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Abstract 

Pulex irritans and Pulex simulans are zoonotic flea vectors of plague and other infectious 

diseases. P. irritans have historically been known to use carnivores as a host, while P. simulans 

primarily parasitizes omnivores. To fully understand arthropod-borne infectious disease 

transmissibility and potential for geographical spread, it is important to differentiate between 

these two flea species. Traditional taxonomy uses the flea's male morphological features to 

distinguish species. There are no observable morphological differences between the female P. 

irritans and P. simulans. Molecular markers of the internal transcribed spacer regions (ITS) have 

been successfully used in other insect organisms to differentiate species that are difficult to 

distinguish morphologically. This is due to rapidly diverging repetitive sequences found in the 

ITS regions. Polymerase chain reaction (PCR) primers were identified for P. irritans and P. 

simulans and provide DNA sequence information of the ITS region. With this ITS sequence 

information, a real time melting curve PCR protocol has been developed. It includes multiple 

primers for a distinct single nucleotide polymorphisms (SNP) of the ITS region used in melting 

curve analysis. The development of a real time melting curve PCR identification method of P. 

irritans and P. simulans has the potential to aid phylogeographic research and understanding 

plague transmission in the environment. 
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I. Introduction 

A. Plague and zoonosis cycles 

Originally discovered in 1894 as a bacterial infection, Yersinia pestis is more commonly 

known as the plague, which as the Black Death killed millions worldwide in the 14th century (1). 

In more recent history, the plague has not yet caused such widespread pandemic. Within the U.S. 

about 14% of human cases are fatal and the fatality rate is even higher in developing countries 

(1 ,2). The majority of human infections (83% from 1957 to 2004) in the U.S. are in the four­

corners region (3). The fatalities primarily arise from delayed antibiotic treatment or inadequate 

treatment (1 ,2). Global fatalities and the plagues potential for pandemic infection has resulted in 

extensive research of the Y. pestis bacterium. However, limited research has focused on the 

vector. This may be due to the limited number of cases. 

Plague is a zoonotic disease, spread between species, with fleas acting as primary vectors 

for disease transmission (1 ,3). Fleas have a wide variety of hosts and are found throughout the 

world ( 1 ). The transmission cycle for Y. pestis consists of two cycles: the enzootic and epizootic 

cycles (1 ,3,4). The enzootic or maintenance cycle is the transfer of plague from fleas to resistant 

rodent hosts (1,4). The plague infected rodents act as a reservoir until more susceptible hosts are 

infected (1 ,4). The epizootic cycle is characterized by quickly spreading fatalities in new less 

resistant hosts (1,4). It is during these epizootic cycles that human infection is highest and most 

widespread ( 1,2). There is also the possibility for the pneumonic transmission between humans 

which has the potential to create pandemic outbreaks (1 ). However, in most cases adequate 

antibacterial treatment is available before pneumonic transmission is possible (1). 

B. Pulex irritans and Pulex simulans 
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The fleas P. irritans and P. simulans have both been found to be capable of becoming 

infected with Y pesti, and Bartone/la sp. (7 ,8). They act as vectors and as reservoirs of 

infectious diseases (1). Also, as discussed earlier these fleas are part of the transition from 

enzootic to epizootic plague conditions (1,3,4). 

Historically, it has been believed that P. irritans and P. simulans have different host 

preferences. It is believed that P. irritans host primarily on carnivores such as foxes, coyotes, 

and dogs. Conversely, it is believed that P. simulans host primarily on omnivores such as 

squirrels, guinea pigs, prairie dogs, and possums. Understanding host preference differences is 

vital to epidemiological control of enzootic to epizootic spread of infectious diseases. 

Furthermore, as global climates and habitats change there is greater possibility for even more 

human-host interactions. 

