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ABSTRACT 

Individuals with normal hearing are adept at understanding speech in the presence of noise, such 

as other speakers or environmental sounds. In contrast , individuals with hearing loss struggle to 

understand speech in the same adverse conditions. Neural processing in the inferior colliculus 

(IC) of the brainstem appears to contribute to the ability to separate simultaneous competing 

sounds . A computational model developed in the Sinex lab reproduces the responses of IC 

neurons to complex sound mixtures. It seems likely that the model can be applied to improve the 

processing of speech in noise. The computational model 's effectiveness at improving the 

processing of speech in noise is evaluated through a perceptual experiment which uses the model 

to process sentences that are then presented to listeners . The experiment's data are analyzed to 

evaluate the pattern of errors. The analysis shows that low frequency speech features are being 

accurately transmitted by the model while high frequency speech features are not. This pattern 

suggests ways in which the computational model may be improved . Possible technological and 

clinical applications of the computational model for individuals with hearing loss will also be 

discussed . 
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1. Introduction 

Individuals with normal hearing are adept at understanding speech in the presence of 

noise, such as other speakers or environmental sounds. In contrast, individuals with hearing loss 

struggle to understand speech in the same adverse conditions. Individuals with normal hearing 

are able to take in several sounds at once and process the sounds individually , a process called 

sound-source determination (Yost, 1992). Sounds from a listening environment sum together 

and enter the auditory system in a single waveform (Yost, 1992). Sounds have different 

frequency , time , and amplitude components (Yost, 1992). The auditory system must then match 

the components of frequency, time, and amplitude that belong together from a single source 

:i (Yost , 1992). 

11 

Auditory neurophysiological models are better able to replicate the auditory pathway by 

breaking the auditory system into smaller components which mimic parts of a normal listener 's 

auditory system. When all of the smaller components are added together , they provide an 

overview of how the auditory system works. Hay kin and Chen (2005) comment that a 

computational model of the auditory system does not require that every part of the auditory 

system be replicated in a model , just the parts that provide enough information to form a picture 

of how the auditory system works. Researchers can contribute a more accurate component to a 

computational model ; however a final computational model that describes how the auditory 

system works will depend on the combined efforts of the hearing research community (Meddis & 

Lopez-Poveda , 2010b). 

Computational models of the auditory system have both technological and clinical 

applications . Computational models might be used to improve voice recognition programs in 
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computers (Meddis & Lopez-Poveda , 2010a) such as HeyTell and Siri. Computational methods 

which aim to reduce the noise in speech can also be applied to hearing aids and cochlear 

implants for those who struggle with hearing loss (Bentler and Chiou , 2006; Wang, 2008; Wang 

et al., 2009). 

The neurological mechanisms responsible for sound-source determination are just 

beginning to be understood; for example Sinex et al. (2005) have researched responses of the 

brainstem ' s inferior colliculus (IC) neurons in chinchillas. The results from their study have 

produced a computational model for sound source determination in the auditory system 

applicable to humans (Sinex et. al 2005 , Sinex, 2008) . The model developed by the Sinex lab 

imitates the discharge responses of neurons in the IC thought to be responsible for sound source 

determination (Sinex et al., 2005) . 

As a first step toward evaluations , the model was used to process speech consonants and 

vowels. This experiment focused on the ability of the processing method to transmit three 

speech features : consonant voicing , consonant place of articulation , and vowel place of 

articulation . The processed speech sounds were then presented to listeners in a psychophysical 

experiment. Evaluation of the model ' s ability to reduce noise was accomplished by calculating 

Information Transfer (IT) . 

2. Computational Phase 

2.1 Model Description 

The auditory neurophysiological model consists of four sequential stages and a 

neurophysiologically-based binary mask (NBBM). The four stages simulate the responses of 
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neurons in the auditory nervous system. The NBBM is the part of the model that attempts to 

reduce the noise in speech . 

2.1.1 Stage 1 

Stage 1 of the model is provided by Zilany et al. who have made their computer 

program available for other auditory researchers. Stage 1 simulates the synapse 

responses of the inner hair cell (IHC) and auditory nerve (AN) fibers. Zilany et al. (2009) 

have been able to more closely match physiological data at the IHC-AN synapse, the first 

in the auditory pathway , by including power-law adaptation in their model to explain the 

long term adaptation at the IHC-AN synapse. 

