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Abstract

Decentralized Coordination of Multiple Autonomous Vehicles

by

Yongcan Cao, Doctor of Philosophy

Utah State University, 2010

Major Professor: Dr. Wei Ren
Department: Electrical and Computer Engineering

This dissertation focuses on the study of decentralized coordination algorithms of multiple au-

tonomous vehicles. Here, the termdecentralized coordinationis used to refer to the behavior that

a group of vehicles reaches the desired group behavior via local interaction. Research is conducted

towards designing and analyzing distributed coordinationalgorithms to achieve desired group be-

havior in the presence of none, one, and multiple group reference states.

Decentralized coordination in the absence of any group reference state is a very active research

topic in the systems and controls society. We first focus on studying decentralized coordination

problems for both single-integrator kinematics and double-integrator dynamics in a sampled-data

setting because real systems are more appropriate to be modeled in a sampled-data setting rather

than a continuous setting. Two sampled-data consensus algorithms are proposed and the conditions

to guarantee consensus are presented for both fixed and switching network topologies. Because

a number of coordination algorithms can be employed to guarantee coordination, it is important

to study the optimal coordination problems. We further study the optimal consensus problems in

both continuous-time and discrete-time settings via an linear-quadratic regulator (LQR)-based ap-

proach. Noting that fractional-order dynamics can better represent the dynamics of certain systems,

especially when the systems evolve under complicated environment, the existing integer-order co-

ordination algorithms are extended to the fractional-order case.
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Decentralized coordination in the presence of one group reference state is also calledcoordi-

nated tracking, including both consensus tracking and swarm tracking. Consensus tracking refers to

the behavior that the followers track the group reference state. Swarm tracking refers to the behavior

that the followers move cohesively with the external leaderwhile avoiding inter-vehicle collisions.

In this part, consensus tracking is studied in both discrete-time setting and continuous-time settings

while swarm tracking is studied in a continuous-time setting.

Decentralized coordination in the presence of multiple group reference states is also calledcon-

tainment control, where the followers will converge to the convex hull, i.e.,the minimal geometric

space, formed by the group references states via local interaction. In this part, the containment

control problem is studied for both single-integrator kinematics and double-integrator dynamics. In

addition, experimental results are provided to validate some theoretical results.

(208 pages)
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Chapter 1

Introduction

Agent-based system has received more and more research attention because many real-world

systems, such as flocks of birds, honey bee swarms, and even human society, can be considered

examples of agent-based systems. Agent-based system is studied extensively in biology science,

where the behavior of animals is shown to be closely related to the group in which they are involved.

A prominent phenomenon in agent-based system is that each agent’s behavior is based on its

local (time-varying) neighbors. For example, in Fig. 1.1, flock of birds fly in a regular formation.

Here each bird can be considered an agent. For a large population of birds, it is impossible for

them to have a leader which has the capability to control the formation of the whole group by

determining the movement of each individual bird. Instead,each bird determines its movement via

a local mechanism. That is, each individual bird has to act based on its local neighbors.

Fig. 1.1: Flock of birds. A large population of birds fly in a regular formation. Photo courtesy of
Prof. A. Menges, A. Ziliken.
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Recently, the collective motions of a group of autonomous vehicles have been investigated by

researchers and engineers from various perspectives, where the autonomous vehicles can be con-

sidered agents. An emerging topic in the study of collectivemotions is decentralized coordination,

which can be roughly categorized as formation control, rendezvous, flocking, and sensor networks

based on the applications. In addition, numerous experiments were also conducted to either validate

the proposed coordination schemes or apply the coordination schemes into different scenarios.

In this dissertation, we mainly focus on the mathematical study of coordination algorithms

under none, one, and multiple group reference states. We also investigate the optimization problem

and extend the study of integer-order dynamics to fractional-order dynamics. The main framework

of this dissertation is to first propose the coordination algorithm, then analyze the stability condition,

at last present simulation and/or experimental validations.

1.1 Problem Statement

Decentralized coordination among multiple autonomous vehicles, including unmanned aerial

vehicles (UAVs), unmanned ground vehicles (UGVs), and unmanned underwater vehicles (UUVs)

has received significant research attention in the systems and controls community. Although indi-

vidual vehicles can be employed to finish various tasks, great benefits, including high adaptability,

easy maintenance, and low complexity, can be achieved by having a group of vehicles work co-

operatively. The cooperative behavior of a group of autonomous vehicles is calledcoordination.

Coordination of multiple autonomous vehicles has numerouspotential applications. Examples in-

clude rendezvous [1–3], flocking [4–6], formation control [7,8], and sensor networks [9–11].

There are mainly two approaches used to achieve coordination of multiple autonomous ve-

hicles: centralized and decentralized approaches. In the centralized approach, it is assumed that

there exists a central vehicle which can send and receive theinformation from all other vehicles.

Therefore, the coordination of all vehicles can be achievedif the central vehicle has the capability

to process the information and inform each individual vehicle the desired localization or command

frequently enough. Although the complexity of the centralized approach is essentially the same

as the traditional leader-follower approach, the stringent requirement of the stable communication



3

among the vehicles is vulnerable because of inevitable disturbances, limited bandwidth, and unre-

liable communication channels. In addition, the centralized approach is not scalable since a more

powerful central station is required with the increasing number of vehicles in the group.

Considering the aforementioned disadvantages of the centralized approach, decentralized ap-

proach has been proposed and studied in the past decades. An important problem in decentralized

coordination is to study the effect of communication patterns on the system stability. Recently,

decentralized coordination of multi-vehicle systems has been investigated under different commu-

nication patterns, including undirected/directed fixed, switching, and stochastic networks. Along

this direction, we try to solve the following several decentralized coordination problems.

First, we study the decentralized coordination algorithmswhen there exists no group reference

state. We mainly focus on the study of sampled-data coordination algorithms where a group of

vehicles with double-integrator dynamics reach a desired geometric formation via local interaction.

The main problem involved is to find the conditions on the network topology as well as the control

gains such that coordination can be achieved.

Second, we study the decentralized coordination algorithms when there exists one group ref-

erence state. We consider two different scenarios: consensus tracking and swarm tracking. In the

continuous-time setting, the objective of consensus tracking is to propose control algorithms and

study the corresponding conditions such that all followersultimately track the leaders accurately. In

the discrete-time setting, the objective of consensus tracking is to propose control algorithms, show

the boundedness of the tracking errors between the followers and the leader using the proposed al-

gorithms, and quantitatively characterize the bound. For swarm tracking problem, the objective is

to propose control algorithms and study the corresponding conditions such that the followers move

cohesively with the leaders while avoiding collision.

Third, we study decentralized coordination algorithms when there exist multiple group refer-

ence states. In this case, the control objective is to guarantee that the vehicles stay within the convex

hull, i.e., the minimum geometric space, formed by the leaders. Note that this problem is much

more challenging because the desired state is not a unique point, but a set.

Lastly, two other important problems are considered, whichare the optimal linear consensus
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problem in the presence of global cost functions and the extension from the study of integer-order

dynamics to that of fractional-order dynamics. The objective of the optimal linear consensus prob-

lem is to either find the optimal Laplacian matrix or the optimal coupling factor under certain global

cost functions. The objective of fractional-order coordination algorithms is to guarantee coordina-

tion for multiple fractional-order systems.

1.2 Overview of Related Work

Due to the abundance of existing literature on decentralized coordination, we provide here

an overview that is incomplete. We summarize the related work according to the following logic.

As the first step, we briefly introduce the general approachesused to achieve coordination. Then

we focus on introducing those papers which are closely related to the dissertation: coordination

without any group reference state, coordination with one group reference state, and coordination

with multiple group reference states.

1.2.1 General Coordination Approaches

The main objective of group coordination is to guarantee that a group of autonomous vehicles

maintain a geometric configuration. The main application ofgroup coordination is formation control

(see [12,13] and references therein). The objective of formation control is to guarantee that a group

of autonomous vehicles can form certain desired (possibly dynamic) geometric behavior. In the

absence of any external reference state, the objective of formation control is to design controllers

such that certain desired geometric formation can be achieved for a group of autonomous vehicles.

Differently, when there exists an external reference state, the objective of formation control is to

design controllers for the vehicles such that they can form certain geometric formation and track

the external reference state as a group. The approaches usedto solve formation control can be

roughly categorized as leader-follower [14–18], behavior[7,19,20], potential function [4,5,21–23],

virtual leader/virtual structure [12, 24–30], graph rigidity [31–35], and consensus [36–41]. In the

leader-follower approach, the vehicles who are designatedas leaders can be designed to track the

desired trajectory while the vehicles who are designated asthe followers can be designed to track

certain state determined by their local neighbors. Note that the leader-follower approach can be
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considered a two-level control approach where the top levelis responsible for the leaders while the

low level is responsible for the followers. In the behavioral approach, the behavior of the vehicles

can be categorized into several types, such as obstacle avoidance, formation maintenance, and target

tracking. Accordingly, the control input for each vehicle at certain time is determined by the desired

behavior of the vehicle at this time. In the potential function approach, the different behaviors used

in behavioral approach are implemented via some potential function. In particular, the potential

function for each vehicle is defined based on its state and thestates of its local neighbors. The

virtual leader/virtual structure approach is quite similar to the leader-follower approach except that

the leader in the virtual leader/virtual structure approach which is used to represent the desired

trajectory does not exist. In the rigidity approach, the formation (or shape) of a group of vehicles

is determined by the edges. By changing the edges properly, the desired geometric formation can

be guaranteed. In the consensus approach, the group geometric formation is achieved by properly

choosing the information states on which consensus is reached.

In addition to the aforementioned approaches, consensus approach was also applied in for-

mation control problems from different perspectives [4–6,11, 29, 42–49]. We will overview the

approach in detail in the following several subsection.

1.2.2 Coordination Without any Group Reference State

When there exists no group reference state, the control objective is to guarantee that the ve-

hicles reach desired inter-vehicle deviation, i.e., formation stabilization. A fundamental approach

used in formation stabilization is consensus (also called rendezvous or synchronization in different

settings), which means that the vehicles will reach agreement on their final states. Accordingly,

group coordination can be easily obtained by introducing the state deviations into the consensus

algorithms. Consensus has been investigated extensively from different perspectives. In the follow-

ing, we will review the existing consensus algorithms.