The morphological differences of the two species are minor, which makes classification 

and differentiation difficult. P. simulans was discovered and differentiated second. It closely 

resembles P. irritans and the discoverer Baker (1895) said that P. simulans is "distinct, yet it is 

very closely related to P. irritans, and might easily be confused with that species" (10). The 

significant morphological difference used in differentiation is found only in comparing the male 

genitalia. Pu/ex irritans have a longer and slender aedeagus and the P. simulans is rod-like and 

small (10). However, as stated the difference is slight and easily overlooked. It is with this 

plausible error that the species P. simulans are easily mistaken for the more common P. irritans. 

This could lead to errors in both phylogeographic data and disease outbreak prevention. 

While there are slight morphological differences in the male P. irritans and P. simulans, 

there are no observable morphological differences among the female. This presents a problem in 

determining the species when collected fleas are female. 
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C. Phylogenetics 

The study of phylogenetics is the study of the genetic relationship between species. The 

importance of understanding the evolutionary history and genetic makeup of fleas can be 

expressed in three ways. First, they allow for the study of co-evolutionary patterns among the 

flea and host, as well as the flea and the infectious disease (9). Second, they allow for the study 

of the adaptation and evolution required to inhabit new regions (9). Third, they aid flea 

abatement due to better understanding of the geographical distribution of the fleas (9,11). 

Therefore, the use of correct phylogenetic analysis is important in disease prevention. 

Phylogenetic research will also aid in many research fields, providing a common base of 

reference. 

D. ITS region as a genetic marker 

Genetic markers have been used to differentiate closely related species, when the 

morphological differences are very minor (12). Such genetic markers have been identified in 

DNA regions that show evolutionary variability (12). The genetic differences can be used to 

infer evolutionary history and establish phylogenies (13). The internal transcribed spacer regions 

(ITS 1 and ITS2) found on deoxyribonucleic acid (DNA) of fleas have exhibited qualities for 

phylogenetic importance (12,13,14). The relatively conserved units of DNA before and after the 

ITS regions can be used to develop primers for polymerase chain reaction (PCR) (12,14). 

Isolation of the ITS region provides researchers the ability for species differentiation. This 

method has been used with other species of fleas such as: Tunga penetrans, Ctenocephalides 

felis, Echidnophaga gallinacea, Spilopsyllus cuniculi, Xenopsylla cheopis, Archaeopsylla 

erinacei, and Nosopsyllusfasciatus (12,14). The ITS regions have been shown to have specific 
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nucleotide sequences which as a unit repeat within the ITS. Across species the number of repeats 

and length varies, which provides a genetic marker for differentiation ( 12). 

Gel-electrophoresis of regions such as the ITS can provide useful information regarding 

the relative size of the PCR amplified region, however, additional specificity is needed. DNA 

sequence provides the greatest detail of the genetic differences between fleas. However, the use 

ofreal time PCR melting curve analysis is a rigorous approach to genetic differentiation (15). It 

can provide a dichotomous analysis dependent on individual base-pair differences. The technique 

also has additional benefits as it is less expensive than sequencing and can yield quicker results 

(15). The method employed in the study utilized differences in single nucleotide polymorphisms 

(SNPs) found through genetic sequencing. 
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II. Research Design and Methods 

A. Collection of flea samples 

Fleas used in this study were collected from two sites; Colorado and Peru. P. irritans 

were collected in the summer of 2009 by a Colorado Division of Wildlife Biologist and 

transferred to Dr. Bernhardt while a post-doctoral fellow at the Centers for Disease Control and 

Prevention (Fort Collins, Co). The fleas were collected from multiple coyotes (Canis latrans). In 

the summer of 2011 , the P. simulans fleas, as well as additional P. irritans fleas were collected 

in Peru by a research scientist in Peru' s Ministry of Health. This was done in accordance with 

local regulations. The fleas were collected from guinea pigs (Cavia porcellus), domestic dogs 

(Canis lupus familaris), and bedding. Figure 1 shows the different caging conditions for the 

guinea pigs in different locations in Peru. All fleas were stored in ethanol. 