2.1.2 Stage 2 

Stage 2 of the model simulates the responses of cochlear nucleus neurons (Sinex , 

2008). Cochlear nucleus neurons , located in the brainstem , receive their input from AN 

fibers. Cochlear neuron s relay information from the AN fibers to inferior colliculus (IC) 

neurons. Neural discharge responses from cochlear nucleus neurons can resemble those 

of AN fiber discharge responses , IC discharge responses, or responses in between AN 

fibers and IC neurons (Sinex , 2008). The computer program for this stage was developed 

in the Sinex lab. 

2.1.3 Stage 3 

Stage 3 of the model simulates the responses ofIC neurons located in the 

midbrain . IC neurons are important to the auditory nervous system because they are 

believed to make a major contribution to sound source determination (Sinex, 2005). IC 

neurons have been shown to exhibit enormous responses to mistuned stimuli in 

comparison to AN fibers , making the inclusion of IC neurons in auditory 
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neurophysiological models essential (Sinex , 2005). Additionally , neural inhibition has 

been found to play an important role in determining the temporal discharge patterns of IC 

responses (Li et al., 2006). The computer program for this stage of the model was 

developed in the Sinex lab. 

2.1.4 Stage 4 

Stage 4 of the model is the last in a sequence of neural responses for the auditory 

nervous system. In this stage, the model simulates the responses of modulation sensitive 

neurons in the auditory pathway. The auditory cortex contains regions of neurons that 

are excitatory and regions of neurons that are inhibitory (Schreiner , 1995). Excitatory 

regions occur in the ventral auditory primary cortex and between the dorsal and central 

auditory primary cortex , while inhibition occurs at the dorsal side of the primary and 

secondary auditory cortex (Schreiner , 1995). Many of the neurons in the auditory 

pathway exhibit selectivity for modulation frequency . Neurons with this selectivity will 

have a stronger response to the amplitude envelopes of sounds that rise and fall at 

particular rate (Sinex et al., 2003). The simulated neuron response program was 

developed in the Sinex lab. 

2.1.5 Neurophysiologically-based Binary Mask (NBBM) 

At the end of Stage 4 the NBBM is applied in order to extract the target speech of 

the sentence from the background noise . The objective of the NBBM is to retrieve the 

entire sentence noise-free. 

The NBBM is a modification of an "ideal binary mask." An ideal binary mask has 

the ability to reduce the noise in speech; however prior knowledge of the speech is 
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required (Wang, 2005). This is impractical for everyday use in a hearing device because 

conversations are not scripted. NBBMs are a unique and novel approach because they 

rely on the physiological responses of the auditory system. 

For a target signal mixed with some type of interference signal, the binary mask 

acts as a filter (Brungart et al., 2006). If the interference signal is stronger than the target 

signal , that part of the overall signal is designated as a zero (Brungart et al. , 2006) . 

Conversely , a part of the signal where the target signal is greater than the interference 

signal is designated as with a one (Brungart et al. , 2006). The binary mask rejects the 

parts of the signal designated with a zero and passes the parts of the signal designated 

with a one (Brungart et al., 2006) . 

2.2 Stimulus Processing 

2.2. 1 Speech Features 

Consonant speech features commonly studied in auditory psychoph ysical 

experiments are voicing , nasality , affrication , duration , place of articulation , and 

envelope (Miller & Nicely , 1955 ; Sagi & Svirsky , 2008). For simplicity , two consonant 

speech features were used in this experiment ; those of consonant voicing and consonant 

place of articulation. 