Consensus has an old history [50–52]. In the literature, consensus means agreement of a group

faced with decision making situations. As for a group behavior, sharing information with each

other, or consulting more than one expert makes the decisionmakers more confident [50]. Inspired
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by Vicsek et al. [52], it is shown that consensus can be achieved if the undirected communication

graph is jointly connected [36]. Consensus is further studied when the communication graph may

be unidirectional/directed [37–39, 53]. In particular, average consensus is shown to be achieved if

the communication graph is strongly connected and balancedat each time [37], while consensus

can be achieved if the communication graph has a directed spanning tree jointly by using the prop-

erties of infinity products of stochastic matrices [39]. By using the set-valued Lyapunov function,

Moreau [38] provided a similar condition on the communication graph as that in Ren and Beard [39]

to guarantee consensus.

Given the aforementioned literature on the study of consensus problem, several directions have

also been discussed recently. The first direction is the study of consensus problems over stochastic

networks. The motivation here is the unstable communication among the vehicles. Consensus over

stochastic networks was first studied where the communication topology is assumed to be undirected

and modeled in a probabilistic setting and consensus is shown to be achieved in probability [54].

Consensus was further studied over directed stochastic networks [55–57]. In particular, necessary

and sufficient conditions on the stochastic network topology were presented such that consensus

can be achieved in probability [57].

The second direction is the study of asynchronous consensusalgorithms, which is motivated by

the fact that the agents may update their states asynchronously because the embedded clocks are not

necessarily synchronized. Asynchronous consensus was studied from different perspectives using

different approaches [41,58,59]. In particular, Cao et al.[41] used the properties of “compositions”

of directed graphs and the concept of “analytic synchronization.” Xiao and Wang [58] used the

properties of infinite products of stochastic matrices. Differently, Fang and Antsaklis [59] used the

paracontracting theorem. Note that the approaches used in Cao et al. [41] and Xiao and Wang [58]

are generally used for linear systems while the approach used in Fang and Antsaklis [59] can be

used for nonlinear systems.

The third direction is to study consensus for general systems, including systems with double-

integrator dynamics, fractional-order dynamics, etc. Forsystems with double-integrator dynamics,

two consensus algorithms were proposed which can guaranteethe convergence of the states with, re-
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spectively, (generally) nonzero final velocity and zero final velocity [60,61]. Then the sampled-data

case of the consensus algorithms was also studied [62–64]. In particular, Hayakawa et al. [62] fo-

cused on the undirected network topology case while Cao and Ren [63,64] focused on, respectively,

the fixed and switching directed network topology case. Necessary and sufficient conditions on the

network topology and the control gains were presented to guarantee consensus [63]. However, only

sufficient conditions on the network topology and the control gains were presented to guarantee

consensus because the switching topology case is much more complicated than the fixed topology

case [64]. Considering the fact that the system dynamics in reality may be fractional (nonintegral),

the existing study of integer-order consensus algorithms was extended to fractional-order consensus

algorithms [65]. Two survey papers provide more detailed information [46,66].

1.2.3 Coordination With a Group Reference State

Coordination with a group reference state is also calledcoordinated tracking. Here, coordi-

nated tracking refers to both consensus tracking and swarm tracking. The objective of consensus

tracking is that a group of followers tracks the group reference state with local interaction. The

unique group reference state is also called “leader.” A consensus tracking algorithm was pro-

posed and analyzed under a variable undirected network topology [67, 68]. In particular, the al-

gorithm requires the availability of the leader’s acceleration input to all followers and/or the design

of distributed observers. A proportional-and-derivative-like consensus tracking algorithm under a

directed network topology was proposed and studied in both continuous-time and discrete-time set-

tings [69–71]. In particular, the algorithm requires either the availability of the leader’s velocity and

the followers’ velocities or their estimates, or a small sampling period. A leader-follower consen-

sus tracking problem was further studied in the presence of time-varying delays [72]. In particular,

the algorithm requires the velocity measurements of the followers and an estimator to estimate the

leader’s velocity.

In addition to the consensus tracking algorithms, various flocking and swarm tracking algo-

rithms were also studied when there exists a leader. The objective of flocking or swarm tracking

with a leader is that a group of followers tracks the leader while the followers and the leader main-
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tain a desired geometrical configuration. A flocking algorithm was proposed and studied under the

assumption that the leader’s velocity is constant and is available to all followers [4]. Su et al. [73]

extended the results in two aspects. When the leader has a constant velocity, accurate position and

velocity measurements of the leader are required [73]. Whenthe leader has a varying velocity, the

leader’s position, velocity, and acceleration should be available to all followers [73]. Flocking of a

group of autonomous vehicles with a dynamic leader was solved by using a set of switching control

laws [74]. In particular, the algorithm requires the availability of the acceleration of the leader. A

swarm tracking algorithm was proposed and studied via a variable structure approach using artifi-

cial potentials and the sliding mode control technique [23]. In particular, the algorithm requires the

availability of the leader’s position to all followers and an all-to-all communication pattern among

all followers. Both consensus tracking and swarm tracking are solved via a variable structure ap-

proach under the following three assumptions [75]: 1) The virtual leader is a neighbor of only a

subset of a group of followers; 2) There exists only local interaction among all followers; 3) The

velocity measurements of the virtual leader and all followers in the case of first-order kinematics or

the accelerations of the virtual leader and all followers inthe case of second-order dynamics are not

required.

1.2.4 Coordination With Multiple Group Reference States

Coordination with multiple group reference states is also calledcontainment control. The ob-

jective of containment control is to guarantee that the followers move into the convex hull, i.e.,

the minimal geometric space, formed by the group referencesstates. Sometimes, the group ref-

erence states are also called “leaders.” Multiple leaders were introduced to solve the containment

control problem [76], where a team of followers is guided by multiple leaders. In particular, a

stop-and-go strategy was proposed to drive a collection of mobile agents to the convex polytope

spanned by multiple stationary/moving leaders [76]. Note that Ji et al. [76] focused on the fixed

undirected interaction case. Note that the interaction among different agents in physical systems

may be directed and/or switching due to heterogeneity, nonuniform communication/sensing pow-

ers, unreliable communication/sensing, limited communication/sensing range, and/or sensing with
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a limited field of view. Further study was conducted to solve decentralized containment control of

a group of mobile autonomous agents with multiple stationary or dynamic leaders under fixed and

switching directed network topologies [77].

1.3 Contributions of Dissertation

In this dissertation, we focus on the study of decentralizedcoordination of multiple autonomous

vehicles in the presence of none, one, and multiple group reference states. Some materials from this

dissertation have been previously published or accepted for publication in international journals

and/or conferences [63–65,70,75,77–82]. Some results have not yet appeared elsewhere.

Decentralized coordination in the absence of any group reference state is a very active research

topic in the systems and controls society. This dissertation focuses on studied coordination problems

for double-integrator dynamics in a sampled-data setting because the control inputs are generally

sampled instead of being continuous. Two sampled-data coordination algorithms are proposed and

the conditions to guarantee coordination are presented accordingly. Note that a number of coor-

dination algorithms can be employed to guarantee coordination. Without loss of generality, the

optimal linear consensus problems are studied in both continuous-time and discrete-time settings

via an linear-quadratic regulator (LQR) based approach. Noting that fractional-order dynamics can

better represent the dynamics of certain systems, the existing integer-order coordination algorithms

are extended to the fractional-order case.

Decentralized coordination in the presence of one group reference state is also calledcoordi-

nated tracking, including consensus tracking and swarm tracking. Consensus tracking refers to the

behavior that the followers track the external leader ultimately. Swarm tracking refers to the behav-

ior that the followers move cohesively with the external leader while avoiding collisions. Consensus

tracking is studied in both discrete-time setting and continuous-time settings. In continuous-time

setting, the followers can track the group reference state accurately. In discrete-time setting, the

followers can track the group reference state with bounded errors. Swarm tracking is studied in a

continuous-time setting.

Decentralized coordination in the presence of multiple group reference states is also called
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containment control, where the followers will converge to the convex hull formedby the group

reference states via local interaction. Containment control is studied for both single-integrator kine-

matics and double-integrator dynamics. In addition, experimental results are provided to validate

some theoretical results.

1.4 Dissertation Outline

The remainder of the dissertation is organized as follows.

In Chapter 2, we investigate coordination problems for systems with double-integrator dynam-

ics in a sampled-data setting without any group reference state. Two sampled-data coordination

algorithms are proposed and the conditions to guarantee coordination are presented accordingly. In

addition, the final equilibria are also presented if applicable. In particular, when the network topol-

ogy is fixed, we present the necessary and sufficient conditions to guarantee coordination. When

the network topology is switching, we present sufficient conditions to guarantee coordination.

In Chapter 3, we investigate coordinated tracking problem in both continuous-time and discrete-

time setting. In the continuous-time setting, the coordination tracking problem is solved via a

variable structure approach. Compared with related work, our approach requires much less state

information and the availability of the leader’s states to all followers is not required. Then, we in-

vestigate consensus tracking in a discrete-time setting and show the boundedness of the proposed

algorithm. In particular, the requirement on the sampling period and the bounds of the tracking

errors are provided.

In Chapter 4, we investigate containment control problem under fixed/switching directed net-

work topologies. We present the necessary and/or sufficientconditions to guarantee containment

control. In addition, the equilibria are given if applicable. Some experimental results are also pre-

sented to show the effectiveness of some results.

In Chapter 5, we investigate optimal linear consensus problems under fixed undirected network

topologies. We propose two global cost functions, namely, interaction-free and interaction-related

cost functions. With the interaction-free cost function, we derive the optimal Laplacian matrix by

using a LQR-based method in both continuous-time and discrete-time settings and shown that the
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optimal Laplacian matrix corresponds to a complete directed graph. With the interaction-related

cost function, we derive the optimal scaling factor for a prespecified symmetric Laplacian ma-

trix associated with the interaction graph. Both problems are studied in both continuous-time and

discrete-time settings.

In Chapter 6, we investigate coordination problems for systems with fractional-order dynam-

ics. We first introduce a general fractional-order coordination model. Then we show sufficient

conditions on the interaction graph and the fractional order such that coordination can be achieved

using the general model. The coordination equilibrium is also explicitly given when applicable.