Figure 1. Living conditions of the guinea pigs. The guinea pigs are raised for food. The guinea 
pigs in the raised cage (right) hosted fewer fleas than on the ground kept guinea pigs (left). 

B. DNA Extraction 

The DNA of the flea samples were extracted using an extraction kit (Qiagen DNeasy 

Extraction Kit) according to kit instructions. However to maintain the identifying morphological 

8 



features of the flea specimens, a small incision in the tergite (mid-thoracic region) of each flea 

was performed (see Figure 2). This was done to access the mid-gut region for potential DNA 

collection. The cut fleas were placed in a solution of 180 µl PBS, 20 µl Proteinase K, and 200 

Buffer AL. The specimens were then incubated for 24 hours at 56° C. After the incubation period 

200 µl of ethanol was added and the sample was vortexed. The solution as well as the flea was 

transferred to a DNeasy spin column and centrifuged at 8,000 rpm for 1 minute. The flow 

column was discarded and replaced. The flea specimen was collected and stored in ethanol for 

visualization of the morphological differences. 500 µl AWl was added and the column was 

centrifuged at 8,000 rpm for 1 minute. The flow 

column was discarded and replaced. 500 µl 

A W2 was added and the column was 

centrifuged at 14,000 rpm for 2 minutes. The 

flow through was discarded and the column was 

centrifuged again at 14,000 rpm for 1 minute. 

Figure 2. linage of male Pu/ex irritans. The 
arrow indicates the incision into the tergite. 

Next, the DNeasy spin column was place in a 

1.5 ml micro centrifuge tube. 100 µl Buffer AE 

was added and the solution was allowed to 

incubate at room temperature for 1 min. Then the column was centrifuged at 8,000 rpm for 1 

minute. The flow through tube which contains DNA was labeled and stored at -80° C. 

C. PCR amplification and Gel Electrophoresis Visualization 

The experiment initially tested the effectiveness of PCR primers that were designed and 

published by Garnerschlag et al. (12). In their research, they looked primarily at the differences 

in the ITS region of the Tunga penetrans from different geographic locations (12). They also 
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compared the ITS region to five other flea species (including P. irritans) (12). The ITSl region 

was accessed on NCBI Nucleotide Database and can be found under the Accession number: 

EU169198. The sequences of the six primers (four forward [sen], two reverse [rev]) used can be 

found in Table 1. The PCR reaction included 9.5 µl Nuclease-free H2O, 12.5 µl Taq, 1 µl 

forward primer (20 µM) , 1 µl reverse primer (20 µM) , and 1 µl specimen DNA. The PCR 

operating protocol used can be found in Table 2. To visualize the effectiveness of the PCR, gel­

electrophoresis was used. 

Table 1. PCR primers used in amplification oflTS. From Gamerschlag et al. (12) 

Primer Name Primer Sequence Length 
ITSI sen (1) GTACACACCGCCCGTGCGTACT 22 
ITSl rev (1) GCTGCGTTCTTCATCGACCC 20 
ITSl sen (2) CTTTGTACACACCGCCCGTCGCTAC 25 
ITSl rev (2) CCAGGTGTGGTCCGGGAACAGTATC 25 
ITS 1 sen (3) GTTGCTGGGAAGATGCCCAAACTTG 25 
ITSl sen (4) CAAGGTITCCGTAGGTGAACCTGC 24 

Table 2. PCR operating protocol used during amplification of the ITSl region. 

Temperature (Celsius) Duration (Seconds) 
Step 1: 94 300 
Step 2: 94 30 
Step 3: 57.6 30 
Step 4: 72 90 
Step 5: Go to step 2 X 30 
Step 6 72 300 
Step 7 4 Indefinite 

D. Visualization of Morphological Differences 

Both male and female specimens were mounted following the protocol in Table 3. This 

was performed to lighten the exoskeleton for clear imaging of internal structures of the male 

genitals as well as to preserve the fleas in mounted form. With an imaging dissection scope, 

digital images were taken of the all flea specimens. Several images can be seen in Figures 3 and 



4. Close up images were also taken of the male genitalia. To determine that the flea samples 

were in fact Pu/ex genus, the whole body images were compared to a morphological key (16). 