A consonant is considered voiced if the vocal cords vibrate during a consonant's 

articulation , while a consonant is considered voiceless if the vocal cords do not vibrate 

during articulation (Miller & Nicely , 1955). The consonants b, d, and g are examples of 

voiced consonants and were used in this experiment. The consonants p, t, and k are 

examples of voiceless consonants used in this experiment. 
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Consonant place of articulation describes consonants according to where the vocal 

tract is constricted to produce the consonant. The consonants p and b are bilabial, 

referring to a constriction formed at the lips (Miller & Nicely , 1955). Consonants t and d 

are alveolar; they are articulated with a constriction behind the teeth (Miller & Nicely, 

1955). Consonants k and g are velar; they are articulated with a constriction between the 

tongue and the velum of the soft palate (Miller & Nicely, 1955; Wells & House, 1995). 

The third speech feature used was vowel place of articulation. Vowel place of 

articulation can be divided into dimensions of tongue height, tongue position, and lip 

posture (Pfitzinger & Niebuhr , 2011 ). For this experiment, vowel place of articulation 

refers to the position of the tongue for the phonemes /ae/ (as in "hat") and /ah/ (as in 

"hot"). Tongue position has significance to vowels because it determines the formants, 

or peaks in the spectral profile of a sentence (see Sinex, 2012 for a review). Each vowel 

phoneme has a characteristic difference in peaks , or formants (Sinex , 2012). Using the 

formant information provided by tongue position , listeners are able to distinguish 

between different vowel phonemes (Sinex , 2012) . 

2.2.2 Materials and Methods 

All sentences were prerecorded with a microphone (Shure Beta 58A) in a sound 

booth (Industrial Acoustics Company, New York) and digitized using custom software 

written in Matlab (The Mathworks, Natick MA). Each sentence contained the carrier 

phrase "Say the word" and one of twelve consonant-vowel syllables (e.g ., /bah/ as in 

"bother " or bae as in "bat "). All consonant-vowel syllables contained one of six 

consonants (b, d, g, p, t, k) and one of two vowel phonemes (/ae/ or /ah/). The carrier 
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phrase was recorded first. The twelve consonant vowel syllables were later recorded and 

added to the end of the carrier phrase using Adobe Audition 1.5. The sentences were 

mixed with noise and processed through the model using Matlab. 

2.3 Model Results 

The neurophysiological model of the auditory system shows reduction of noise in speech. 

The figure below (Fig. 1) is a spectrogram of the sentence "Say the word /tah/" at -4 dB SNR. 

The SNR level of -4 is approximate to the level that the psychophysical data were collected. The 

sentence "Say the word /tah/" is representative; all sentences show the same general results. The 

vertical axis of Fig. 1 is the frequency in kHz and the horizontal axis is the time in msec. The 

color maps on the right show the amplitude measured in dB sound pressure level (dB SPL). The 

sound pressure level at 60 dB SPL is 60 dB above 20µPa. The range of 40 to 60 dB SPL was 

chosen to highlight the amplitude peaks and valleys. The red coloring in the spectrogram 

indicates spectral components with the highest amplitude. 

The upper panel of Fig. 1 shows the spectrogram of the original recorded sentence "Say the 

word /tah/." There are both high and low frequency components to this sentence. The high 

frequency components of the sentence are located in the top portion of the upper panel. The low 

frequency components of speech are shown in the bottom portion of the upper panel. 

The middle panel of Fig. 1 shows the sentence processed by the model , as indicated by the 

label "re-synthesized speech." The sentence (shown in the lower panel) has undergone 

simulation responses of the neurons in the model (AN, cochlear nucleus neurons , IC, and 

modulation sensitive neurons) and had a NBBM applied. The aim is for the processed sentence 

(lower panel) to be identical or nearly identical to the original sentence (upper panel) . 
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Figure/. Spectrograms of the sentence "Say the word /tah/" at -4 dB SNR. Frequency is 
provided in kHz on the left vertical axis. Time is shown in msec on the horizontal axis. The 
color maps on the right measure amplitude intensity in dB SPL . Upper panel : Spectrogram of 
the original sentence. Middle panel: Spectrogram of the sentence processed by the model. 
Lower panel : Spectrogram of the sentence mixed with noise . Noise appears as a rough overlay. 

The lower panel of Fig. 1 shows the original sentence mixed with noise. The noise 

disruption of the spectral pattern to the original sentence ( upper panel) is clearly visible, as light 

blue and yellow patches. The high frequency speech features of the lower panel are nearly 

indistinguishable; they have almost completely been masked with noise. The low frequency 

speech features are also masked with noise, however not to the extent of high frequency speech 

features. 