In addition, we characterize the relationship between the number of agents and the fractional or-

der to ensure coordination. Furthermore, we compare the convergence speed of coordination for

fractional-order systems with that for integer-order systems. It is shown that the convergence speed

of the fractional-order coordination algorithms can be improved by varying the fractional orders

with time. Lastly, we study coordination algorithms for fractional-order dynamics in the presence

of damping terms.

In Chapter 7, we conclude the dissertation and discuss the future research directions.

Appendices include two parts: graph theory notions (see Appendix A) and Caputo fractional

operator (see Appendix B). Graph theory notions serve as thebasis of the dissertation which will

be used throughout the dissertation. Caputo fractional operator is used in Chapter 6.
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Chapter 2

Decentralized Coordination Algorithms Without a Group Reference

State

Decentralized coordination algorithms have been investigated extensively for single-integrator

kinematics in both continuous-time and discrete-time settings when there exists no group reference

state [46, 66]. Taking into account the fact that equations of motion of a broad class of vehicles

require a double-integrator dynamic model, the decentralized coordination algorithms for double-

integrator dynamics have been studied recently [60,61]. Note that decentralized coordination algo-

rithms for double-integrator dynamics are mainly studied in a continuous-time setting. However,

the control inputs in really are generally sampled rather than being continuous. In this chapter,

we focus on the study of decentralized coordination algorithms for double-integrator dynamics in

a sampled-data setting. We first review the existing continuous-time coordination algorithms for

double-integrator dynamics and propose two sampled-data coordination algorithms, namely, coor-

dination algorithm with, respectively, absolute damping and relative damping. The main part is to

investigate the convergence condition of the two coordination algorithms in both fixed and switch-

ing network topologies. Finally, we present several simulation results to validate the theoretical

results.

2.1 Continuous-time Coordination Algorithms for Double-integrator Dynamics

Consider vehicles with double-integrator dynamics given by

ṙi = vi, v̇i = ui, i = 1, . . . , n, (2.1)

whereri ∈ R
m andvi ∈ R

m are, respectively, the position and velocity of theith vehicle, and

ui ∈ R
m is the control input.
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A coordination algorithm for (3.14) is studied as [61,71]

ui = −
n∑

j=1

aij(ri − δi − rj + δj) − αvi, i = 1, . . . , n, (2.2)

whereδi, i = 1, · · · , n, are real constants,aij is the(i, j)th entry of weighted adjacency matrix

A associated with graphG, andα is a positive gain introducing absolute damping. Define∆ij
△
=

δi−δj . Coordination is reached for (2.2) if for allri(0) andvi(0), ri(t)−rj(t) → ∆ij andvi(t) → 0

ast → ∞.

A coordination algorithm for (3.14) is studied as [60]

ui = −
n∑

j=1

aij[(ri − δi − rj + δj) + α(vi − vj)], i = 1, . . . , n, (2.3)

whereδi and aij are defined as in (2.2) andα is a positive gain introducing relative damping.

Coordination is reached for (2.3) if for allri(0) andvi(0), ri(t) − rj(t) → ∆ij andvi(t) → vj(t)

ast → ∞.

2.2 Sampled-data Coordination Algorithms for Double-integrator Dynamics

We consider a sampled-data setting where the vehicles have continuous-time dynamics while

the measurements are made at discrete sampling times and thecontrol inputs are based on zero-order

hold as

ui(t) = ui[k], kT ≤ t < (k + 1)T, (2.4)

wherek denotes the discrete-time index,T denotes the sampling period, andui[k] is the control

input at t = kT . By using direct discretization [83], the continuous-timesystem (3.14) can be

discretized as

ri[k + 1] = ri[k] + Tvi[k] +
T 2

2
ui[k]

vi[k + 1] = vi[k] + Tui[k], (2.5)

whereri[k] andvi[k] denote, respectively, the position and velocity of theith vehicle att = kT .
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Note that (2.5) is the exact discrete-time dynamics for (3.14) based on zero-order hold in a sampled-

data setting.

We study the following two coordination algorithms

ui[k] = −
n∑

j=1

aij(ri[k] − δi − rj[k] + δj) − αvi[k], (2.6)

which corresponds to continuous-time algorithm (2.2) and

ui[k] = −
n∑

j=1

aij [(ri[k] − δi − rj [k] + δj) + α(vi[k] − vj[k])], (2.7)

which corresponds to continuous-time algorithm (2.3). It is assumed in (2.7) that the topologies for

both relative position and relative velocity are identicaland the following analysis also focuses on

the case when the topologies for both relative position and relative velocity are identical. Note that

Hayakawa et al. [62] shows conditions for (2.7) under an undirected interaction topology through

average-energy-like Lyapunov functions. Relying on algebraic graph theory and matrix theory, we

will show necessary and sufficient conditions for convergence of both (2.6) and (2.7) under fixed

undirected/directed interaction.

In the remainder of the chapter, for simplicity, we suppose that ri ∈ R, vi ∈ R, andui ∈ R.

However, all results still hold forri ∈ R
m, vi ∈ R

m, andui ∈ R
m by use of the properties of the

Kronecker product.

2.3 Fixed Interaction Case

In this section, we assume that the network topology is fixed,i.e., aij is constant. We useG

andA to represent, respectively, the communication graph and the corresponding adjacency matrix.

2.3.1 Convergence Analysis of Sampled-data Coordination Algorithm with Absolute Damp-

ing

In this section, we analyze algorithm (2.6) under, respectively, an undirected and a directed

interaction topology. Before moving on, we need the following lemmas:
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Lemma 2.3.1 (Schur’s formula) [84] Let A,B,C,D ∈ R
n×n. Let M =



A B

C D


. Then

det(M) = det(AD − BC), wheredet(·) denotes the determinant of a matrix, ifA, B, C, and

D commute pairwise.

Lemma 2.3.2 LetL be the nonsymmetric Laplacian matrix (respectively, Laplacian matrix) associ-

ated with directed graphG (respectively, undirected graphG). ThenL has a simple zero eigenvalue

and all other eigenvalues have positive real parts (respectively, are positive) if and only ifG has a

directed spanning tree (respectively, is connected). In addition, there exist1n satisfyingL1n = 0

andp ∈ R
n satisfyingp ≥ 0, pTL = 0, andpT1n = 1, where1n ∈ R

n is n× 1 column vector of

all zeros.1

Proof: See Merris [85] for the case of undirected graphs and Ren and Beard [39] for the case of

directed graphs.

Lemma 2.3.3 [86, Lemma 8.2.7 part(i), p. 498]Let A ∈ R
n×n be given, letλ ∈ C be given,

and supposex and y are vectors such that (i)Ax = λx, (ii) AT y = λy, and (iii) xT y = 1. If

|λ| = ρ(A) > 0, whereρ(A) denotes the spectral radius ofA, andλ is the only eigenvalue ofA

with modulusρ(A), thenlimm→∞(λ−1A)m → xyT .

Using (2.6), (2.5) can be written in matrix form as



r̃[k + 1]

v[k + 1]


 =



In − T 2

2 L (T − αT 2

2 )In

−TL (1 − αT )In




︸ ︷︷ ︸
F



r̃[k]

v[k]


 , (2.8)

where r̃ = [r̃1, . . . , r̃n]T , r̃i = ri − δi, v = [v1, . . . , vn]T , and In denote then × n identity

matrix. Therefore, coordination is achieved if for anyri[0] andvi[0], r̃i[k] → r̃j[k] andvi[k] → 0

1That is,1n andp are, respectively, the right and left eigenvectors ofL associated with the zero eigenvalue.
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as k → ∞. To analyze (2.34), we first study the properties ofF . Note that the characteristic

polynomial ofF , is given by

det(sI2n − F )

= det






sIn − (In − T 2

2 L) −(T − αT 2

2 )In

TL sIn − (1 − αT )In







= det
(
[sIn − (In − T 2

2
L)][sIn − (1 − αT )In]

− (TL[−(T − αT 2

2
)In])

)

= det

(
(s2 − 2s + αTs+ 1 − αT )In +

T 2

2
(1 + s)L

)

where we have used Lemma 2.3.1 to obtain the second to the lastequality.

Lettingµi be theith eigenvalue of−L, we getdet(sIn + L) =
∏n

i=1(s− µi). It thus follows

thatdet(sI2n − F ) =
∏n

i=1

(
s2 − 2s+ αTs+ 1 − αT − T 2

2 (1 + s)µi

)
. Therefore, the roots of

det(sI2n − F ) = 0, i.e., the eigenvalues ofF , satisfy

s2 + (αT − 2 − T 2

2
µi)s+ 1 − αT − T 2

2
µi = 0. (2.9)

Note that each eigenvalue of−L, µi, corresponds to two eigenvalues ofF , denoted byλ2i−1 and

λ2i.

Without loss of generality, letµ1 = 0. It follows from (2.9) thatλ1 = 1 andλ2 = 1 − αT .

Therefore,F has at least one eigenvalue equal to one. Let[pT , qT ]T , wherep, q ∈ R
n, be the right

eigenvector ofF associated with eigenvalueλ1 = 1. It follows that



In − T 2

2 L (T − αT 2

2 )In

−TL (1 − αT )In






p

q


 =



p

q


 .

After some manipulation, it follows from Lemma 2.3.2 that wecan choosep = 1n andq = 0n×1,

where0n×1 is then× 1 column vector of all zeros. For simplicity, we sometimes use0n to replace

0n×1 without ambiguity. Similarly, it can be shown that[pT , ( 1
α − T

2 )pT ]T is a left eigenvector of
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F associated with eigenvalueλ1 = 1.

Lemma 2.3.4 Using (2.6) for (2.5), r̃i[k] → pT r̃[0] + ( 1
α − T

2 )pT v[0] andvi[k] → 0 ask → ∞

if and only if one is the unique eigenvalue ofF with maximum modulus, wherep is defined in

Lemma 2.3.2.

Proof: (Sufficiency.) Note thatx = [1T
n ,0

T
n ]T andy = [pT , ( 1

α − T
2 )pT ]T are, respectively, a right

and left eigenvector ofF associated with eigenvalue one. Also note thatxT y = 1. If one is the

unique eigenvalue with maximum modulus, then it follows from Lemma 2.3.3 thatlimk→∞ F k →

1n

0n


 [pT , ( 1

α − T
2 )pT ]. Therefore, it follows thatlimk→∞



r̃[k]

v[k]


 = limk→∞ F k



r̃[0]

v[0]


 =



r̃[0] + ( 1

α − T
2 )pT v[0]

0n


.

