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Abstract 

Advances in time-resolved fluorescence spectrosco­
py can be applied to cellular imaging. Fluorescence 
lifetime imaging microscopy (FLIM) creates image 
contrast based on the decay time of sensing probes at 
each point in a two-dimensional image. FLIM allows 
imaging of Ca2+ and other ions without the need for 
wavelength-ratiometric probes. Ca2+ imaging can be 
performed by FLIM with visible wavelength excitation. 
Instrumentation for FLIM is potentially simple enough 
to be present in most research laboratories. Applications 
of fluorescence are often limited by the lack of suitable 
fluorophores. New, highly photostable probes allow off­
gating of the prompt autofluorescence, and measurement 
of rotational motion of large macromolecules. These 
luminescent metal-ligand complexes will become widely 
utilized. Modem pulse lasers allow new experiments 
based on non-linear phenomena. With picosecond and 
femtosecond lasers fluorophores can be excited by 
simultaneous absorption of two or three photons. Hence, 
Ca2+ probes, membrane probes, and even intrinsic pro­
tein fluorescence can be excited with red or near infra­
red wavelengths, without ultraviolet lasers or optics. 
Finally, light itself can be used to control the excited 
state population. By using light pulses whose wavelength 
overlaps the emission spectrum of a fluorophore one can 
modify the excited state population and orientation. This 
use of non-absorbed light to modify emission can have 
wide reaching applications in cellular imaging. 

Key Words: Time-resolved fluorescence spectroscopy, 
fluorescence lifetime imaging microscopy (FLIM), 
calcium imaging, fluorescent probes, metal-ligand 
probes, pulse lasers, two-photon-induced fluorescence. 
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Recent Advances in Fluorescence Microscopy and 
Spectroscopy 

Fluorescence Lifetime Imaging Microscopy 

Fluorescence microscopy is widely used in cell 
biology to study the spatial distribution of ions and 
macromolecules [l, 10, 20, 32]. At present almost all 
microscopic imaging is accomplished by intensity 
imaging. However, it is well known that quantification 
of intensities is difficult in a microscope due to the 
unknown probe concentration at each point in the image, 
unknown quantum yield, photobleaching and other 
confounding factors. To circumvent these difficulties we 
developed a method for imaging based on the decay time 
or lifetime at each point in the image. We chose the 
lifetime as the contrast mechanism because we knew that 
decay times were mostly independent of the probe 
concentration and photobleaching, and that lifetimes 
could be measured under optically compromised condi­
tions [18, 27]. Lifetime imaging can be advantageous 
compared to intensity imaging if one wishes to localize 
intracellular ions. Many ion indicators are now known 
to display ion-sensitive lifetimes. If one images the 
fluorescent intensity one observes where the indicator is 
localized in the cell. If one measures the lifetime at each 
point in the cell, that is creates a lifetime image, one 
learns the local ion concentrations independent of 
indicator localization. 

Assume that the lifetime of the probe is different in 
the two regions of the cell (Fig. 1, top). If one could 
create a contrast based on the lifetime at each point in 
the image, one would resolve two regions of the cell, 
each with an analyte (Ca2+) concentration which was 
revealed by the lifetime image. The creation of such 
fluorescence lifetime images, in which the contrast is 
based on lifetimes, appeared to be a daunting challenge. 
Consider the difficulties of performing 2.62 x lOS 
lifetime measurements for a typical 512 x 512 image. 
Given the difficulties of measuring even a single lifetime 
in a cuvette, such a task seems nearly impossible. 
However, image intensifiers and CCD (charge-coupled 
device) camera technology now makes this possible [15, 
16]. Fig. 2, (right) shows the Ca2 + lifetime image of 
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Figure l. Fluorescence lifetime imaging microscopy (FLIM). 
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Figure 2. Intensity (top and left) and calcium images (right) of Quin-2 fluorescence in COS cells. 
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Figure 3. Apparatus for fluorescence lifetime imaging microscopy (FLIM). 

COS cells based on the probe Quin-2 [19], along with 
the intensity image (left). The intensity images show the 
expected spatial variations due to probe localization, and 
the Ca2+ (phase angle) image shows the expected 
uniform concentration of intracellular calcium. As 
predicted, the lifetime imaging provides chemical 
imaging, which within limits is insensitive to the local 
probe concentration. 