The processed sentence (lower panel) is presented to the listener during the perceptual phase 

of the experiment. Figure 1 depicts the efficiency of the computational model to reduce noise. 
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The lower panel shows a loss in the high frequency components of speech when compared to the 

original sentence in the upper panel. However, the model does succeed in the main objective: 

reducing noise in speech . The sentence processed by the model (middle panel) shows clear 

reduction in noise when compared to the sentence mixed with noise (lower panel). 

3. Psychophysical Phase 

3.1 Listeners 

Six listeners (2 males, 4 females; median age 24.5 years; age range of 20-63 years) 

participated in this experiment. All procedures were approved by the Institutional Review Board 

at Utah State University. Four listeners, including the author , were volunteers. The other two 

listeners were provided an hourly compensation for their time. Listeners provided Informed 

Consent and were assigned a personal identification number for confidentiality purposes. All 

listeners were given a brief hearing test prior to starting the experiment. Only subjects with 

normal hearing thresholds were allowed to participate . After completing the hearing test, 

subjects listened in the sound booth to a series of sentences . 

3.2 Materials 

All sentences were played over Sennheiser HD 280 pro 64 0 headphones. Custom Matlab 

software was used to present the hearing test prior to the experiment , as well as the re­

synthes ized sentences to listeners during the experiment. The stimulus levels were specified in 

decibel signal to noise ratio (dB SNR). For this experiment dB SNR is defined as the speech 

level of the sentences in dB minus the noise level in dB. Listeners hearing the sentence mixed 
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with noise are expected to have thresholds at -6 dB SNR when unprocessed by the model (Sinex, 

Unpublished Observations). 

Listeners' data were analyzed using custom Matlab software , GraphPad Prism 4, and 

Microsoft Excel. Results from each listener were pooled based on the three speech features used 

in this study and statistical analysis was conducted with a= 0.05 using a one way repeated­

measures analysis of variance (RMANOVA), also using Graphpad Prism. 

3.3 Methods 

The parts of the target speech, isolated by the NBBM of the model , were presented to the 

listeners in the experiment. All sentences were repeated four times throughout one block , for a 

total of 48 sentences during one block. Listeners continued to the next block of sentences, 

decreasing SNR by 2 dB each time. When the SNR range that produces a proportion correct or 

p( c ), of 0.50 was identified. The listener then completed several blocks at that SNR range . A 

p( c) of 0.5 indicated a listener had half correct , half incorrect responses to the stimuli, ensuring 

errors to test the model ' s effectiveness. After closer evaluation, the p( c) over these blocks 

ranged from 0.30 to 0.70 . The listener's data were coded into matrices with a stimulus and the 

possible listener responses to that stimulus, known as a confusion matrix , to analyze the pattern 

of errors (Miller & Nicely, 1955) . 

3.4 Results 

3.4. 1 Confusion Matrices 

The confusion matrix of all listeners ' data in this experiment is shown in Table 1. 

The stimuli presented to the listener appear on the vertical axis while the listeners' 
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responses appear on the horizontal axis. Numbers on the diagonal axis of the confusion 

matrix show a correct response to a stimulus. Numbers off the diagonal axis that are 

greater than zero show the listeners' incorrect responses to the presented stimulus. As 

shown in Table I, the pattern of errors in the perception of speech is not random. Some 

errors are very likely to occur (e.g., the stimulus /tah/ confused as the stimulus /pah/) 

while other errors are not likely to occur at all ( e.g., the stimulus /tah/ confused as the 

stimulus /bae/). 