(Necessity.) Note thatF can be written in Jordan canonical form asF = PJP−1, whereJ is

the Jordan block matrix. If̃ri[k] → pT r̃[0] + ( 1
α − T

2 )pT v[0] andvi[k] → 0 ask → ∞, it follows

that limk→∞ F k →



1n

0n


 [pT , ( 1

α − T
2 )pT ], which has rank one. It thus follows thatlimk→∞ Jk

has rank one, which implies that all but one eigenvalue are within the unit circle. Noting thatF has

at least one eigenvalue equal to one, it follows that one is the unique eigenvalue ofF with maximum

modulus.

Undirected Interaction

In this subsection, we show necessary and sufficient conditions onα andT such that coordi-

nation is reached using (2.6) under an undirected interaction topology. Note that all eigenvalues of

L are real for undirected graphs.

Lemma 2.3.5 The polynomial

s2 + as+ b = 0, (2.10)

wherea, b ∈ C, has all roots within the unit circle if and only if all roots of

(1 + a+ b)t2 + 2(1 − b)t+ b− a+ 1 = 0 (2.11)
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are in the open left half plane (LHP).

Proof: By applying bilinear transformations = t+1
t−1 [87], polynomial (2.10) can be rewritten as

(t+ 1)2 + a(t+ 1)(t− 1) + b(t− 1)2 = 0,

which implies (2.11). Note that the bilinear transformation maps the open LHP one-to-one onto the

interior of the unit circle. The lemma follows directly.

Lemma 2.3.6 Suppose that the undirected graphG is connected. All eigenvalues ofF , whereF is

defined in(2.34), are within the unit circle except one eigenvalue equal to one if and only ifα and

T are chosen from the set

Sr =

{
(α, T )| − T 2

2
min

i
µi < αT < 2

}
.2 (2.12)

Proof: When undirected graphG is connected, it follows from Lemma 2.3.2 thatµ1 = 0 andµi < 0,

i = 2, . . . , n. Becauseµ1 = 0, it follows thatλ1 = 1 andλ2 = 1 − αT . To ensure|λ2| < 1, it is

required that0 < αT < 2.

Let a = αT − 2 − T 2

2 µi andb = 1 − αT − T 2

2 µi. It follows from Lemma 2.3.5 that for

µi < 0, i = 2, · · · , n, the roots of (2.9) are within the unit circle if and only if all roots of

−T 2µit
2 + (T 2µi + 2αT )t + 4 − 2αT = 0 (2.13)

are in the open LHP. Because−T 2µi > 0, the roots of (2.13) are always in the open LHP if and

only if T 2µi + 2αT > 0 and4 − 2αT > 0, which implies that−T 2

2 µi < αT < 2, i = 2, . . . , n.

Combining the above arguments proves the lemma.

Theorem 2.3.1 Suppose that undirected graphG is connected. Letp be defined in Lemma 2.3.2.

Using (2.6) for (2.5), r̃i[k] → pT r̃[0] + ( 1
α − T

2 )pT v[0] andvi[k] → 0 ask → ∞ if and only ifα

andT are chosen fromSr, whereSr is defined by(2.12).

2Note thatSr is nonempty.
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Proof: The statement follows directly from Lemmas 2.3.4 and 2.3.6.

Remark 2.3.2 From Lemma 2.3.6, we can getT < 2√−µi
. From the Gershgorin circle theorem,

we know that|µi| ≤ 2maxi ℓii. Therefore, ifT <
√

2
maxi ℓii

, then we haveT < 2√−µi
. Note

that maxi ℓii represents the maximal in-degree of a graph. Therefore, thesufficient bound of the

sampling period is related to the maximal in-degree of a graph.

Directed Interaction

In this subsection, we first show necessary and sufficient conditions onα andT such that

coordination is reached using (2.6) under a directed interaction topology. Because it is not easy to

find the explicit bounds forα andT such that the necessary and sufficient conditions are satisfied,

we present sufficient conditions that can be used to compute the explicit bounds forα andT . Note

that the eigenvalues ofL may be complex for directed graphs, which makes the analysismore

challenging.

Lemma 2.3.7 Suppose that the directed graphG has a directed spanning tree. LetRe(·) andIm(·)

denote, respectively, the real and imaginary part of a number. There existα andT such that the

following three conditions are satisfied:

1) 0 < αT < 2;

2) WhenRe(µi) < 0 andIm(µi) = 0, (α, T ) ∈ Sr, whereSr is defined in(2.12);

3) WhenRe(µi) < 0 andIm(µi) 6= 0, α andT satisfy α
T > − |µi|2

2Re(µi)
and

i) T < T i1 if |Im(µi)|√
−Re(µi)

≤ α ≤ |µi|√
−Re(µi)

, where

T i1 =
−2α[Re(µi)]

2 − 2
√

−Re(µi)[Im(µi)]2[α2Re(µi) + |µi|2]
Re(µi)|µi|2

; (2.14)

ii) T < T i2 if α < |Im(µi)|√
−Re(µi)

, where

T i2 =
−2α[Re(µi)]

2 + 2
√

−Re(µi)[Im(µi)]2[α2Re(µi) + |µi|2]
Re(µi)|µi|2

. (2.15)
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In addition, all eigenvalues ofF , whereF is defined in(2.34), are within the unit circle except one

eigenvalue equal to one if and only if the previous three conditions are satisfied.

Proof: For the first statement, whenT is sufficiently small, there always existsα such that conditions

1), 2), and 3) are satisfied.

For the second statement, whenµ1 = 0, it follows thatλ1 = 1 andλ2 = 1 − αT . Therefore,

condition 1) guarantees thatλ2 is within the unit circle. WhenRe(µi) < 0 and Im(µi) = 0, it

follows from Lemma 2.3.6 that all roots ofF corresponding toµi are within the unit circle if and

only if condition 2) is satisfied.

We next consider the case whenRe(µi) < 0 andIm(µi) 6= 0. Letting t1 andt2 be the two

roots of (2.13), it follows thatRe(t1) + Re(t2) = 1 + 2α
T

Re(µi)
|µi|2 . Therefore, botht1 andt2 are in

the open LHP only if1 + 2α
T

Re(µi)
|µi|2 < 0, i.e., α

T > − |µi|2
2Re(µi)

. To find the bound onT , we assume

that one root of (2.13) is on the imaginary axis. Without lossof generality, lett1 = χj, whereχ

is a real constant andj is the imaginary unit. Substitutingt1 = χj into (2.13) and separating the

corresponding real and imaginary parts give that

T 2Re(µi)χ
2 − T 2Im(µi)χ+ 4 − 2αT = 0 (2.16)

T 2Im(µi)χ
2 + [T 2Re(µi) + 2αT ]χ = 0. (2.17)

It follows from (2.17) that

χ = −TRe(µi) + 2α

T Im(µi)
. (2.18)

By substituting (2.18) into (2.16) gives that

Re(µi)[TRe(µi) + 2α]2

[Im(µi)]2
+ T [TRe(µi) + 2α] + 4 − 2αT = 0.

After some simplifications, we get that

Re(µi)|µi|2T 2 + 4α[Re(µi)]
2T + 4α2Re(µi) + 4[Im(µi)]

2 = 0. (2.19)
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Whenα > |µi|√
−Re(µi)

, it can be computed that

{
4α[Re(µi)]

2
}2 − 4Re(µi)|µi|2(4α2Re(µi) + 4[Im(µi)]

2)

= − 16
{
α2[Re(µi)]

2[Im(µi)]
2 + Re(µi)|µi|2[Im(µi)]

2
}

= − 16Re(µi)[Im(µi)]
2[α2Re(µi) + |µi|2]

<0.

Therefore, there does not exists positiveT such thatt1 (respectively,t2) is on the imaginary axis,

which implies thatt1 (respectively,t2) is always on the left or right hand side. When|Im(µi)|√
−Re(µi)

≤

α ≤ |µi|√
−Re(µi)

, it follows that 4α2Re(µi) + 4[Im(µi)]
2 ≥ 0. Noting thatRe(µi)|µi|2 < 0, it

follows that there exists a unique positiveT i1 such that (2.19) holds whenT = T i1, whereT i1

is given by (2.14). Similarly, whenα < |Im(µi)|√
−Re(µi)

, it follows that4α2Re(µi) + 4[Im(µi)]
2 < 0.

Noting also thatRe(µi)|µi|2 < 0, it follows that there are two positive solutions with the smaller

one given byT i2. This completes the proof.

Combining the previous arguments completes the proof.

Theorem 2.3.3 Suppose that directed graphG has a directed spanning tree. Letp be defined in

Lemma 2.3.2. Using(2.6) for (2.5), r̃i[k] → pT r̃[0] + ( 1
α − T

2 )pT v[0] andvi[k] → 0 ask → ∞ if

and only ifα andT are chosen satisfying the conditions in Lemma 2.3.7.

Proof: The statement follows directly from Lemma 2.3.4 and Lemma 2.3.7.

From Lemma 2.3.7, it is not easy to findα and T explicitly such that the conditions in

Lemma 2.3.7 are satisfied. We next present a sufficient condition in whichα andT can be eas-

ily determined. Before moving on, we need the following lemmas.

Lemma 2.3.8 [88,89]All the zeros of the complex polynomial

P (z) = zn + α1z
n−1 + . . . + αn−1z + αn
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satisfy|z| ≤ r0, wherer0 is the unique nonnegative solution of the equation

rn − |α1|rn−1 − . . .− |αn−1|r − |αn| = 0.

The boundr0 is attained ifαi = −|αi|.

Corollary 2.3.4 All roots of polynomial(2.10)are within the unit circle if|a| + |b| < 1. Moreover,

if |a+ b| + |a− b| < 1, all roots of (2.10)are still within the unit circle.

Proof: According to Lemma 2.3.8, the roots of (2.10) are within the unit circle if the unique non-

negative solutions0 of s2 − |a|s − |b| = 0 satisfiess0 < 1. It is straightforward to show that

s0 =
|a|+

√
|a|2+4|b|
2 . Therefore, the roots of (2.10) are within the unit circle if

|a| +
√

|a|2 + 4|b| < 2. (2.20)

We next discuss the condition under which (2.20) holds. Ifb = 0, then the statements of the

corollary hold trivially. If |b| 6= 0, we have

(|a| +
√

|a|2 + 4|b|)(−|a| +
√

|a|2 + 4|b|)
−|a| +

√
|a|2 + 4|b|

< 2.