The male fleas were further differentiated using the same morphological key to the species level; 

Pu/ex irritans or Pu/ex simulans. The male identification was verified by performing secondary 

blind confirmation by Dr. Bernhardt. 

Table 3. Flea Mounting Protocol. 

To Clear Flea 1 750 µl of ddH2O 
2 3 drops of KOH 

To Mount Flea 3 Push on flea to evacuate insides 
4 Place flea in 70% ethanol and let sit for 30 minutes 
5 Place flea in 80% ethanol and let sit for 30 minutes 
6 Place flea in 95% ethanol and let sit for 30 minutes 
7 Place flea in 100% ethanol and let sit for 30 minutes 
8 Place flea in Oil of Wintergreen (methyl salicylate) 

for 20 minutes 
9 Place flea in Xylene for 60 minutes 
10 Place flea on slide under microscope. Add a drop or 

two of Canadian Balsam to flea on slide. Cover with 
slide cover. 
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Figure 3. Images of Pulex male fleas. Above: P. simulans male from Palo Blanco, Peru collected 
from a guinea pig, (full body right) with enlargement of genitals (left, arrow indicating aedeagus). 
Below: P. irritans male from San Juan de Miraflores, Peru collected from a dog (full body right) 
with enlargement of genitals (left, arrow indicating aedeagus). 

Figure 4. Image of female Pulex sp. 
Pulex sp. female from San Juan de 
Miraflores, Peru collect from a dog. 
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E. Melting curve analysis of SNP regions. 

Using the PCR amplified regions of the ITS region, 31 different fleas specimen's DNA 

was sequenced. Consensus sequences were constructed for each of the 31 fleas and analyzed for 

SNPs (see Appendix 1). The 18th base pair in the ITS region contained a SNP suitable for 

melting curve analysis. P. irritans from Colorado and Peru contained a cytosine nucleotide. P. 

simulans (only from Peru) contained a thymine nucleotide. Upstream from the SNP the sequence 

was completely conserved and 19 base pairs downstream provided a conservative region for a 

reverse primer. Two different forward primers were created (see Table 4) with the final 

nucleotide differing between a cytosine (C) and thymine (T). The forward primer (Forward A) 

included 20 additional nucleotides rich in of guanine (G) and cytosine nucleotides. This was 

done to increase the length of the resulting PCR amplified region relative to the region amplified 

with Forward B primer. As a result there is additional hydrogen bonding between the DNA of 

the amplified region. This results in a DNA double-stranded region that requires a greater 

temperature for the two single strands to disassociate. The differing disassociation temperatures 

can be measured during the melting curve capture step. 

Table 4. Real time PCR primers. The highlighted region shows the conservative 
regions of the ITS region 

Name Primer Sequence Length 
Forward 

GCGGGCAGGGCGGCGGGGGCGGGGCCTGCGCGGCAGCGTCGTAC 
44 

A 
Forward 

GCGGGCTGCGCGGCAGCGTCGTAT 
24 

B 
Reverse CAAGTTTGGTCATCTTCCC 19 

The operating protocol for the real time PCR (see Table 5) included a melting curve 

capture step. The PCR reaction included 11.25 µl Nuclease-free H20, 12.50 µI SSoAdvance™ 

SYBR® Green Supermix , 0.25 µl forward primer I (100 µM), 0.25 µl forward primer 2 (100 
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µM), 0.25 µl reverse primer (100 µM) , and .5 µl specimen DNA. SSoAdvance™ SYBR® Green 

Supermix contains a chelating agent that binds to the forming double strand during replication. 

