Lunette: Lunar Farside Gravity Mapping by Nanosat

Kieran A. Carroll, Gedex Inc.
Henry Spencer, SPSSystems
Jafar Arkani-Hamed, University of Toronto
Robert E. Zee, UTIAS Space Flight Laboratory
Moon Rush

- Almost all major space agencies worldwide are now pursuing Lunar missions
- ESA: SMART-1 in Lunar orbit now
- “Moon Race” in Asia: Japan, India, China all developing missions to fly before 2008
- NASA’s Vision for Space Exploration
- Some private Lunar mission teams planning to use Russian equipment and launch services
- CSA space exploration program now open to Lunar mission proposals
NASA’s Lunar Exploration Program

• First stage in President Bush’s Vision for Space Exploration:
 – NASA’s new marching orders
 – Announced January 2004
• Immediate goal is reconnaissance, with Lunar Reconnaissance Orbiter to launch in 2008
• Followed by:
 – Other orbiters
 – Unmanned landers
 – Manned missions after 2015, followed by permanent bases
 – Resource exploration/exploitation: ice first, then minerals?
 – Manned Mars exploration after 2020
• Anticipating a favorable funding response from Congress, NASA has reorganized around this as its new principal objective.
A Role For Small Satellites

- Like all past planetary missions, current Lunar missions are all planned on the “big-sat” paradigm:
 - Maximize cost-effectiveness by manifesting many payloads per mission
 - Effectiveness is high, but so is cost, and schedules are slow
- Microsats and nanosat offer valuable niche-mission opportunities:
 - Cherry-pick medium-value, easy-to-achieve objectives
 - Keep to one or two instruments per satellite, avoid complex mission operations
 - Allows small-team approach, very low cost per mission
 - Precedents: Very successful LEO microsat science missions such as MOST, CHIPSat
Proposed Niche for Nano/Microsats:
A Lunar Gravity Mapping Program

- Important science
- Valuable contribution to exploration
- Achievable via low-cost, stand-alone small satellites (if done right!)
- *This class of mission is affordable within the Canadian space exploration budget*
- Strong synergy with terrestrial exploration applications
- Provides a natural entrée to subsequent involvement in resource extraction and exploitation activities
Lunar Gravity Mapping for Science

- Fundamental questions regarding the Moon’s formation
- “Nearside/farside dichotomy” (crust thin on nearside, thick on farside)
- Nature of mass concentrations (mascons) below the maria and some craters
- Enables improvement in topography modeling from laser altimeter data
- Key to understanding Lunar geological formations:
 - These in turn are key to prospecting for high-grade mineral deposits, by understanding if mare basalts originate near the surface or from the mantle
- NASA HQ Code S sees Lunar gravity mapping as a priority
- Nearside maps complete to 10-20 mGal level, via radio tracking of Apollo, Clementine, Lunar Prospector
- Farside maps all inferred from nearside tracking data, likely very inaccurate
- Lunette P.I. was part of team that attempted to fly a pair of subsatellites to rectify this (1970, Apollo 18), other attempts since then failed to achieve funding due to high cost (e.g., ESA’s $400M MORO proposal)
Current Lunar Gravity Models
(Lunar Prospector)

- Accurate topographical mapping requires an accurate gravity model
- Geological models are derived from both topography and gravity models
Lunar Gravity Mapping for Exploration

- **Near-term:**
 - Map farside mascons to allow precise unmanned landings
 - Improve Lunar geodetic model to enable precise topographical mapping from orbit

- **Medium-Term:**
 - Provide geological context to support base site selection
 - Help identify areas with potential high-concentration ice/mineral deposits
 - Terrestrial analogy: “sovereignty mapping” (government surveys) with results disseminated

- **Long-term:**
 - Detailed site surveys to identify drilling/excavation targets: drilling/digging holes is very expensive!
 - Terrestrial analogy: airborne geophysical surveys of claims

- **The Gravity Gradiometry Advantage:** Signals not shielded by intervening material
1. **Lunette**
 - Near-term nanosat-class mission
 - Complete farside gravity model to current nearside level (10-20 mGal)

2. **AGGLO: A Gravity Gradiometer in Lunar Orbit**
 - Medium-term microsat-class mission
 - Improve global Lunar gravity model to 1-2 mGal equivalent

3. **Lunar Surface Gravity Gradiometry**
 - Long-term lander mission
 - Deploy mobile gravity gradiometer(s)
Lunette