After some computation, it follows that condition (2.20) isequivalent to|a|+|b| < 1. Therefore, the

first statement of the corollary holds. For the second statement, because|a|+ |b| ≤ |a+ b|+ |a− b|,

if |a+ b|+ |a− b| < 1, then|a|+ |b| < 1, which implies that the second statement of the corollary

also holds.

Lemma 2.3.9 Suppose that directed graphG has a directed spanning tree. There exist positiveα

andT such thatSc ∩ Sr is nonempty, where

Sc =
⋂

∀Re(µi)<0 and Im(µi)6=0

{(α, T )||1 + T 2µi| + |3 − 2αT | < 1}, (2.21)

andSr is defined by(2.12). If α andT are chosen fromSc∩Sr, then all eigenvalues ofF are within

the unit circle except one eigenvalue equal to one.



23

Proof: For the first statement, we letαT = 3
2 . WhenRe(µi) < 0 andIm(µi) 6= 0, |1 + T 2µi| +

|3 − 2αT | < 1 implies |1 + T 2µi| < 1 becauseαT = 3
2 . It thus follows that0 < T <√

−2Re(µi)

|µi| , ∀Re(µi) < 0 and Im(µi) 6= 0. Whenµi ≤ 0, −T 2

2 µi < αT < 2 can be simpli-

fied as−T 2µi <
3
2 becauseαT = 3

2 . It thus follows that0 < T <
√

3
−µi

, ∀µi ≤ 0. Let

Tc =
⋂

∀Re(µi)<0 and Im(µi)6=0

{
T |0 < T <

√
−2Re(µi)

|µi|

}
andTr =

⋂
∀µi≤0

{
T |0 < T <

√
3

−µi

}
.3

It is straightforward to see thatTc ∩ Tr is nonempty. Recalling thatαT = 3
2 , it follows thatSc ∩ Sr

is nonempty as well.

For the second statement, note that if directed graphG has a directed spanning tree, then it

follows from Lemma 2.3.2 thatµ1 = 0 andRe(µi) < 0, i = 2, . . . , n. Note thatµ1 = 0 implies

thatλ1 = 1 andλ2 = 1 − αT . To ensure that|λ2| < 1, it is required that0 < αT < 2. When

Re(µi) < 0 andIm(µi) 6= 0, it follows from Corollary 2.3.4 that the roots of (2.9) are within the

unit circle if |1+T 2µi|+|3−2αT | < 1, where we have used the second statement of Corollary 2.3.4

by lettinga = αT − 2− T 2

2 µi andb = 1− T 2

2 µi − αT . Whenµi < 0, it follows from the proof of

Lemma 2.3.6 that the roots of (2.9) are within the unit circleif −T 2

2 µi < αT < 2. Combining the

above arguments proves the second statement.

Remark 2.3.5 According to Lemmas 2.3.4 and 2.3.9, ifα and T are chosen fromSc
⋂
Sr and

directed graphG has a directed spanning tree, coordination can be achieved ultimately. An easy

way to chooseα and T is to letαT = 3
2 . It then follows thatT can be chosen satisfyingT <

min∀Re(µi)<0 and Im(µi)6=0
|µi|√

−Re(µi)
andT < min∀Re(µi)<0 and Im(µi)=0

√
3

−µi
.

2.3.2 Convergence Analysis of Sampled-data Coordination Algorithm with Relative Damp-

ing

In this section, we analyze algorithm (2.7) under, respectively, an undirected and an directed

interaction topology.

3Whenµi = 0, T > 0 can be chosen arbitrarily.
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Using (2.7), (2.5) can be written in matrix form as



r̃[k + 1]

v[k + 1]


 =



In − T 2

2 L TIn − T 2

2 L

−TL In − αTL




︸ ︷︷ ︸
G



r̃[k]

v[k]


 . (2.22)

Coordination is achieved if for anyri[0] andvi[0], r̃i[k] → r̃j[k] andvi[k] → vj[k] ask → ∞.

A similar analysis to that for (2.34) shows that the roots ofdet(sI2n − G) = 0, i.e., the

eigenvalues ofG, satisfy

s2 − (2 + αTµi +
1

2
T 2µi)s+ 1 + αTµi −

1

2
T 2µi = 0. (2.23)

Similarly, each eigenvalue of−L, µi, corresponds to two eigenvalues ofG, denoted byρ2i−1 and

ρ2i. Without loss of generality, letµ1 = 0, which implies thatρ1 = ρ2 = 1. Therefore,G has at

least two eigenvalues equal to one.

Lemma 2.3.10 Using (2.7) for (2.5), r̃i[k] → pT r̃[0] + kTpT v[0] andvi[k] → pT v[0] for large k

if and only ifG has exactly two eigenvalues equal to one and all other eigenvalues have modulus

smaller than one.

Proof: (Sufficiency.) Note from (2.23) that ifG has exactly two eigenvalues equal to one, i.e.,

ρ1 = ρ2 = 1, then−L has exactly one eigenvalue equal to zero. Let[pT , qT ]T , wherep, q ∈ R
n,

be the right eigenvector ofG associated with eigenvalue one. It follows that



In − T 2

2 L TIn − T 2

2 L

−TL In − αTL






p

q


 =



p

q


 .

After some computation, it follows that eigenvalue one has geometric multiplicity equal to one

even if it has algebraic multiplicity equal to two. It also follows from Lemma 2.3.2 that we can

choosep = 1n andq = 0n. In addition, a generalized right eigenvector associated with eigenvalue

one can be chosen as[0T
n ,

1
T 1T

n ]T . Similarly, it can be shown that[0T
n , TpT

n ]T and [pT ,0T
n ]T are,

respectively, a left eigenvector and generalized left eigenvector associated with eigenvalue one.
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Note thatG can be written in Jordan canonical form asG = PJP−1, where the columns ofP ,

denoted bypk, k = 1, . . . , 2n, can be chosen to be the right eigenvectors or generalized right

eigenvectors ofG, the rows ofP−1, denoted byqT
k , k = 1, . . . , 2n, can be chosen to be the left

eigenvectors or generalized left eigenvectors ofG such thatpT
k qk = 1 andpT

k qℓ = 0, k 6= ℓ, and

J is the Jordan block diagonal matrix with the eigenvalues ofG being the diagonal entries. Note

thatρ1 = ρ2 = 1 andRe(ρk) < 0, k = 3, . . . , 2n. Also note that we can choosep1 = [1T
n ,0

T
n ]T ,

p2 = [0T
n ,

1
T 1T

n ]T , q1 = [pT ,0T
n ]T , andq2 = [0T

n , TpT
n ]T . It follows thatGk → PJkP−1 →


1n 0n

0n
1
T 1n






1 k

0 1






pT 0T

n

0T
n TpT


 =



1np

T kT1np
T

0n 1np
T


. Therefore, it follows that̃ri[k] →

pT r̃[0] + kTpT v[0] andvi[k] → pT v[0] for largek.

(Necessity.) Note thatG has at least two eigenvalues equal to one. Ifr̃i[k] → pT r̃[0] +

kTpT v[0] andvi[k] → pT v[0] for largek, it follows thatF k has rank two for larget, which in turn

implies thatJk has rank two for largek. It follows thatG has exactly two eigenvalues equal to one

and all other eigenvalues have modulus smaller than one.

Undirected Interaction

In this subsection, we show necessary and sufficient conditions onα andT such that coordi-

nation is reached using (2.7) under an undirected interaction topology.

Lemma 2.3.11 Suppose that undirected graphG is connected. All eigenvalues ofG are within the

unit circle except two eigenvalues equal to one if and only ifα andT are chosen from the set

Qr = {(α, T )|T
2

2
< αT < − 2

mini µi
}.4 (2.24)

Proof: Because undirected graphG is connected, it follows thatµ1 = 0 andµi < 0, i = 2, · · · , n.

Note thatρ1 = ρ2 = 1 becauseµ1 = 0. Leta = −(2+αTµi+
1
2T

2µi) andb = 1+αTµi− 1
2T

2µi.

It follows from Lemma 2.3.5 that forµi < 0, i = 2, . . . , n, the roots of (2.23) are within the unit

4Note thatQr is nonempty.
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circle if and only if all roots of

−T 2µit
2 + (T 2µi − 2αTµi)t+ 4 + 2αTµi = 0, (2.25)

are in the open LHP. Because−T 2µi > 0, the roots of (2.25) are always in the open LHP if and

only if 4 + 2αTµi > 0 andT 2µi − 2αTµi > 0, which implies thatT
2

2 < αT < − 2
µi

, i = 2, . . . , n.

Combining the above arguments proves the lemma.

Theorem 2.3.6 Suppose that undirected graphG is connected. Letp be defined in Lemma 2.3.2.

Using(2.7), r̃i[k] → pT r̃[0] + kTpT v[0] andvi[k] → pT v[0] for largek if and only ifα andT are

chosen fromQr, whereQr is defined by(2.24).

Proof: The statement follows directly from Lemmas 2.3.10 and 2.3.11.

Directed Interaction

In this subsection, we show necessary and sufficient conditions onα andT such that coordi-

nation is reached using (2.7) under a directed interaction topology. Note again that the eigenvalues

of L may be complex for directed graphs, which makes the analysismore challenging.