The cellular FLIM images in Fig. 2 were obtained 
using moderately complex instrumentation, which 
consists of a ps dye laser, a gain-modulated image 
intensifier, and a slow-scan scientific grade CCD camera 
(Fig. 3). However, the FLIM instruments in the future 
can be compact, even mostly a solid state device. This 
possibility is shown in Fig. 4, where we show that the 
light source can be a laser diode, assuming the fluores­
cent probes are available. An image intensifier is a 
moderately simple device, but is delicate and requires 
high voltages. Reports have appeared on gatable CCD 
detectors [24]. Present gatable CCDs are too slow (50 
ns gating time). This time response is likely to improve, 
and probes can be developed with longer decay times, 
which is described in the next section. Then the FLIM 
apparatus will consist of only modest additions to a 
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standard fluorescence microscope. 
What type of chemical imaging will be possible 

using FLIM technology? Based on our current under­
standing of FLIM, and factors which affect fluorescence 
lifetimes, we can predict that lifetime imaging will allow 
imaging of a variety of cellular properties such as 
proximity, binding and microviscosity (Table 1). Prox­
imity imaging can be possible based on the phenomena 
of fluorescence resonance energy transfer (FRET). 
Energy transfer occurs when a fluorescent donor is 
within a given distance of an acceptor. The distances for 
FRET are typically 30-60A, which is typical of the size 
of biological macromolecules. FRET decreases the 
lifetime of the donor; thus allowing the proximity of a 
donor and acceptor to be determined from the donor 
decay time. Lifetime-based fluorescence probes are also 
known for a wide variety of ions [26], including Ca2

+, 

Mg2+, K+, pH, c1· and 0 2• Hence, FLIM can have 
wide-ranging applications in cell physiology. 

Probe Chemistry - Development of Long-Lived Metal­
Ligand Probes 

The application of fluorescence to analytical chemis­
try, clinical chemistry, flow cytometry, and imaging are 
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Figure 4. Future apparatus for FLIM. 
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Figure 5. Chemical structure of [Ru(bpy)i]2+ and of [Ru(bpy)i(dcpby)]. 

limited not by the instrument technology, but by the 
available probes. There are only a limited number of 
conjugatable long wavelength probes, and none which 
display specific analyte sensitivity. What is needed is an 
arsenal of probes, all of which can be excited with laser 
diodes, and which are specifically sensitive to cations, 
anions, and other analytes. While several laboratories 
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are working in this topic, the total effort is minor in 
comparison to the number of scientists engaged in 
instrument development, technology development, theory 
or applications. 

In an attempt to circumvent the limitations of 
available probes we have been developing long-lived 
metal ligand complexes for measurement of the hydrody­
namics of high molecular weight biomolecules [30, 31]. 
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Figure 6. Excitation anisotropy spectra (bottom) of 
[Ru(bpy)i(dcpby)], free (- - -) and when conjugated 
to HSA (-----). The anisotropy spectra are in 
glycerol:buffer (9: 1, v/v) at -55°C. This viscous solvent 
is used to prevent rotational diffusion during the excited 
state lifetime. The dotted lines ( · · · · ·) represent the 
symmetrical [Ru(bpy) 3]Cl2 • 
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Figure 7. Intensity decays of [Ru(bpy).i(dcbpy)] conju­
gated to ConA. 

For instance, almost all known fluorophores display 
lifetimes ranging from 1 to 10 ns. This decay time limits 
the timescale of the events which alter the emission. 
Metal-Ligand complexes (MLC) of the type [Ru(bpy}i 2+] 
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Figure 8. Anisotropy decays of [Ru(bpy)z(dcbpy)] m 
buffer and conjugated to proteins. 

(Fig. 5) display lifetimes ranging from 100 ns to micro­
seconds, and thus allow the detection of slower process­
es. 

The usefulness of such metal-ligand complexes 
(MLCs) is derived from their favorable anisotropy 
properties. Suitable non-symmetrical complexes, such as 
[Ru(bpyMdcbpy)] 2+ (Fig. 5, right) display high 
anisotropy in the absence of rotational diffusion (Fig. 6). 
The high anisotropy makes this probe useful for measur­
ing rotational motion of proteins. A valuable feature of 
the MLCs is their long decay times, over 300 ns when 
conjugated to a protein (Fig. 7). The long decay times 
in tum allow measurement of long rotational correlation 
times, as shown for MLC-labeled proteins in Fig. 8. 