- Science mission: *to map Lunar farside gravity field, to 10-20 mGal*
- Free-flying nanosatellite, *ejected from and flying in formation with* a parent satellite, both in low Lunar orbit, measuring *relative range rate* using radio tracking
- Complements JAXA’s SELENE “high/low” mission
- ~5 kg, ~$2-5M (if done as SFL nanosat)
- Science instrument: ranging radio transponder
- Bus needs 3-axis attitude control and propulsion
- Initially proposed as a subsatellite payload for ISRO’s Chandrayaan-1 lunar satellite:
 - Was short-listed; complements ISRO LIDAR payload
 - Didn’t make final cut (CSA funding decision process slower than ISRO’s payload selection schedule)
- Suitable for flight with any of several upcoming Lunar polar orbiting missions
Inter-Satellite Relative Speed Signals

- Example scenario:
 - Mascon:
 - 20 km deep
 - 35 km diameter
 - 1.5E16 kg excess mass
 - Fly-over of mascon:
 - From -300 km to +300 km horizontally
 - 50 km altitude
 - 1.655 km/sec velocity
- Peak gravity anomaly:
 - 20 mGal (2e-4 m/sec^2)
- Peak inter-satellite speed variation:
 - Horizontal: 4 mm/sec
 - Vertical: 7 mm/sec
- Lunette target speed measurement sensitivity: 1 mm/sec after 10 seconds of averaging
Baseline Design: Based on SFL’s CanX-3/BRITE Nanosat Bus

- Bright Star Photometry nanosat (“Nano-MOST”)
- 15x15x15 cm, <4 kg
- Two fixed S-Band monopole uplink antennas
- Two S-Band patch downlink antennas
- Two fixed UHF monopole beacon antennas
- Two GPS patch antennas
- Body-mounted solar panels, each containing one or two strings of two 26% efficiency TJ cells:
 - 5+ W maximum power
 - 4.1 W nominal power
 - 1.5 W survival power
Lunette Technology

- **Basic Nanosat Bus and Ejection System:**
 - U of T/Space Flight Laboratory CanX nanosat program
 - One satellite built and flown, funding secured for next 2 missions
- **Reaction Wheel:**
 - Prototype built, will be test-flown on CanX-2
- **Star Tracker:**
 - Baseline: software from MOST star tracker, CMOS camera initial design/imager testing under BRITE mission studies
- **Nanosat propulsion (25-75 m/sec):**
 - Baseline vendors identified, flight hardware built for 25m/sec, breadboard testing done for 75m/sec
 - Alternative is SFL-developed nanosat propulsion
- **Low-power transponder:**
 - Baseline: based on MOST S-band transmitter
- **Processing of tracking data to extract gravity models:**
 - Baseline: use NASA GSFC/JPL code via US team members
 - Alternative is to develop new software for that
AGGLO: A Gravity Gradiometer in Lunar Orbit

- Gravity Gradient:
 - The rate of change (in x, y, z directions) of local gravity vector
 - 6x6 tensor, satisfying Laplace’s equation
- Previous gradiometers use “In-Line Responder” design (paired accelerometers): very sensitive to platform motion
- Gedex developing a compact, robust Orthogonal Quadropole Responder (OQR) gradiometer for airborne geophysics exploration
- Technology development underway will make this suitable for use in space on planetary-microsat-class platform
- ROM mission cost: $20-30M
- Co-manifesting a LIDAR desirable, for terrain corrections and topography mapping
- Will need orbit maintenance and attitude control propulsion, and a ride to Lunar polar orbit
Gravity and Gravity Gradient Signals

- Example scenario:
 - Mascon:
 - 20 km deep
 - 11 km diameter
 - 1.5E15 kg excess mass (1/10 the mass of previous example)
 - Fly-over of mascon:
 - From -300 km to +300 km horizontally
 - 50 km altitude
 - 1.655 km/sec velocity
 - Peak gravity anomaly:
 - 2 mGal (2e-5 m/sec^2)
 - Peak gravity gradient anomaly:
 - ~0.6 Eo (5.8e-10 m/sec^2/m)
 - Gedex target airborne gravity gradient anomaly sensitivity: <0.3 Eo after 10 seconds of averaging
Lunar Gravity Mapping Team

- **Jafar Arkani-Hamed:**
 - Lunette science team PI, University of Toronto Physics Dept
 - Geophysicist/planteologist, Lunar morphology researcher, mascon specialist

- **Gedex:**
 - Geophysics exploration systems engineering company
 - Developing a new-technology airborne gravity gradiometer for terrestrial mineral, oil and gas exploration

- **UTIAS Space Flight Lab:**
 - Bus contractor for MOST and NEOSSat
 - Canadian pioneer in nanosat development: CanX-1 launched, CanX-2 nearly complete, CanX-3/4/5 in development

- **Henry Spencer, SPSSystems:**
 - Software architect for MOST, NEOSSat microsats
 - Mission architect for CRAFTI and PARTI small-body microsat-class missions