Lemma 2.3.12 Suppose thatRe(µi) < 0 and Im(µi) 6= 0. All roots of (2.23)are within the unit

circle if and only if α
T > 1

2 andBi < 0, where

Bi
△
= (

4Re(µi)

|µi|2T 2
+ 2

α

T
)(1 − 2

α

T
)2 +

16Im(µi)
2

|µi|4T 4
. (2.26)

Proof: As in the proof of Lemma 2.3.11, all roots of (2.23) are withinthe unit circle if and only if

all roots of (2.25) are in the open LHP. Lettings1 ands2 denote the roots of (2.25), it follows that

s1 + s2 = 1 − 2
α

T
(2.27)

and

s1s2 = − 4

µiT 2
− 2

α

T
. (2.28)
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Noting that (2.27) implies thatIm(s1) + Im(s2) = 0, we defines1 = a1 + jb ands2 = a2 − jb,

wherej is the imaginary unit. Note thats1 ands2 have negative real parts if and only ifa1 +a2 < 0

anda1a2 > 0. Note from (2.27) thata1 + a2 < 0 is equivalent toα
T > 1

2 . We next show conditions

on α andT such thata1a2 > 0 holds. Substituting the definitions ofs1 ands2 into (2.28), gives

a1a2 + b2 + j(a2 − a1)b = − 4
µiT 2 − 2α

T , which implies that

(a2 − a1)b =
4Im(µi)

|µi|2T 2
(2.29)

a1a2 + b2 =
−4Re(µi)

|µi|2T 2
− 2

α

T
. (2.30)

It follows from (3.51) thatb = 4Im(µi)
|µi|2T 2(a2−a1) . Consider also the fact that(a2−a1)

2 = (a2 +a1)
2−

4a1a2 = (1 − 2α
T )2 − 4a1a2. After some manipulation, (3.52) can be written as

4(a1a2)
2 +Aia1a2 −Bi = 0, (2.31)

whereAi
△
= 4(4Re(µi)

|µi|2T 2 + 2α
T )− (1− 2α

T )2 andBi is defined in (2.26). It follows thatA2
i + 16Bi =

[4(4Re(µi)
|µi|2T 2 + 2α

T ) + (1 − 2α
T )2]2 + 16Im(µi)2

|µi|4T 4 ≥ 0, which implies that (2.31) has two real roots.

Therefore, necessary and sufficient conditions fora1a2 > 0 areBi < 0 andAi < 0. Because

16Im(µi)2

|µi|4T 4 > 0, if Bi < 0, then4(4Re(µi)
|µi|2T 2 + 2α

T ) < 0, which impliesAi < 0 as well. Combining the

previous arguments proves the lemma.

Lemma 2.3.13 Suppose that directed graphG has a directed spanning tree. There exist positiveα

andT such thatQc ∩Qr is nonempty, where

Qc =
⋂

∀Re(µi)<0 and Im(µi)6=0

{
(α, T )|1

2
<
α

T
, Bi < 0

}
, (2.32)

whereBi is defined by(2.26)andQr is defined by(2.24). All eigenvalues ofG are within the unit

circle except two eigenvalues equal to one if and only ifα andT are chosen fromQr ∩Qc.

Proof: For the first statement, we letα > T > 0. WhenRe(µi) < 0 andIm(µi) 6= 0, it follows

that α
T > 1

2 holds apparently. Note thatα > T implies (T − 2α)2 > α2. Therefore, a sufficient
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condition forBi < 0 is

αT < −8Im(µi)
2

|µi|4α2
− 2Re(µi)

|µi|2
. (2.33)

To ensure that there are feasibleα > 0 andT > 0 satisfying (2.33), we first need to ensure that

the right side of (2.33) is positive, which requiresα > 2|Im(µi)|
|µi|

√
−Re(µi)

. It also follows from (2.33)

that T < −8Im(µi)
2

|µi|4α3 − 2Re(µi)
|µi|2α , ∀Re(µi) < 0 and Im(µi) 6= 0. Therefore, (2.32) is ensured

to be nonempty ifα andT are chosen from, respectively,αc =
⋂

∀Re(µi)<0 and Im(µi)6=0{α|α >

2|Im(µi)|
|µi|

√
−Re(µi)

} andTc =
⋂

∀Re(µi)<0 and Im(µi)6=0{T |T < −8Im(µi)2

|µi|4α3 − 2Re(µi)
|µi|2α

and0 < T < α}.

Note that (2.24) is ensured to be nonempty ifα andT are chosen from, respectively,αr = {α|α >

0} andTr =
⋂

∀µi<0{T |0 < T < 2α andT < − 2
µiα

}. It is straightforward to see that bothαc ∩αr

andTc ∩ Tr are nonempty. Combining the above arguments shows thatQc ∩Qr is nonempty.

For the second statement, note that if directed graphG has a directed spanning tree, it follows

from Lemma 2.3.2 thatµ1 = 0 andRe(µi) < 0, i = 2, . . . , n. Note thatµ1 = 0 implies that

ρ1 = 1 andρ2 = 1. WhenRe(µi) < 0 andIm(µi) 6= 0, it follows from Lemma 2.3.12 that the

roots of (2.23) are within unit circle if and only ifαT > 1
2 andBi < 0. Whenµi < 0, it follows

from Lemma 2.3.11 that the roots of (2.23) are within unit circle if and only if T 2

2 < αT < − 2
µi

.

Combining the above arguments shows that all eigenvalues ofG are within the unit circle except

two eigenvalues equal to one if and only ifα andT are chosen fromQc ∩Qr.

Remark 2.3.7 From the proof of the first statement of Lemma 2.3.13, an easy way to chooseα and

T is to letα > T . Thenα is chosen fromαc andT is chosen fromTc
⋂
Tr, whereαc, Tc, andTr

are defined in the proof of Lemma 2.3.13.

Theorem 2.3.8 Suppose that directed graphG has a directed spanning tree. Using(2.7), r̃i[k] →

pT r̃[0]+kTpT v[0] andvi[k] → pT v[0] for largek if and only ifα andT are chosen fromQc∩Qr,

whereQc andQr are defined in(2.32)and (2.24), respectively.

Proof: The proof follows directly from Lemma 2.3.11 and Theorem 2.3.13.

Remark 2.3.9 Note that it is required in Theorems 2.3.3 and 2.4.3 that the communication graph

has a directed spanning tree in order to guarantee coordination. The connectivity requirement in
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Theorems 2.3.3 and 2.4.3 can be interpreted as follows. For agroup of vehicles, if the communica-

tion graph does not have a directed spanning tree, then the group of vehicles can be divided into at

least two disconnected subgroups. Because there is no communication among these subgroups, the

final states of the subgroups in general cannot reach coordination.

2.3.3 Simulation

In this section, we present simulation results to validate the theoretical results derived in Sec-

tions 2.4.1 and 2.4.2. We consider a team of four vehicles with directed graphG shown by Fig. 2.1.

Note thatG has a directed spanning tree. The nonsymmetric Laplacian matrix associated withG is

chosen as

L =




1 −1 0 0

0 1.5 −1.5 0

−2 0 2 0

−2.5 0 0 2.5




.

It can be computed that forL, p = [0.4615, 0.3077, 0.2308, 0]T . Here for simplicity, we have

chosenδi = 0, i = 1, · · · , 4.

For coordination algorithm (2.6), letr[0] = [0.5, 1, 1.5, 2]T and v[0] = [−0.1, 0, 0.1, 0]T .

Fig. 2.2(a) shows the convergence result using (2.6) withα = 4 andT = 0.4 sec. Note that

the conditions in Theorem 2.3.3 are satisfied. It can be seen that coordination is reached with the

final equilibrium forri[k] being0.8835, which is equal topT r̃[0] + ( 1
α − T

2 )pT v[0] as argued in

Theorem 2.3.3. Figure 2.2(b) shows the convergence result using (2.6) withα = 1.2 andT = 0.5

sec. Note that coordination is not reached in this case.

For coordination algorithm (2.7), letr[0] = [0, 1, 2, 3]T andv[0] = [0, 0.2, 0.4, 0.6]T . Fig-

ure 2.2(c) shows the convergence result using (2.7) withα = 0.6 andT = 0.02 sec. Note that

the conditions in Theorem 2.4.3 are satisfied. It can be seen that coordination is reached with the

final equilibrium forvi[k] being0.1538, which is equal topT v[0] as argued in Theorem 2.4.3. Fig-

ure 2.2(d) shows the convergence result using (2.7) withα = 0.6 andT = 0.5 sec. Note that

coordination is not reached in this case.
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Fig. 2.1: Directed graphG for four vehicles. An arrow fromj to i denotes that vehiclei can receive
information from vehiclej.
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(a) Convergence resulting using (2.6) (α = 4 andT =
0.4 sec).

0 5 10 15 20 25
−2

−1

0

1

2

3

4

Time (s)

r i

i=1
i=2
i=3
i=4

0 5 10 15 20 25
−6

−4

−2

0

2

4

Time (s)

v i

i=1
i=2
i=3
i=4

(b) Convergence resulting using (2.6) (α = 1.2 and
T = 0.5 sec).
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(c) Convergence resulting using (2.7) (α = 0.6 and
T = 0.02 sec).
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(d) Convergence resulting using (2.7) (α = 0.6 and
T = 0.5 sec).

Fig. 2.2: Convergence results using (2.6) and (2.7) with differentα andT values. Note that co-
ordination is reached in (a) and (c) but not in (b) and (d) depending on different choices ofα and
T .

2.4 Dynamic Interaction Case

In this section, we assume that the network topology switches at each sampling point and

remains constant at each sampling period. Let directed graph Gk denote the interaction graph for

then vehicles fort ∈ [kT ; (k + 1)T ), k = 0, 1, · · · . We useAk to represent the corresponding
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adjacency matrix associated withGk.

2.4.1 Convergence Analysis of Sampled-data Algorithm withAbsolute Damping under Dy-

namic Directed Interaction

In this section, we show sufficient conditions onα, T , and directed graphGk such that coordi-

nation is achieved using (2.6) under dynamic directed interaction.

Using (2.6), (2.5) can be written in matrix form as



r̃[k + 1]

v[k + 1]


 =



In − T 2

2 Lk (T − αT 2

2 )In

−TLk (1 − αT )In




︸ ︷︷ ︸
Fk



r̃[k]

v[k]


 , (2.34)

where r̃ = [r̃1, . . . , r̃n]T with r̃i = ri − δi, v = [v1, . . . , vn]T , andLk is the (nonsymmetric)

Laplacian matrix associated withAk for t ∈ [kT, (k+ 1)T ). Note that the solution of (2.34) can be

written as 

r̃[k + 1]

v[k + 1]


 =



Bk Ck

Dk Ek






r̃[0]

v[0]


 , (2.35)

where



Bk Ck

Dk Ek




△
= FkFk−1 · · ·F0. Therefore,Bk, Ck,Dk, andEk satisfy



Bk

Dk


 =



In − T 2

2 Lk (T − αT 2

2 )In

−TLk (1 − αT )In






Bk−1

Dk−1


 , (2.36)

and 

Ck

Ek


 =



In − T 2

2 Lk (T − αT 2

2 )In

−TLk (1 − αT )In






Ck−1

Ek−1


 . (2.37)

Lemma 2.4.1 Assume thatαT 6= 2. Using(2.6) for (2.5), ri[k] − rj [k] → ∆ij andvi[k] → 0 as

k → ∞ if limk→∞Bk exists and all rows oflimk→∞Bk are the same for any initial matricesB0

andD0.
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Proof: When limk→∞Bk exists and all rows oflimk→∞Bk are the same for any initial matrices

B0 andD0, it follows that limk→∞Ck exists and all rows oflimk→∞Ck are the same for any

initial matricesC0 andE0 as well because (2.36) and (2.37) have the same structure. Itthen follows

from (2.36) that

Bk = Bk−1 −
T 2

2
LkBk−1 + (T − αT 2

2
)Dk−1.