TABLE I. Confusion matrix of all listeners' data . The vertical axis corresponds to the stimulus that was presented 
(e.g. , /bah / indicates the sentence "Say the word /bah/" was played). The horizontal axis corresponds to the listener's 
response to the presented stimulus (e.g., /pah/ indicates the listener choose the box labeled ' /pah/'). The confusion 
matrix shows the pattern of errors from all listeners' data. The numbers in the blue diagonal axis indicate the amount 
of correct pairings between a stimulus and the listener's response. Numbers greater than zero off the blue diagonal 
axis indicate a listener's response to a presented stimulus was incorrect. 

listener1s Response 
/bah/ /dah/ /gah/ /pah/ /tah/ /kah/ /bae/ /dae/ /gae/ /pae/ /tae/ /kae/ 

/bah/ 88 47 18 53 96 89 0 1 1 1 2 0 

/dah/ 1 329 57 0 1 0 0 8 0 0 0 0 

/gah/ 2 51 323 2 0 2 0 13 3 0 0 0 

/pah/ 39 5 3 257 72 15 0 0 0 3 1 1 
/tah/ 45 1 3 225 74 39 0 0 0 6 1 2 

/kah/ 108 5 38 112 48 72 9 0 0 1 1 2 
/bae/ 6 2 0 0 0 1 296 69 14 8 0 0 

/dae/ 3 12 1 0 1 0 74 278 26 0 1 0 

/gae/ 0 0 19 0 0 0 0 46 330 0 0 1 

/pae/ 0 0 0 35 19 0 2 1 0 199 58 82 

/tae/ 1 0 0 4 11 0 2 2 3 149 203 21 
/kae/ 0 0 0 5 1 4 26 2 2 105 23 228 
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Table I can be collapsed into a series of smaller matrices based upon the three 

binary speech features studied in this experiment. Tables II, III, and IV are the 

confusion matrices of the individual speech features in the consonant-vowel syllables 

presented to listeners. Like Table I, the numbers in the diagonal axis represent a correct 

pairing of stimulus and response while the numbers greater than zero off the diagonal 

axis show incorrect pairing of stimulus and response. The column totals in Tables II, III, 

and IV represent the number of times that a stimuli was presented. The row totals indicate 

the number of times a specific speech feature was choosen . If there were no perceptual 

errors, the column totals for the presented stimuli and the row totals of the listener's 

response would be the same. 

TABLE II. The confusion matrix shows the pattern of errors for the speech feature of consonant voicing. 
The vertical axis corresponds to the stimuli presented based upon a consonant's voicing. The horizontal 
axis corresponds to the listener 's response based upon a consonant's voicing. Correct pairing of a 
stimulus with the consonant ' s voicing is shown by the numbers on the diagonal axis, while incorrect 
pairings are off the diagonal axis. A presented voiced consonant was confused to be a voiceless 
consonant 258 time s. The row of totals corresponds to the number of times a listener chose voiced or 
voiceless . The column of totals corresponds to the number of times a voiced or voiceless consonant was 
presented. 

Listeners' Response 
Voiced Voiceless Totals 

·- Voiced 2118 258 2376 ~ = e ·-....... 
Voiceless 297 2079 2376 00 

Totals 2415 2337 
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TABLE 111. The confusion matrix shows the pattern of errors for the speech feature of consonant place of 
articulation. The vertical axis corresponds to the stimuli presented based upon a consonant's place of 
articulation. The horizontal axis corresponds to the listener ' s response based upon a consonant ' s place of 

articulation. Correct pairing of a stimu lus with the consonant's place of articu lation is shown by the numbers 
on the diagonal axis, while incorrect pairings are off the diagonal axis. A consonant articulated bilabially was 
confused to be a consonant articu lated at the alveo lars 373 times. The row of totals corresponds to the number 
of times a listener chose a place of articulation. The column of totals corresponds to the number of times a 
consonant's place of articulation was presented. 

.... -= e .... .... 
00 

Bilabial 

Alveolar 

Velar 

Totals 

Listeners' Response 
Bilabial Alveolar Velar Totals 

987 373 224 1584 

510 922 152 1584 

370 190 1024 1584 
1867 1485 1400 

TABLE IV. The confusion matrix shows the pattern of errors for the speech feature of vowel p lace of 
articulation. The two vowel phonemes /ae/ and /ah/ differ in their place of a1ticulation . The vertical axis 

corresponds to the stimuli presented based upon a vowel ' s place of articulation. The horizontal axis corresponds 
to the listener ' s response based upon a vowel's place of articulation . Correct pairing of a stimulus with the 
vowel ' s place of articulation is shown by the numbers on the diagonal axis , while incorrect pairings are off the 
diagonal axis . The presented vowel phoneme /ae/was confused with the vowel phoneme /ah/ 56 times in 2376 
trials . The row of totals corresponds to the number of times a listener chose a vowel phoneme. The column of 
totals corresponds to the number of times a vowe l phoneme of articulation was presented. 