The polarized emission from metal-ligand complexes 
offers numerous experimental opportunities in biophysics 
and cellular imaging. A wide range of lifetimes, absorp­
tion, and emission maxima can be obtained by careful 
selection of the metal and the ligand. For instance, long 
wavelengths are desirable for clinical applications, such 
as fluorescence polarization immunoassays. Absorption 
wavelengths as long as 700 nm can be obtained using 
osmium [11], and lifetimes as long as 100 µ,s can be 
obtained using rhenium as the metal in such complexes 
[25]. The rhenium complexes also display good quantum 
yields and high initial anisotropies in aqueous solution. 
At present it is difficult to obtain long lifetimes, long 
wavelengths and high quantum yields all in a single 
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Table l. Cell biology applications of FLIM 

Type of Imaging 

Chemical imaging 

Ligand binding to proteins 

Chromosome imaging 

Microviscosity imaging 

Proximity imaging by energy 
transfer 

Analyte or Property 

NADR, TNS 

Acridine lifetimes depend on DNA base composition 

Identify viscosity-lifetime probes 

Protein-protein binding 
Protein-membrane association 

Table 2. Enabling technologies for the biomedical applications of time-resolved fluorescence spectroscopy 

Lasers Laser diodes 
Two-photon excitation with picosecond-femtosecond lasers 

Image intensifiers Gatable on nanosecond timescale 
Red-sensitive for optical tomography 

CCDs Fast frame rates 
Gatable on nanosecond timescale 

Computers Allow processing of numerous images from CCD images 

Probe chemistry Need long-wavelength probes to take advantage of laser diodes and low 
autofluorescence 

metal-ligand complex. Additional research is needed to 
identify which of these metal-ligand complexes displays 
the most favorable spectral properties for a particular 
application, and to synthesize conjugatable forms of the 
desired probes. 

Advanced Applications of Fluorescence Spectroscopy 

Two Photon-Induced Fluorescence (TPIF) 

We are all familiar with one-photon induced fluores­
cence (OPIF), which is the common occurrence in our 
experiments. With intense laser sources, it is possible 
to observe the emission resulting from the simultaneous 
absorption of two long wavelength photons. For in­
stance, tryptophan in proteins, which normally absorbs 
light at 290 nm, can be excited by the simultaneous 
absorption of two 580 nm photons (Fig. 9), which shows 
the emission spectra of human serum albumin (RSA) 
excited at 295 or 590 nm. This remarkable phenomenon 
occurs only with high light intensity because the two 
photons must be in the same place at the same time to 
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allow simultaneous absorption. It should be emphasized 
that there is no direct relationship between the absorp­
tion spectra and absorption cross sections for one- and 
two-photon excitation. In principle, one- and two-photon 
absorption occurs to excited states of different symmetry 
due to the selection rules for optical absorption. 

Because two-photon excitation requires two-photons, 
the fluorescence intensity is proportional to the square of 
the light intensity. This dependence on the square of the 
intensity is shown in Fig. 10. The emission intensity of 
RSA, is linearly dependent on the incident light intensity 
at 295 nm, and quadratically dependent on the intensity 
at 590 nm [13]. Two-photon induced fluorescence has 
also been observed for fluorophores bound to mem­
branes [14] and nucleic acids [12]. 

The fact that TPIF depends on the intensity squared 
provides an important opportunity for fluorescence 
microscopy. In fluorescence microscopy, confocal 
optics are often used to eliminate fluorescence from 
outside the focal plane of the lenses [22, 34]. Removal 
of this out-of-focus light provides remarkable improve-
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ment in image quality because for one-photon excitation 
the fluorescence occurs from the entire thickness of the 
sample. Much of this emission is devoid of spatial 
information and only serves to degrade image contrast 
and resolution. 

Professor Webb and colleagues at Cornell Universi­
ty, recognized that the intensity-squared dependent of 
TPIF provided the opportunity for intrinsic "confocal" 
excitation [2, 33]. The sample can be excited only at 
the desired depth based on the position of the focal point 
(Fig. 11), and the signal comes dominantly from this 
region. Perhaps more importantly, the fluorophores 
which are not in the focal plane are not excited, conse­
quently, are not photobleached and are thus available for 
imaging when the focal plane is moved (Fig. 11). There 
are additional advantages of two-photon microscopy, 
such as the greater availability of optical components and 
increased transmission of the optics for the longer 
wavelengths. It is possible that the sample auto-fluores­
cence will be lower with two-photon excitation, but at 
present, we do not know if the endogenous fluorophores 
in cells will display high or low cross-sections for two­
photon excitation. It is already known that some Ca2+ 
probes display good two-photon absorption [23], and Dr. 
Webb has reported lifetime images with two-photon 
excitation [23]. Hence, we can now imagine the cre­
ation of three-dimensional (3D) chemical images of cells 
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400 
( nm) 

(Fig. 10), which could display the local Ca2+ concen­
tration as seen for the two-dimensional (2D) FLIM 
imaging in Fig. 2. 