BecauseLk1n = 0n×1 and all rows oflimk→∞Bk−1 are the same, it follows thatlimk→∞LkBk−1 =

0n×n. It thus follows that

lim
k→∞

(T − αT 2

2
)Dk−1 = lim

k→∞
(Bk −Bk−1) = 0n×n.

BecauseαT 6= 2, i.e.,T − αT 2

2 6= 0, it follows that limk→∞Dk = 0n×n for any initial matrices

B0 andD0. Similarly, it follows that limk→∞Ek = 0n×n for any initial matricesC0 andE0

because (2.36) and (2.37) have the same structure. Combining the previous arguments with (2.35)

shows that̃ri[k] → r̃j[k] andvi[k] → 0 ask → ∞, which implies thatri[k] − rj [k] → ∆ij and

vi[k] → 0 ask → ∞.

We next study the conditions onα, T , and the directed graphGk such that all rows oflimk→∞Bk

are the same for any initial matricesB0 andD0. Before moving on, we need the following lemmas

and corollary.

Lemma 2.4.2 [36] Letm ≥ 2 be a positive integer and letP1, P2, · · · , Pm be nonnegativen × n

matrices with positive diagonal entries, thenP1P2 · · ·Pm ≥ γ(P1 + P2 + · · · + Pm, whereγ > 0

can be specified from matricesPi, i = 1, · · · ,m.

Lemma 2.4.3 Assume that the directed graph of a row stochastic matrixA ∈ R
n×n has a directed

spanning tree. Then the directed graph of



A A

A A


 also has a directed spanning tree.
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Proof: Note that12



A A

A A


 can be written as

1

2



A A

A A


 =




1
2

1
2

1
2

1
2


⊗A,

where⊗ denotes the Kronecker product. It can be computed that the eigenvalues of




1
2

1
2

1
2

1
2


 are

0 and 1. Assume that the eigenvalues ofA areλ1, · · · , λn. It follows that the eigenvalues of

1
2



A A

A A


 are 0, λ1, · · · , 0, λn by using the properties of the Kronecker product. Because the

directed graph ofA has a directed spanning tree, it follows from Corollary3.5 [39] thatA has one

simple eigenvalue equal to one, which implies that1
2



A A

A A


 also has one simple eigenvalue equal

to one. Because12



A A

A A


 is a row stochastic matrix, it then follows from Corollary3.5 [39] that

the directed graph of12



A A

A A


 has a directed spanning tree, which in turn implies that the directed

graph of



A A

A A


 also has a directed spanning tree.

Corollary 2.4.1 Assume that every row of a nonnegative matrixA ∈ R
n×n has the same sum. If

the directed graph ofA has a directed spanning tree, the directed graph of



A A

A A


 also has a

directed spanning tree.

Lemma 2.4.4 Suppose thatA ∈ R
n×n is a row stochastic matrix with positive diagonal entries. If

the directed graph ofA has a directed spanning tree, thenA is SIA.

Proof: See Corollary3.5 and Lemma3.7 [39].
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Lemma 2.4.5 [90] Let S1, S2, · · · , Sk ∈ R
n×n be a finite set of SIA matrices with the property

that for each sequenceSi1 , Si2 , · · · , Sij of positive length, the matrix productSijSij−1 · · ·Si1 is

SIA. Then, for each infinite sequenceSi1 , Si2, · · · , there exists a column vectory such that

lim
j→∞

SijSij−1 · · ·Si1 = 1ny
T .

Based on the previous lemmas and corollary, we have the following lemma regarding the con-

ditions onα, T and the directed graphGk such that all rows oflimk→∞Bk are the same.

Lemma 2.4.6 LetΦk1 = (2 − αT )In − T 2

2 Lk andΦk2 = (αT − 1)In − T 2

2 Lk−1, whereLk, k =

0, 1, · · · , are the (nonsymmetric) Laplacian matrices associated withAk for t ∈ [kT, (k + 1)T ).

There exist positiveα andT such that bothΦk1 and Φk2 are nonnegative matrices with positive

diagonal entries. If positiveα andT are chosen such that bothΦk1 andΦk2 are nonnegative with

positive diagonal entries, and there exists a positive integerκ such that for any nonnegative integer

k0, the union ofGk acrossk ∈ [k0, k0 + κ] has a directed spanning tree, the iteration

Bk = Φk1Bk−1 + Φk2Bk−2 (2.38)

is stable for any initial matricesB0 andB1 and all rows oflimk→∞Bk are the same.

Proof: For the first statement, considerαT = 3
2 . It follows that if T 2 < mini

1
ℓii[k] , k = 0, 1, · · · ,

whereℓii[k] is theith diagonal entry ofLk, then bothΦk1 andΦk2 are nonnegative matrices with

positive diagonal entries.

For the second statement, rewrite (2.38) as



Bk

Bk−1


 =




Φk1 Φk2

In 0n×n




︸ ︷︷ ︸
Hk



Bk−1

Bk−2


 . (2.39)

When positiveα andT are chosen such that bothΦk1 andΦk2 are nonnegative matrices with posi-

tive diagonal entries, it follows thatHk is a row stochastic matrix. It then follows thatHk+1Hk =
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


Φ(k+1)1Φk1 + Φ(k+1)2 Φ(k+1)1Φk2

Φk1 Φk2


 is also a row stochastic matrix because the product of row

stochastic matrices is also a row stochastic matrix. In addition, the diagonal entries ofHk+1Hk are

positive because bothΦk1 andΦk2 are nonnegative matrices with positive diagonal entries. Simi-

larly, for any positive integerm and nonnegative integerℓ0, matrix productHm+ℓ0 · · ·Hℓ0 is also a

row stochastic matrix with positive diagonal entries. FromLemma 2.4.2, we have that

Hk+1Hk

≥



γ1(Φ(k+1)1 + Φk1) + Φ(k+1)2 γ2(Φ(k+1)1 + Φk2)

Φk1 Φk2




≥ γ




Φ(k+1)1 + Φk1 + Φ(k+1)2 Φ(k+1)1 + Φk2

Φk1 Φk2




for some positiveγ that is determined byγ1, γ2, Φk1, Φk2, Φ(k+1)1, andΦ(k+1)2, whereγ1 is

determined byΦ(k+1)1 and Φk1, andγ2 is determined byΦ(k+1)1 and Φk2. Note also that the

directed graph ofΦk1 is the same as that ofΦ(k+1)2. We can thus replaceΦk1 with Φ(k+1)2

without changing the directed graph ofHk and vice versa. Therefore, it follows thatHk+1Hk ≥

γ̂




Φ(k+1)1 + Φk1 Φ(k+1)1 + Φ(k−1)1

Φk1 Φ(k−1)1


 for some positivêγ that is determined byΦk1, Φk2, Φ(k+1)1,

Φ(k+1)2, andγ. Similarly,Hm+ℓ0 · · ·Hℓ0 can also be written as

Hℓ0+m · · ·Hℓ0 ≥ γ̃



∑ℓ0+m

i=ℓ0
Φi1

∑ℓ0+m
i=ℓ0+1 Φi1 + Φ(ℓ0−1)1

∑ℓ0+m−1
i=ℓ0

Φi1
∑ℓ0+m−1

i=ℓ0+1 Φi1 + Φ(ℓ0−1)1




≥ γ̃



∑ℓ0+m−1

i=ℓ0+1 Φi1
∑ℓ0+m−1

i=ℓ0+1 Φi1

∑ℓ0+m−1
i=ℓ0+1 Φi1

∑ℓ0+m−1
i=ℓ0+1 Φi1


 (2.40)

for some positivẽγ.

Because there exists a positive integerκ such that for any nonnegative integerk0, the union

of Gk acrossk ∈ [k0, k0 + κ] has a directed spanning tree, it follows that the directed graph of
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∑k0+κ
i=k0

Φi1 also has a directed spanning tree. It thus follows from (2.40) and Corollary 2.4.1 that the

directed graph ofHk0+κ+1 · · ·Hk0−1 also has a directed spanning tree becauseHk0+κ+1 · · ·Hk0−1 ≥

γ̃



∑k0+κ

i=k0
Φi1

∑k0+κ
i=k0

Φi1

∑k0+κ
i=k0

Φi1
∑k0+κ

i=k0
Φi1


. BecauseHk0+κ+1 · · ·Hk0−1 is a row stochastic matrix with positive

diagonal entries and the directed graph ofHk0+κ+1 · · ·Hk0−1 has a directed spanning tree, it fol-

lows from Lemma 2.4.4 thatHk0+κ+1 · · ·Hk0−1 is SIA. It then follows from Lemma 2.4.5 that

limk→∞Hk · · ·H0 = 12ny
T for some column vectory ∈ R

2n. Therefore, it follows from (2.39)

that limk→∞Bk exists and all rows oflimk→∞Bk are the same.

Theorem 2.4.2 Assume that there exists a positive integerκ such that for any nonnegative integer

k0, the union ofGk acrossk ∈ [k0, k0 + κ] has a directed spanning tree. LetΦk1 = (2 − αT )In −
T 2

2 Lk andΦk2 = (αT − 1)In − T 2

2 Lk−1, whereLk, k = 0, 1, · · · , are (nonsymmetric) Laplacian

matrices associated withAk for t ∈ [kT, (k + 1)T ). If positiveα andT are chosen such that both

Φk1 andΦk2 are nonnegative with positive diagonal entries,ri[k] − rj [k] → ∆ij andvi[k] → 0 as

k → ∞.