While bound to the double stranded DNA it does not fluoresce. However, when there is 

sufficient heat to break the hydrogen bonds between the DNA strands the chelating agent is 

released and fluoresces. The melting curve capture step records the temperature at which the 

sample begins to fluoresce. The heat was slowly increased (.2° C every 10 seconds) to record the 

specific temperature in which the DNA strand disassociated. Analysis of melting curve was done 

using Bio-Rad Precision Melt Analysis TM software. 

Table 5. Real time PCR operating protocol. 

Temperature (Celsius) Duration (Seconds) 
Step 1: 95 180 
Step 2: 95 10 
Step 3: 60 10 
Step 4: 72 30 
Step 5: Go to step 2 X 39 
Step 6 Melting Curve: Starting at 65" C increasing .2° C every 10 seconds until 95° 

C, and plate reading 

14 



III. Results 

A. Morphological Identification 

The research project included 98 fleas in which DNA was extracted and were mounted. 

However, 7 male fleas were prepared in such a way as to make morphological identification to 

the species level impossible, due to the inability to identify the species specific aedeagus. They 

were excluded from the genetic study. The 91 fleas included 58 females (63.7%) and 33 males 

(36.3%). Of the 91 fleas, 58 were collected in Peru (69.0%) and 33 were collected in Colorado 

(31.0%). Within the 58 fleas collected in Peru there were 40 females (70.2%) and 18 males 

(29.8%). Within the 33 fleas collected in Colorado there were 18 females (54.5%) and 15 males 

(45.5%). The 33 males included in the genetic study included 12 P. simulans (36.4%) and 21 P. 

irritans (63.6%). All 12 P. simulans were collected in Peru. All 15 males from Colorado were P. 

irritans and 5 P. irritans were collected in Peru. 

B.PCR 

PCR amplification of the ITS 

region was successful using primers ITS 1 

sen ( 1) and ITS 1 rev ( 1 ) and an annealing 

temperature at 57.6° C (see Tables 1 and 

2). The ITS region varied in length 

irrespective of species or collection 

location (see Figure 5). 

Figure 5. Gel-electrophoresis of PCR from 
4 P. irritans and 2 P. simulans. The 
variation in the DNA fragment size is 
independent of species. 
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C. DNA Sequencing 

The isolated ITS region of 31 Pu.lex male samples were sequenced to identify SNPs for 

real time PCR melting curve analysis. Three sequences can be viewed in Appendix 1. There 

were 17 SNPs identified as potential targets for real time PCR melting curve analysis. The DNA 

sequences also showed variation in the length of the DNA fragment. This was irrespective of 

species or collection site. 

D. Real time PCR melting curve analysis 

The real time PCR melting curve analysis of the 18th base pair SNP provided additional 

information about the genetic structure of the ITS region. The real time PCR primers (see Table 

4) provided sufficient amplification for the melting curve capture step (see Figures 6 and 7). The 

melting curve analysis of the 33 male fleas resulted in the positive grouping of 11 of 12 P. 

simulans and 19 of21 P. irritans. The 3 fleas (2 P. irritans and 1 P. simulans) cross grouped. 
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Figure 6. Normalized Melt Curve. The red lines indicate 15 P. irritans samples, while 
the green lines indicate 9 P. simulans samples. 

0.02 r· 
0.01 

~ 0.00 
a: 
G) g -0.01 

! 
£ -002 
0 

-0.03 

-0.04 

87 88 89 

Difference Curve 

90 

Temperature 

91 92 93 

Figure 7. Difference Curve. As in Figure 6 the red lines indicate P. irritans, green lines 
indicate P. simulans. The Difference RFU (relative fluorescence units) measures the 
amount of sample fluorescence relative to others in the study. 
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IV. Discussion 

It was originally thought that there would be a consistent difference between the ITS 

region of the P. irritans and P. simulans. However, as the gel-electrophoresis images suggest 

there was large variations in the ITS fragment size, irrespective of species (see Figure 5). This 

was also confirmed in the sequence data of the 31 Pulex males. There are large gaps where there 

is no consensus among the 31 samples, regardless of the species (see Appendix 1 for an example 

with 3 samples). 