Listeners' Response 
/ae/ /ah/ Totals 

"'0 
~ ..... /ae/ 2118 258 2376 ~ ...... = = ~ 8 rlj ..... 
~ ...... 

/ah/ 297 2079 2376 ;... 00 
~ 

Totals 2445 2307 
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3.4.2 IT Analysis 

The confusion matrices from this experiment show perceptual errors; however it 

is not possible to quantify these errors from a matrix. An equation provided by Miller and 

Nicely (1955) has the ability to quantify errors using a measure ofIT. The equation for 

IT is shown below : 

I 
IT=­

H 

""'"' l1_r n X ""'"' fl \' f1 ,. ""'"' ""'"' /1. .n · fl X\' - ~ - loo - - ~ - loo - + ~ ~ - loo -
x N oN Y N oN xy N oN 

- L Px lo g pr 
X 

(1) 

In Equation (1) IT is the measure of information transmitted. The amount of 

information in the listeners ' responses , calculated from the confusion matrix, is 

represented by the variable /. The variable H represents the amount of information in the 

stimuli . The total number of sentences presented to a listener is indicated by N. Variable 

x corresponds to stimuli presented while variable y corresponds to the listeners ' 

responses. Variable nx is therefore the number of times a sentence was presented (the 

sum of a row in a confusion matrix) and ny is the number of times a listener made a 

response (the sum of a column in a confusion matrix). The variable Px corresponds to the 

true probability that a certain consonant vowel syllable was presented to the listener. For 

a more detailed description of this equation refer to Sagi and Svirsky (2008) . 

Data from one representative listener (Listener E) at -4 dB SNR are shown in 

Figure 3. The vertica l axis shows IT in percent for each speech feature . The horizontal 
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axis of Block# indicates how many blocks of sentences the individual listened to with a 

p(c) close to 0.50. The lone symbols apart from the rest of the data represent the average 

IT of a speech feature for an individual. 

Listener E 

100 
~ I 

75 __.,_ c voicing IT - ---- C place IT ~ 0 

I - 50 ~ vowel IT .,_ 

25 I 
0 

0 5 10 15 
Block# 

In Fig . 3, vowel IT refers to the IT for vowel place of articulation , c place IT 

refers to the IT value for consonant place of articulation , and c voicing IT refers to the IT 

for consonant voicing. The speech feature vowel place of articulation was most 

accurately transmitted by the model with an average IT of 98. 74%. This means that over 

98% of the information for the vowel place of articulation was transmitted by the model 

to the listener. With an average of 21.16% IT, consonant place was the least accurately 

transmitted speech feature by the model. Averaging 45.15 % IT, the speech feature of 
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consonant voicing falls between vowel place of articulation and consonant place of 

articulation. Results from all other listeners are shown in Figures 3-7. 

Listener A 

100 

75 

-~ 0 - 50 

~ 
I-

25 

0 
0 5 10 15 

Block# 

Figure 3. Results from listener A. 
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Figure 4. Results from listener B. 
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Listener C 
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Figure 5. Resu lts from listener C. 
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Figure 6. Results from liste ner D. 
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Figur e 7. Resu lts from listener F. 

......,. c voicing IT 

...... c place IT 

-+- vowel IT 

Figure 8 displays the pooled data for the listeners in this experimenL The bar on 

the far right indicate s a vowel place of articulation with an IT value of77.02 %. Vowel 

place of articulation was most accurately transmitted by the model. The middle bar 

representing consonant place of articu lation has an IT value of 17.57 % and was least 

accurately transmitted by the model. The bar on the far left represents the consonant 

voicing speech feature . With an IT value of 48.02% this speech feature falls between the 

other speech features of this experiment. Statistical analysis using RMANOVA showed 

the means of consonant voicing , consonant place of articu lation , and vowe l place of 

articulation significantly different (p < 0.0005) . 
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- 60 tfi. -I- 40 -
20 
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c voicing c place vowel 

Figure 8. Results from all listeners. The horizontal axis designates the speech features . 

