVA RSC15			1.30	0.00	0.000	0.00	0.000	0.00	0.000
F2	PVA RECS 100			1.30	0.00	0.000	0.00	0.000	0.00	0.000
F3	PVA RFS 400		-	1.30	0.00	0.000	0.00	0.000	0.00	0.000
F4	PVA RF4000			1.30	0.00	0.000	0.00	0.000	0.00	0.000
-		Total	Ders:		0.00	0.000	0.000	0.000	0.000	0.000
		_			Aggreg	gates				
Al	Cenospheres	Abs:	15%	0.35	23.80	1.090	0.09	0.004	23.75	1.088
A2	K20	Abs:	1%	0.20	0.00	0.000	0.00	0.000	0.00	0.000
A3	IM16K	Abs:	10%	0.46	46.70	1.627	0.17	0.006	46.61	1.624
A4	IM30K	Abs:	9%	0.60	0.00	0.000	0.00	0.000	0.00	0.000
AS	KI	Abs:	1%	0.13	46.70	5.987	0.17	0.022	46.61	5.975
AO	Poraver .5-1	Abs:	20%	0.71	0.00	0.000	0.00	0.000	0.00	0.000
A/	Poraver 1.0-2.0	Abs:	20%	0.53	0.00	0.000	0.00	0.000	0.00	0.000
	10tal Aggregates:				117.20	8.704	0.43	0.032	116.96	8.686
W1	Water for C'M Hudration			_	600.40	0.622	2.22	0.026	500.28	0.404
	W1 Water from Admixtures				600.49	9.023	2.22	0.036	599.28	9.604
	With Additional Water				-8 71		0.03		8.60	
W2	Water for Aggregates, SST)		1.00	8 71		0.03		8.60	
		Total	Water :	1.00	609.20	9.623	2.26	0.036	607.97	9.604
t			Solids (Content of La	atex. Dves an	d Admixtures i	n Powder For	m	001171	51001
ad 1	Bonding Adhesive	-		2.04	212.50	1.668	0.79	0.006	212.08	1.665
P1	Pigment 1 (Powder Form)			4.50	0.70	0.002	0.00	0.000	0.70	0.002
	Total Solids o	f Admiy	ctures:		213.20	1.671	0.79	0.006	212.77	1.667
					Dosage	Water in	Amount	Water in	Dosage	Water in
	Admixtures			% Solids	(fl oz/cwt)	Admixture	(fl oz)	Admixture	(fl oz/cwt)	Admixture
4.11	polyheed 997	10.6	Ibland	48.00	5 77	(lb/yd²)	0.22	(10)	6.74	(lb/yd ³)
Ada	glenium 3030	87	Ib/gal	20.00	2.00	1.70	0.23	0.010	5.76	2.08
Ada	Bonding Adhesive	92	Ih/oal	26.00	1050.00	604.82	42.12	2 240	2.88	603.60
Ad4	Micro-Air	7.9	Ib/gal	11.40	0.00	0.00	0.00	0.000	0.00	0.000
	Water from	n Admiy	tures:	11.10	0.00	609.20	0.00	2,256	0.00	607.98
						007120		heh JU		007.90
Ceme	ent-Cementitious Materials	Ratio			0.	.670	0.0	570	0.0	670
Wate	r-Cementitious Materials Ra	atio			0.	.554	0.:	554	0.:	554
Slump, Slump Flow, in.					8	.00	8.	00	8.	.00
M Mass of Concrete, <i>lbs</i>					202	22.59	7.	49	201	8.52
V Absolute Volume of Concrete, ft ³					26	.138	0.097		26.086	
T Theorectical Density, <i>lb/ft</i> ³					7'	7.38	77	.38	77	.38
D	Design Density, Ib/ff		-		7.	4.91		2(0		7.0
D	Measured Density, <i>lb/ft</i>					10	74.	760	74.	.760
A	An Content, %				3	.19	3.	39	3.	39
1	Relative Vield					21	0.1	100	4	.1