Three-Photon Excitation 

We have recently extended the use of high intensity 
laser pulses to allow three-photon excitation. Three­
photon excitation has been observed for the scintillator 
2,5-diphenyloxazol (PPO) [7], for a tryptophan deriva­
tive [8] and for the calcium probe Indo-1 [9, 29]. Three­
photon excitation was accomplished with femtosecond 
pulses of a mode-locked Ti:Sapphire laser at wave­
lengths above 800 nm. The emission spectra of Indo-1 
were the same for excitation at 351 and 860 nm (Fig. 
12). At 885 nm the intensity of Indo-1 depended on the 
cube of the laser power, but at a slightly shorter wave­
length of 820 nm the intensity depended on the square of 
the laser power (Fig. 13). This indicates that the mode 
of excitation (two- or three-photon) can change with 
small changes in wavelengths. Remarkably, the intensity 
of Indo-1 with three-photon excitation is within a factor 
of 10 of that observed with two-photon excitation (Fig. 
13), suggesting that three-photon excitation can be 
practical in fluorescence microscopy. 

An important aspect of three-photon excitation is 
that it can be accomplished with wavelengths near 800 
nm, which is the peak of the Ti:Sapphire laser tuning 
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Figure 11. Intrinsic "confocal" excitation using TPIF in 
microscopy (top) and three-dimensional optical imaging 
(bottom). 

curve. Also, the spatial profile of the excited 
fluorophores can be smaller than available with two­
photon excitation. This is shown experimentally in Fig. 
14, which shows the width of the excited volume of 
lndo-1 with one-, two- and three-photon excitation. It 
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seems probable that simple Ti:Sapphire lasers will be 
available in the near future, making two- and three­
photon excitation possible in many microscopy laborato­
ries. 

Light Quenching of Fluorescence 

Measurements of time-resolved fluorescence, and 
particularly the recent interest in two- and three-photon 
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Figure 14. Spectral profile of the excited volumes of Indo-1 with one-, two- and three-photon excitation. 

excitation, require the use of intense laser sources. The 
use of these intense laser sources allows observation of 
the phenomena of stimulated emission. If a fluorophore 
is illuminated at a wavelength which overlaps its emis­
sion spectra, the fluorophore can be stimulated to return 
to the ground state (Fig. 15). Since the stimulated 
photon travels parallel to the "quenching beam," and 
since the emission is generally observed at right angles 
to the illumination, the emission appears to be quenched. 

Of course, light quenching or stimulated emission 
was predicted by Einstein in 1917 for atoms in the gas 
phase [3]. Historically, light quenching has only been 
observed using the very intense pulses from Q-switched 
Ruby lasers [4, 21]. The fact that we now know that 
light quenching can be observed with modern ps lasers 
results in numerous opportunities for novel fluorescence 
experiments [5, 6, 17). 

Consider that the sample is excited with one pulse, 
followed by a second longer wavelength quenching pulse 
(Fig. 15, left). The quenching pulse can result in an 
instantaneous change in the excited state population. It 
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is important to recognize that this change in population 
should be non-destructive since we are not depleting the 
ground state or bleaching the sample. Hence, the 
experiment may be repeated numerous times for im­
proved signal-to-noise, if needed to measure small 
effects. 

One remarkable opportunity of light quenching, and 
there are other opportunities which are not described in 
this article, is that light quenching displays the same cos2 

0 dependence as does light absorption [6, 21]. This 
means that not only is the total excited state population 
altered by the quenching pulse, but that selectively 
oriented parts of the excited state population are 
quenched. Consequently, depending on the polarization 
of the quenching light, the polarization of the emission 
can be altered from 1.0 to -1.0 (Fig. 16), resulting in a 
high degree of orientation of the excited state population. 
In contrast, one-photon excitation of randomly oriented 
fluorophores can only result in polarization values for 
0.5 to -0.33. It may even be possible to break the Z­
axis symmetry, which heretofore has been pervasive in 
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the optical spectroscopy of randomly oriented solutions. 
In our opinion, the phenomena of light quenching can 
result in a new class of fluorescence experiments in 
which the sample is excited with one pulse, and the 
excited state population is modified by the quenching 
pulse(s) prior to measurement. 

In closing, we wish to reiterate that time-resolved 
fluorescence is now moving out of the research laborato­
ry and into the world of cellular imaging and numerous 
other sensing applications. Advances in laser sources, 
CCD detection, and other technologies is resulting in the 
possibility of simple instrumentation for previously 
complex measurements. These enabling technologies are 
summarized in Table 2. The increasing availability of 
intense picosecond and femtosecond lasers, and laser 
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systems which provide multiple time-delayed pulses, will 
result in the increased use of two-photon excitation and 
stimulated emission to control and/or modify the excited 
state population. 
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