The vertical axis gives the IT value in percent. The blue bar (right) represents the pooled 
IT value for vowel place of articulation. The green par (middle) represents the pooled IT 
value for consonant place of articulation . The pink bar (left) represents the pooled IT 
value for consonant voicing . 

4. Discussion 

Auditory computational models are currently being developed to reduce the noise in 

speech (Sinex et al. , 2005; Zilany et al. , 2009). Research advances in noise rejection could be 

implemented in speech recognition programs for computers (Meddis & Lopez-Poveda , 20 l 0a). 

Noise reduction in speech recognition programs could lead to decreased errors caused by 

interfering noise in speech. A noise reduction program could also enable people to use speech 

recognition programs in an environment that presents adverse listening conditions. 
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Noise rejection models can also be used to improve cochlear implants and hearing 

devices. Those who suffer from hearing loss have a greater struggle in reducing the noise in 

speech compared to a normal hearing listener. The use of a hearing device is sometimes helpful, 

in quiet conditions; however they are not so effective in noise. Current hearing devices are met 

with certain problems: 1) an increase in gain limits the audibility of speech because noise is 

amplified along with the speech, and 2) a decrease in gain would mean a decrease in noise along 

with speech, defeating the purpose of a hearing device to aid those with hearing loss (Bentler & 

Chiou , 2006) . Many that are deaf or hard of hearing find the amplified noise in a hearing device 

to be a problem. Some chose to not use hearing devices because of the increased noise 

interruption. Research advances can be used to improve the quality of life for an individual who 

has suffered from hearing loss , making social events more enjoyable. 

The computational model developed in the Sinex lab has the ability to reduce noise in 

speech. The model produced a clear reduction in noise, as shown in Fig. 1. Figure 1 also shows 

that the high frequency components of speech are being lost while processed in the model. 

Similarly , results from the perceptual experiment (Figures 2-8) indicate that the speech features 

of consonant voicing and vowel place of articulation , which are primarily low frequency , are 

more accurately transmitted by the model than consonant place of articulation , which is primarily 

high frequency. 

Low frequency neurons are able to respond directly to low frequency tones , while high 

frequency neurons of the auditory system respond indirectly to low frequency tones. This 

difference in direct or indirect response can be attributed to the wider tuning curve of high 

frequency neurons which allows for summation of frequencies to occur. Although two beats 

may have the same frequencies, they can differ in amplitude modulation. A deeply modulated 
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beat will have a large difference in the peaks and valleys in the wave. A shallowly modulated 

beat will have a small difference in the peaks and valleys of the wave. Shallow modulation may 

contribute to the model's decreased capability to transmit high frequency components of speech . 

In the perceptual experiment conducted, listeners achieved a proportion correct (p(c)) of 

0.50 at SNRs ranging Oto -4 dB when sentences were processed by the model. This indicates 

noise reduction by the model , as listeners are expected to have a threshold of -6 dB without 

processing by the model (Sinex , Unpublished Observations). 

Although the high frequencies of speech are lost in processing, the computational model 

developed by the Sinex lab achieves the aim of reducing noise in speech. More research should 

be conducted to increase the reduction the noise even further than that achieved with this model. 

Improvements made to the computational model developed in the Sinex lab may allow the model 

to become beneficial in technological and clinical applications . 

21 



Acknowledgments 

Supported by National Institutes of Health grant DC010615. Special thanks to Dr. Sinex 
for his guidance and support of this project. Thanks are also due to Dr. Adams and Richard and 
Karen Waters for their comments. 

Reference s 

Bentler , R. , & Chiou , L. K. (2006) . Digital noise reduction: an overview. Trends in 

Amplification. 10 (2) , 67-82. 

Brungart , D.S. , Chang , P. S., Simpson , B. 0. , & Wang , D. (2006). Isolating the energetic 

component of speech-on-speech masking with ideal time -frequency segregation. Journal 

of the Acoustical Society of America , 120 ( 6) , 4007-4018 . 