This was unexpected and created the need to employ a new and unplanned genetic 

differentiation technique. The 31 DNA samples that were sequenced show SNPs in regions that 

are conserved within species (see Appendix 1 ). The SNP chosen for the study on the 18th base 

pair provided high reliability (90.9%) in identifying male fleas to the species level. 

However, identification was not always correct as 3 of the 33 males in the genetic study 

cross-grouped. One explanation for this could be that the species specific SNP difference 

(Thymine for P. simulans and Cytosine for P. irritans) was not true. This could be the result of 

the rapid evolutionary nature of the ITS region. It may also be the case that the primer binding 

affinity is not high enough to bind solely to the correct SNP. 

Additional research is needed to provide higher fidelity of the real time PCR melting 

curve differentiation technique. This may be accomplished by including additional SNP 

dependent primers in the study to create a multi-SNP identification protocol. It will also be 

important to include fleas from other geographic sites. This will provide generalizability of the 

genetic marker for P. irritans and P. simulans. 
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Appendix: CLUST AL 2.1 multiple sequence alignment of 3 Pulex males. The yellow highlight 
denotes the 18th nucleotide SNP used in the study. The red highlighted regions denote other 
potential SNPs for future study. The underlined nucleotides denote the regions targeted by the 
real time PCR primers. 

P. simulans - Peru 
P. irritans - Colorado 
P. irritans - Peru 

P. simulans - Peru 
P. irritans - Colorado 
P. irritans - Peru 

P. simulans - Peru 
P. irritans - Colorado 
P. irritans - Peru 

P. simulans - Peru 
P. irritans - Colorado 
P. irritans - Peru 

P. simulans - Peru 
P. irritans - Colorado 
P. irritans - Peru 

P. simulans - Peru 
P. irritans - Colorado 
P. irritans - Peru 

P. simulans - Peru 
P. irritans - Colorado 
P. irritans - Peru 

P. simulans - Peru 
P. irritans - Colorado 
P. irritans - Peru 

P. simulans - Peru 
P. irritans - Colorado 
P. irritans - Peru 

P. simulans - Peru 
P. irritans - Colorado 
P. irritans - Peru 

P. simulans - Peru 
P. irritans - Colorado 
P. irritans - Peru 

P. simulans - Peru 
P. irritans - Colorado 
P. irritans - Peru 

TGCGCGGCAGCGTCGTATGACATTGCCGATGTTGCTGGGAAGATGACCAAACTTGATTAT 60 
TGCGCGGCAGCGTCGTACGACATTGCCGATGTTGCTGGGAAGATGACCAAACTTGATTAT 60 
TGCGCGGCAGCGTCGTACGACATTGCCGATGTTGCTGGGAAGATGACCAAACTTGATTAT 60 
***************** ****************************************** 

TTAGAGGAAGTAAAAGTCGTAACAAGGTTTTCGTAGGTGAACCTGCGGAAGGATCATTAA 120 
TTAGAGGAAGTAAAAGTCGTAACAAGGTTTTCGTAGGTGAACCTGCGGAAGGATCATTAA 120 
TTAGAGGAAGTAAAAGTCGTAACAAGGTTTTCGTAGGTGAACCTGCGGAAGGATCATTAT 120 
*********************************************************** 

CGTGTTACATTT----TGCAATAAATGTAAATAAAACG TGCGGACGTTGTCTGAAAAC 176 
CGTGTTACATTT----TGCAATAAATGTAAATGAAACGT TGCGGACGTTGTCTGACAAC 176 
CGTA--ACATTTACATCGTAAATAATGTAAATTTAACGT ATAGACGTTGTCT---TAC 175 
*** ****** * ** ********* ***** ********** ** 