	Mixture ID: Fin	ishing I	Mix B		Design P	roportions	Actual	Batched	Vielded Proportions	
YD	Design Batch St	ize (ft ³):		0.1	(Nor	1 SSD)	Prope	ortions	Trendeu I	- Por divite
	Cementitious Mate	rials		SG	Amount (lb/yd ³)	Volume (ft ³)	Amount (lb)	Volume (ft ³)	Amount (lb/yd ³)	Volume (ft ³)
CM1	White Portland Cement			3.15	670.00	3.409	2.48	0.013	653.99	3.327
CM2	VCAS			2.60	130.00	0.801	0.48	0.003	126.89	0.782
CM3	Fly Ash		-	2.15	160.00	1.193	0.59	0.004	156.18	1.164
CM4	Xypex C-500		2.40	40.00	0.267	0.15	0.001	39.04	0.261	
	Total Cementiti		1000.00	5.670	3.70	0.021	976.11	5.534		
					Fibe	rs				
F1	PVA RSC15			1 30	0.00	0.000	0.00	0.000	0.00	0.000
F2	PVA RECS 100			1.30	0.00	0.000	0.00	0.000	0.00	0.000
F3	PVA RES 400		-	1.30	0.00	0.000	0.00	0.000	0.00	0.000
F4	PVA RF4000	_		1.30	0.00	0.000	0.00	0.000	0.00	0.000
		Total	Fibers:		0.00	0.000	0.00	0.000	0.00	0.000
					Aggreg	ates				
A1	Cenospheres	Aber	159%	0.35	22.00	1.007	0.08	0.004	21.47	0.983
A2	K20	Aba:	10/	0.20	0.00	0.000	0.00	0.000	0.00	0.000
A3	IM16K	Abe:	1/0	0.46	44.00	1 533	0.16	0.006	42.95	1 496
A4	TM30K	Abs	9%	0.60	0.00	0.000	0.00	0.000	0.00	0.000
AS	k1	Abs:	1%	0.13	44.00	5.641	0.16	0.021	42.95	5.506
A6	Poraver 5-1	Abs:	20%	0.71	0.00	0.000	0.00	0.000	0.00	0.000
A7	Poraver 1.0-2.0	Abs:	20%	0.53	0.00	0.000	0.00	0.000	0.00	0.000
	Tot	al Aggr	egates:		110.00	8.181	0.41	0.030	107.37	7.986
					Wate	er				-
W1 Water for CM Hydration				695.08	11.139	2.57	0.041	678.48	10.873	
	W1a. Water from Admixtures			1.00	703.22		2.60		686.42	
	W1b. Additional Water				-8.14		-0.03		-7.95	
W2	Water for Aggregates, SS	D		1.00	8.14		0.03		7.95	
		Total	Water :		703.22	11.139	2.60	0.041	686.42	10.873
			Solids (Content of La	atex, Dyes and	d Admixtures in	n Powder For	m		
ad 1	Bonding Adhesive	-		2.04	242.94	1.907	0.90	0.007	237.13	1.862
P1	Pigment 1 (Powder Form)		4.50	0.70	0.002	0.00	0.000	0.68	0.002
-	Total Solids of	of Admi	xtures:		243.64	1.910	0.90	0.007	237.82	1.864
	Admixtures			% Solids	Dosage (fl oz/cwt)	Water in Admixture (lb/yd ³)	Amount (fl oz)	Water in Admixture (lb)	Dosage (fl oz/cwt)	Water in Admixture (lb/yd ³)
Adl	polyheed 997	10.6	lb/gal	48.00	16.00	6.89	0.59	0.026	15.6	6.73
Ad2	glenium 3030	8.7	lb/gal	20.00	9.00	4.89	0.33	0.018	8.8	4.78
Ad3	Bonding Adhesive	9.2	lb/gal	26.00	1300.00	691.44	48.15	2.561	1268.9	674.92
Ad4	Micro-Air	7.9	lb/gal	11.40	0.00	0.00	0.00	0.000	0.0	0.00
	Water from	n Admi	xtures:			703.22		2.60		686.42
Ceme	nt-Cementitious Materials	Ratio			0.	670	0.0	670	0.	670
Water-Cementitious Materials Ratio					0.	.695	0.0	695	0.695	
Slum	o. Slump Flow, in.		-		1	.00	1.	.00	1	.00
M Mass of Concrete. Ibs					20.	56.86	7.	62	200	7.72
V	V Absolute Volume of Concrete ft^3				26	5.900	0,	100	26	.257
Т	T Theorectical Density. <i>Ib/ft³</i>				7	6.46	76.46		76.46	
D	Design Density /h/ff ³		-		7	6.18			10.10	
D	Measured Density, /b/ft3						74.	360	74	.360
A	Air Content, %				0).37	2.75		2	.75
Y	Yield, ft ³					27	0.	102		27
Du	Relative Vield				1.024		THE OWNER WALL THE PARTY OF			

B-3

Design Report 2013

Canoebis

Appendix C: Bill of Materials

Concrete Materials										
Material	Quantity	Units	Unit Cost	Total Price						
White Portland Cement	21.84	lbs	\$0.50	\$10.92						
VCAS	5.46	lbs	\$0.64	\$3.49						
Fly Ash	13.61	lbs	\$0.21	\$2.86						
Xypex C-500	1.68	lbs	\$9.58	\$16.09						
Cenoshperes	7.82	lbs	\$4.28	\$33.50						
K1 Microshperes	0.43	lbs	\$10.00	\$4.30						
K20 Microspheres	4.17	lbs	\$9.50	\$39.62						
IM16K	2.30	lbs	\$28.09	\$64.61						
IM30K	6.39	lbs	\$23.78	\$151.92						
Poraver (0.25-0.5)	7.31	lbs	\$9.14	\$66.81						
Poraver (0.5-1)	9.13	lbs	\$10.72	\$97.87						
Poraver (1-2)	5.48	lbs	\$11.72	\$64.23						
Polyheed 997	13.63	fl oz	\$0.05	\$0.75						
Glenium 3030	3.83	fl oz	\$0.13	\$0.50						
Micro-air	4.37	fl oz	\$0.03	\$0.14						
Pigment	0.07	lbs	\$2.00	\$0.14						
Quikrete Bonding Adhesive	1.00	gal	\$14.00	\$14.00						
Fibers PVA RSC15	0.33	lbs	\$14.00	\$4.66						
Fibers PVA RECS 100	0.33	lbs	\$15.00	\$5.00						
Fibers PVA RFS 400	0.33	lbs	\$15.00	\$5.00						
Fibers PVA RF4000	0.33	lbs	\$20.00	\$6.66						
	Reinfo	orcment								
Material	Quantity	Units	Unit Cost	Total Price						
Fiberglass Mesh	110	sq ft	\$2.65	\$291.50						
Steel Cables	85	ft	\$0.06	\$5.10						
Aluminum Stops	20	pieces	\$0.62	\$12.40						
	Fini	shing								
Material	Quantity	Units	Unit Cost	Total Price						
Concrete Stain	5	gal	\$25.96	\$129.80						
Sealer	1	gal	\$14.00	\$14.00						
	Fo	orm								
Material	Quantity	Units	Unit Cost	Total Price						
Styrofoam Mold, Complete	1	mold	\$350.00	\$350.00						
Learning and the second se	Final	Product								
Total Cost for Canoebis				\$1,395.86						