Haykin , S. , & Chen , Z. (2005). The cocktail party problem . Neural Computation , 17(9), 1875-

1902 . 

Li , H. , Sabes , J.H. , & Sinex , D.G . (2006) . Responses of inferior colliculus neurons to SAM 

tone s located in inhibitory response areas . Hear. Res. , 220, 116-125. 

Meddis , R. & Lopez-Poveda , E. A. (2010a) . Auditory periphery: From pinna to auditory nerve. 

In R . Meddis , E. A. Lopez-Poveda , A. N . Popper , & R.R . Fay (Eds .), Computational 

models of the auditory system (pp. 7-38). New York , NY: Springer. 

Meddis , R. & Lopez-Poveda , E. A. (2010b) . Overview. In R. Meddis , E . A. Lopez-Poveda , A. N . 

Popper, & R. R. Fay (Eds.), Computational models of the auditory system (pp. 1-6). New 

York , NY : Springer . 

22 



Miller, G. A., & Nicely, P. E. (1955). An analysis of perceptual confusions among some 

English consonants. Journal of the Acoustical Society of America, 27 (2), 1243-1252. 

Pfitzinger, H. & Niebuhr, 0. (2011 ). Historical development of the phonetic vowel systems-The 

last 400 years. 

Sagi, E., & Svirsky, M.A. (2008). Information transfer analysis: A first look at estimation bias. 

Journal of the Acoustical Society of America , 123 (5), 2848-2857. 

Schreiner, C. E. (1995). Order and disorder in auditory cortical maps. Current Opinion in 

Neurobiology, 5, 489-496. 

Sinex , D.G. (2012). Complex vowel encoding- Vowels and consonants. In K. Tremblay & R 

Burkard. Translation perspectives in auditory neuroscience: Normal aspects of hearing 

(pp. 435-463) . 

Sinex , D. G. (2008) . Responses of cochlear nucleus neurons to harmonic and mistuned complex 

tones . Hearing Research, 238 (1-2), 39-48. 

Sinex , D. G. (2005). Spectral processing and sound source determination. International Review 

of Neurobiology, 70, 371-398 . 

Wang , D. L. (2005). On ideal binary mask as the computational goal of auditory scene analysis. 

Speech Separation by Humans and Machines. 181 : 197. 

Sinex, D.G., Guzik, H., Li, H. , & Henderson Sabes, J. (2003). Responses of auditory nerve 

fibers to harmonic and mistuned complex tones. Hearing Research, 182(1), 130-139. 

23 



Wang , D.L. (2008) . Time-frequency masking for speech separation and its potential for hearing 

aid design. Trends in Amplification. 12(4) 332-353. 

Wang , D.L. , Kjems , U., Pedersen, M.S. , Boldt, J.B ., & Lunner , T . (2009). Speech intelligibility 

in background noise with ideal binary time-frequency masking . The Journal of 

Acoustical Society of America , 125(4) 2336-2347. 

Wells , J. & House , J. (1995). The sounds of the International Phonetic Alphabet. UCL , London. 

Yost, W. A. (1992). Auditory perception and sound source determination . Current Directions In 

Psychological Science (Wiley-Blackwell) , 1(6) 179-184. 

Zilany , M. S. A. , Camey , L. H. , Bruce , I. C., & Nelson , P. C. (2009). A phenomenological model 

of the synapse between the inner hair cell and auditory nerve: Long-term adaptation with 

power-law dynamics. Journal of the Acoustical Society of America, 126 (5) , 2390-2412 . 

24 



AUTHOR'S BIOGRAPHY 

Born in Logan , Utah , Alysha Waters returned to Logan in 2009 after graduation from 
Northridge High in Layton , Utah . During the past few years at Utah State Alysha has been 
studying Biology and minoring in Chemistry and Psychology . She has served as a member of 
the Honors Student Council and a Head Mentor for the Honors Program. She is currently 
working on her application to medical school. 

25 


	An Evaluation of an Auditory Neurophysiological Model
	Recommended Citation

	tmp.1614795421.pdf.Zsyek

