S. Wichman

Distributed Wiring Harness

Agenda

- Design Problem
- Hardware and Software Solution
- Prototype
- ICD Tracking Tool
- Built-In Simulator
- Future/Limitations
- Conclusion

S. Wichman

Distributed Wiring Harness
Background

- Space Gadgets assisting with the: 1st Student Build Mission to Mars!!!

- Five lead universities will build hardware
 - C&DH: University of Colorado
 - ADCS: Arizona State University
 - Orbital Control: University of Alabama
 - Science: Auburn University
 - EPS: University of Arizona
Design Problem

- C&DH needs to coordinate all interfaces
- Interface Testing
 - verifying data protocols
 - verify commands
 - verify responses
 - verify power draws
- Bring all components together(?)
- Similar to industry problems
- Need a Distributed Wiring Harness
Brief Overview

Distributed Wiring Harness (DWH)

- A tool/method for “pre-integration” testing of:
 - electrical interfaces
 - data interfaces
- while components are still at different locations
- Goal: reduce development costs
- Goal: allow more responsive products
DWH Example

C&DH Commanding
Science Instruments
DWH Example

Local Wiring Harness

Flight Computer

Science

Serial

I2C

Battery

3.3V

5V

28V

Electrical Power Subsystem

S. Wichman

Distributed Wiring Harness
DWH Example

Distributed Wiring Harness

Universal Power and Data Controller

S. Wichman
Hardware

- Universal Power and Data Controller (UPDC)
 - Power Distribution Unit (PDU)
 - 3.3V output
 - 5V output
 - 2x variable voltage outputs (0-28V)
 - current and voltage sensors
 - optional power sinks
 - Data Distribution Unit (DDU)
 - 2x USB
 - Serial
 - 2x I2C
 - RJ45 (ethernet)
Hardware (cont)

DDU

PPU

DC Outputs
- 3.3V: 0.29
- 5V: 0.66
- Variable 0-28V: 0.23
- 0-28V: 0.10

Data Connectors
- Serial
- USB
- Ethernet
- I2C
PDU Prototype

- 1x AC input (ATX power supply)
- 3x DC outputs (3.3V, 5V, 1x 0-12V)
 - Switch-mode regulators
 - Adjustable buck converter
- Current and voltage sensors on I2C bus (soon)
 - Remotely read sensors
- Digital potentiometers on I2C bus (soon)
 - Remotely adjust voltages on outputs and sinks
- No power sinks yet
DDU Prototype

- Linksys NSLU2
 - XScale ARM processor
 - 2x USB, 2x I2C, 1x serial, 1x Ethernet
 - Linux
 - <$100
- Internal I2C bus = sensor info and controlling potentiometers
- Software to read ICD information
 - protocol.xml & messages.xml
DWH Example

Distributed Wiring Harness

(Alabama)

(Florida)

Serial

5V

Serial

UPDC

Science

UPDC

UPDC

UPDC

Tracking Tool

Electrical Power Subsystem

(Florida)

(Arizona)

S. Wichman
ICD Tracking Tool

- Development and tracking tool
 - Generates Interface Control Documents

- DWH Control Center
ICD Tracking Tool (cont)

MODIFY POWER INTERFACE

Subsystem: science
Component: magnetometer
Data or Power: power

Inputs

Connector type: NATC
Optimal Voltage: 5 (volts)
Current: 10 (mA)

Pin description:

1: 5V
7: GND

Minimum voltage: 4.5 (volts)
Maximum voltage: 5.5 (volts)
Minimum current: 8 (mA)
Maximum current: 12 (mA)
MODIFY DATA INTERFACE

Subsystem: science
Component: magnetometer
Data or Power: data

Inputs

Connector type: serial
Pin description: blank
Format: byte sequence
Protocol outline: header w/ fixed length
Length: variable - reference byte # 2
Device address: byte # 1 must equal 2 (hex)

Commands

Ping [1a,2,5,08,ff]
Turn off [1a,2,5,00,ff]
Turn on [1a,2,5,01,ff]
Start taking science [1a,2,5,02,ff]
Diagnostic [1a,2,5,04,ff]

Outputs

Connector type: serial
Pin description: blank
Find: blank
ICD Tracking Tool

- Development and tracking tool
 - Generates Interface Control Documents
 - Change Notifications and version control
 - Define the interface “protocols” needed for:
 - in-flight = DWH testing
 - test cases = simulation

- DWH Control Center
 - Distribute ICD-based DWH code (XML)
 - Record all messages being transferred
 - Ping components and start test or simulation
Varying the size of DWH
- Example: 2 subsystem test
- All subsystems
- No subsystems?

ICD Tracking Tool will generate “virtual” components/responses:
- C&DH sends out SCI_ON cmd
 - [1a,2,5,01,ff]
- UPDC simulates response based on test cases
 - [1a,1,5,01,ff]
 - [1a,1,7,aa,ab,ac,ff] (within X seconds)
Limitations and Future

- Timing
 - Internet latency
 - “very reactive” watchdogs or software
 - No solution yet = limitation of DWH
 - I2C needs immediate response
 - Solution: “local” I2C master within UPDC

- Variable power draws
 - Simulating an unexpected situation
 - Partial solution = limited reaction time

- Other connectors: SpaceWire, 1394, MILSTDs
Conclusion

- Benefit for the University Partners
- A possible benefit to industry satellites
- Standardizes ICDs and test cases
 - Combines testing with design => enhanced I&T strategy
- Reduces integration costs by providing “pre-integration” stage
Questions?

Distributed Wiring Harness

Steve Wichman
Space Gadgets Corporation

S. Wichman
Distributed Wiring Harness