GACGACGTCGATAAATTTTAAGCGGCGCGCGTCGATG CGGCCTATCTCATCGATAGCC 236 
GACGACGTCGATAAATTTTAAGCGTCGCGCGGCGATG CGGCCTATCTCATCGATAGCC 236 
GACGACGTCGATAAATCTTCAGCGACGCGCGTCGATG CGGCCTATCTCATCGATAGCC 235 
**************** ** **** ****** ****** ********************* 

GACCGGAGTGCGTCGCTACAAA AGCTCGACAGGGCGCATCGCCGT TTCTTTCGCGT 296 
GACCGGAGTGCGTCGCTACAAAC AGCTCGACAGGGCACATCGCCGT TCTTTCGCGT 296 
GACCGGAGTGCGTCGCTACAAAC GAGCTCGACAGGGCGCCTCGCCG TTCTTTCGCGT 295 
*********************** ************** * ******* *********** 

CTCCGTACGACGATCGATCTACGACGATAGAI CCCGTCGCT----------------- 339 
CTCCGTACGACGATCGATCTACGACGATAAA CCCGTCGCGAACAGGTTACCTCGACA 356 
CTCCGTACGACGATCGATCTACGACG--AGA CCCGTCGC------------------ 335 
************************** * ** ********* 

------------------------------------CGATCAATTCAGCGATGATTGAGT 363 
GGGCGCATCGCCGTTTTCTTTCGCGTCTCCGGACGACGATCGATCTA-CGACGATAAAGT 415 

--------TCGATG------CTCGACAGGGCGCATCGCCGTGTTCTTTCGCGTCTCCGTA 409 
GCCCGTCGCCAACGGGTTACCTCGACAGGGCGCATCGCCGTTTTCTTTCGCGTCTCCGTA 475 
---------------------TCGAC----------------------CGTGTTACCCTA 352 

***** ** ** ** ** 

CGACGATCGATCTACGACGATATAGCGCCCGTCGC------------TCGAC-------- 449 
CGACGATCGATCTACGACGATAAAGTGCCCGTCGCGAACAGGTTACCTCGACAGGGCGCA 535 
CG---------------------------------------------------------- 354 
** 

---------------------------------CAATTTA-------------------- 456 
TCGCCGTTTTCTTTCGCGTCTCCGGACGACGATCGATCTACGACGATAAAGTGCCCGTCG 595 

CCAACGGGTTACCTCGACAGGGCGCATCGCCGTTTTCTTTCGCGTCTCCGGACGACGATC 655 

-----GCGATGATTTAGT------ - -TCGATG------CTCGACAGGGCGCATCGCCGTG 497 
GATCTACGACGATATAGTGCCCGTCGCSAACGGGTTACCTCGACAGGGCGCATCGCCGTT 715 
-------------------------------------- - ------GGG------------ 357 

*** 
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P. simulans - Peru 
P. irritans - Colorado 
P. irritans - Peru 

P. simulans - Peru 
P. irritans - Colorado 
P. irritans - Peru 

P. simulans - Peru 
P. irritans - Colorado 
P. irritans - Peru 

P. simulans - Peru 
P. irritans - Colorado 
P . irritans - Peru 

P. simulans - Peru 
P. irritans - Colorado 
P. irritans - Peru 

P. simulans - Peru 
P. irritans - Colorado 
P. irritans - Peru 

P. simulans - Peru 
P. irritans - Colorado 
P. irritans - Peru 

P. simulans - Peru 
P. irritans - Colorado 
P. irritans - Peru 

P. simuldns - Peru 
P. irritans - Colorado 
P. irritans - Peru 

P. simulans - Peru 
P. irritans - Colorado 
P . irritans - Peru 

TTCTTTCGCGTCTCCGTACGACGATCGATCTACGACGATAGAGCGCCCGTCGCTCGATC- 556 
TTCTTTCGCGTCTCCGGACGACGATCGATCTACGACGATATAGTGCCCGTCGCTCGACCG 775 
----TTCAC--------------------------------------------------- 362 

*** * 

-------------------------AATTTAGCGATGATTGAGTTCGATGCGACGATTAG 591 
TGTTAACCCACGGGGTTCAAAACACAATTTAGCGATGATTGAGTTCGATGCGACGATTAG 835 
-------------------------AATTTGGCGATGCTGGAGTTCGATGCGACGATTAG 397 

***** ****** * ******************** 

GTCTCGACCGCGGCGCTCGATACTCTGTGTGTGAGACATCTGCTATATAAAATACCTGCT 651 
GTCTCGACCGCGGCGCTCGATACTCTGTGTGTGAGACATCTGCTATATAAAATACCTGCT 895 
GTCTCGACCGCGGCGCTCGATACTCTGTGTGTGAGGCATCTGCTATATAAAATACCTGCT 457 
*********************************** ************************ 

CCGTATCATC 
CCGTATCATC 
CCGTATCATC 

GATGCGTGAGCGAATTTE AAGGCATCGCTC, GGCG--TCCTTTTTA 
GATGCGTGAGCGAATTT GAAGGCATCGCTT GGCG--TCCTTTTTA 
GATGCGTGAGCGAATAT GGCATCGCTC AGCGCGTCCTTTTTA 

********** *************** * *********** * *** ********* 

AATCACTGATGAATG 
A--CACTGATGAATG 
AATCACTGATGAATGC 

GTGTTTGAATCGAATTCGTCGTTC, CGACGATTCTTTTCAT 
GTGTTTGAATCGAATTCGTCGTTC CGACGATTCTTTTCAT 

TGCTTGAATCGAATTCGTCGTTCC TCGACAATTCTTTTCAT 
* ************* *** ******************** ***** *********** 

709 
953 
517 

768 
1011 
577 

GTTAATCGCACTCGCATT AGTCAAGCTGCTCGATC 
GTTAATCGCACTCGCATT CAGTCA----GCTCGATC 
GATAATCGCTCTCGCATT AGTCG----GCTCGATC 

CACTTCGTGCGATCGTGCGA 828 
CACTTCGTGCGATCGTGCGA 1067 
CACTTCGTGCGATCGTGCGA 633 

* ******* ******** ***** ********* ********************* 

ATGACGGGC CGCGTAACTGCGTCGCTCTAGATTACGGAATATTGC CAAGACGACA 888 
ATGACGGGC TCGCGTAACTGCGTCGCTCTAGATTACGGAATATTGC AAGACGACA 1127 
ATGACGGGC CGCTTAACGGCGTCGCTCTAGATTACGGAATATTGC CGAGACGACA 693 
********** **** **** **************************** * ******** 

GTTCATTGGAAAGTTGTCGAATCGCATTTTCC CTATCACACAAAATCAATACCGTTTTG 948 
GTTCATTGGAAAGTTGTCGAATCGCATTTTC TATCACACAAAATCAATACCGTTTTG 1187 
GTTCATTGGAAAGTTGTCGAATCGCATTTTCC CTATCACACAAAATCAATACCGTTTTG 753 
******************************** *************************** 

ATAAAAACCGAAAGCGTAAAGCTCGAGGTGTACGAATTGTAACTTGAAACATAT CAAT 1008 
ATAAATACCGAAAGCGTAAAGCTCGAGGTGTACGAATTGTAACTTGAAACATAT CAAT 1247 
ATAAAGACCGAAAGCGTAAAGCTCGAGGTGTACGAATTGTAACTTAAAACATAT 813 
***** *************************************** ******** ***** 

TTTCGATAA-CGACTCCCCATCGGTGACGTTGGCGTGCAGTCGATCGAAAGCCGGTAAA 1066 
TTTCGATAAACGAC-CCCCATCGGTGACGTTGGCGTGCAGTCGATCGAAAGCCG----- 1300 
TTTCGATAA-CGAC-CCCCATC------------------------------------- 833 
********* **** ******* 
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