Proof: It follows from (2.36) that

Bk = (In − T 2

2
Lk)Bk−1 + (T − αT 2

2
)Dk−1, (2.41)

Bk−1 = (In − T 2

2
Lk−1)Bk−2 + (T − αT 2

2
)Dk−2, (2.42)

and

Dk−1 = −TLk−1Bk−2 + (1 − αT )Dk−2. (2.43)

Therefore, it follows from (2.41) and (2.42) that

Bk − (1 − αT )Bk−1

= (In − T 2

2
Lk)Bk−1 − (1 − αT )(In − T 2

2
Lk−1)Bk−2

+ (T − αT 2

2
)[Dk−1 − (1 − αT )Dk−2]. (2.44)
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By substituting (2.43) into (2.44), (2.44) can be simplifiedas (5.26). It then follows from Lemma 2.4.6

thatlimk→∞Bk exists and all rows oflimk→∞Bk are the same under the condition of the theorem.

BecauseΦk1 is nonnegative with positive diagonal entries, it follows thatαT < 2. It then follows

from Lemma 2.4.1 thatri[k] − rj [k] → ∆ij andvi[k] → 0 ask → ∞ under the condition of the

theorem.

2.4.2 Convergence Analysis of Sampled-data Algorithm withRelative Damping under Dy-

namic Directed Interaction

In this section, we show sufficient conditions onα, T , and directed graphGk such that coordi-

nation is achieved using (2.7) under dynamic directed interaction.

Using (2.7), (2.5) can be written in matrix form as



r̃[k + 1]

v[k + 1]


 =



In − T 2

2 Lk TIn − T 2

2 Lk

−TLk In − αTLk




︸ ︷︷ ︸
Gk



r̃[k]

v[k]


 , (2.45)

wherer̃, v, andLk are defined as in (2.34). Note thatGk can be written as

Gk =




(1 − T )In − T 2

2 Lk TIn − T 2

2 Lk

√
TIn − TLk (1 −

√
T )In − αTLk




︸ ︷︷ ︸
Rk

+




TIn 0n×n

−
√
TIn

√
TIn




︸ ︷︷ ︸
S

. (2.46)

In the following, we study the property of matrix productGk · · ·G0 defined as

Gk · · ·G0
△
=



G̃k1 G̃k2

G̃k3 G̃k4


 , (2.47)

whereG̃ki ∈ R
n×n, i = 1, 2, 3, 4.
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Lemma 2.4.7 Assume that directed graphGk, k = 0, 1, · · · , has a directed spanning tree. There

exist positiveα andT such that the following two conditions are satisfied:

1) (1−T )In− T 2

2 Lk and(1−
√
T )In−αTLk, k = 0, 1, · · · , are nonnegative matrices with positive

diagonal entries, andTIn − T 2

2 Lk and
√
TIn − TLk, k = 0, 1, · · · , are nonnegative matrices.

2) ‖S‖∞ < 1, whereS is defined in(2.46).

In addition, if α and T are chosen such that conditions1) and 2) are satisfied, matrix product

Gk · · ·G0 has the property that all rows of each̃Gki, i = 1, 2, 3, 4, are the same ask → ∞, where

G̃ki, i = 1, 2, 3, 4 are defined in(2.47).

Proof: For the first statement, it can be noted that whenT is sufficiently small, condition1) is

satisfied. Similarly, whenT < 1
4 , it follows that‖S‖ < 1. Therefore, there exist positiveα andT

such that conditions1) and2) are satisfied.

For the second statement, it is assumed thatα andT are chosen such that conditions1) and2)

are satisfied. It can be computed thatRk, k = 0, 1, · · · , are row stochastic matrices with positive

diagonal entries when condition1) is satisfied. Note that productGk · · ·G0 can be written as

Gk · · ·G0 = (Rk + S) · · · (R0 + S). (2.48)

It follows from the binomial expansion thatGk · · ·G0 =
∑2k+1

j=1 Ĝj , whereĜj is the product of

k + 1 matrices by choosing eitherRi or S in (Ri + S) for i = 0, · · · , k. As k → ∞, Ĝj takes the

form of the following three cases:

Case I:Ĝj is constructed from an infinite number ofS and a finite number ofRi ask → ∞. In

this case, it follows that ask → ∞,
∥∥∥Ĝj

∥∥∥
∞

≤ ‖Rk0‖∞ ‖Rk1‖∞ · · · ‖S‖∞∞ = ‖S‖∞∞ = 0, where

we have used the fact that‖Rki
‖∞ = 1 becauseRki

is a row stochastic matrix and‖S‖∞ < 1 as

shown in condition2). ThereforeĜj approaches02n×2n ask → ∞.

Case II:Ĝj is constructed from an infinite number ofS and an infinite number ofRi ask → ∞. A

similar analysis to that in Case I shows that̂Gj approaches02n×2n ask → ∞.

Case III: Ĝj is constructed from a finite number ofS and an infinite number ofRi ask → ∞. In
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this case, ask → ∞, Ĝj can be written as

Ĝj = M
∏

j

Rkj

︸ ︷︷ ︸
J

N,

where bothM andN are the product of a finite number of matrices by choosing either Ri, i 6=

kj , j = 0, 1, · · · , or S from (Ri + S) andJ is the product of an infinite number ofRkj
.5 Note

that the directed graph ofRk is the same as that of




(1 − T )In − T 2

2 Lk (1 − T )In − T 2

2 Lk

(1 − T )In − T 2

2 Lk (1 − T )In − T 2

2 Lk




because the directed graphs of all four matrices in condition 1) are the same. It then follows from

Corollary 2.4.1 that



(1 − T )In − T 2

2 Lk (1 − T )In − T 2

2 Lk

(1 − T )In − T 2

2 Lk (1 − T )In − T 2

2 Lk


 has a directed spanning tree if the

directed graph of(1−T )In− T 2

2 Lk, i.e., directed graphGk, has a directed spanning tree. Therefore,

the directed graph ofRk also has a directed spanning tree. Also note thatRk, k = 0, 1, · · · , are

row stochastic matrices with positive diagonal entries. Itthen follows from Lemma 2.4.4 thatRkj
is

SIA. Therefore, it follows from Lemma 2.4.5 that all rows ofJ are the same ask → ∞. By writing

J =



J1 J2

J3 J4


 , (2.49)

whereJi ∈ R
n×n, i = 1, 2, 3, 4, it follows from the fact that all rows ofJ are the same that all rows

of Ji, i = 1, 2, 3, 4, are also the same. It then follows that

RiJ =



(1 − T )In − T 2

2 Li TIn − T 2

2 Li

√
TIn − TLi (1 −

√
T )In − αTLi


J

=



(1 − T )In TIn
√
TIn (1 −

√
T )In


 J,

where we have used the fact thatLiJi = 0n×n, i = 1, 2, 3, 4. By separatingRiJ into four n × n

submatrices as that ofJ in (2.49), all rows of every one of the fourn× n submatrices are the same.

5HereM andN areI2n if neitherRi nor S is chosen.
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The same property also applies to matrix productsJRi, SJ , andJS. A similar analysis shows that

the same property also holds for matrix product formed by pre-multiplying or post-multiplyingJ

by a finite number ofRi and/orS. Therefore, by separatinĝGj into fourn× n submatrices as that

of J in (2.49), it follows that all rows of every one of the fourn × n submatrices are the same.

Combining the previous arguments shows that ask → ∞, all rows of G̃ki, i = 1, 2, 3, 4, are the

same.

Theorem 2.4.3 Suppose that directed graphGk, k = 0, 1, · · · , has a directed spanning tree. Us-

ing (2.7) for (2.5), ri[k] − rj [k] → ∆ij[k] andvi[k] → vj [k] ask → ∞ when positiveα andT are

chosen such that conditions1) and2) in Lemma 2.4.7 are satisfied.

Proof: Note that the solution of (2.45) can be written as



r̃[k + 1]

v[k + 1]


 = Gk · · ·G0



r̃[0]

v[0]


 . (2.50)

When directed graphGk, k = 0, 1, · · · , has a directed spanning tree, and conditions1) and2) in

Lemma 2.4.7 are satisfied, it follows that all rows ofG̃ki, i = 1, 2, 3, 4, are the same ask → ∞,

whereG̃ki, i = 1, 2, 3, 4, are defined in (2.47). Combining with (2.50) shows thatr̃i[k] → r̃j[k] and

vi[k] → vj [k] ask → ∞, which implies thatri[k] − rj [k] → ∆ij andvi[k] → vj [k] ask → ∞.

Remark 2.4.4 Note that Theorem 2.4.2 requires that the communication graph has a directed span-

ning tree jointly to guarantee coordination while Theorem 2.4.3 requires that the communication

graph has a directed spanning tree at each time interval to guarantee coordination. The different

connectivity requirement for Theorems 2.4.2 and 2.4.3 is caused by different damping terms. For the

coordination algorithm with an absolute damping term, whenthe damping gain and the sampling

period are chosen properly, all vehicles always have a zero final velocity disregard of the commu-

nication graph. However, for the coordination algorithm with a relative damping term, the vehicles

in general do not have a zero final velocity. From this point ofview, it is not surprising to see that

the connectivity requirement in Theorem 2.4.3 corresponding to the relative damping case is more

stringent than that in Theorem 2.4.2 corresponding to the absolute damping case.
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Remark 2.4.5 In Theorem 2.4.2 (respectively, Theorem 2.4.3), it is assumed that the sampling pe-

riod is uniform. When the sampling periods are nonuniform, we can always find corresponding

damping gains such that the conditions in Theorem 2.4.2 (respectively, Theorem 2.4.3) are satisfied.

Therefore, similar results can be obtained in the presence of nonuniform sampling periods if the

conditions in Theorem 2.4.2 (respectively, Theorem 2.4.3)are satisfied.

2.4.3 Simulation

In this section, we present simulation results to illustrate the theoretical results derived in Sec-

tions 2.4.1 and 2.4.2. For both coordination algorithms (2.6) and (2.7), we consider a team of four

vehicles. Here for simplicity, we have chosenδi = 0, i = 1, · · · , 4.

For coordination algorithm (2.6), letr[0] = [0.5, 1, 1.5, 2]T andv[0] = [−1, 0, 1, 0]T . The

interaction graph switches from a set{G(1),G(2),G(3)} as shown in Fig. 2.3 with the corresponding

(nonsymmetric) Laplacian matrices chosen as

L(1) =




1 −1 0 0

0 0 0 0

0 0 0 0

0 0 0 0




,

L(2) =




0 0 0 0

0 1 −1 0

0 0 0 0

0 0 0 0




,

and

L(3) =




0 0 0 0

0 0 0 0

0 0 1 −1

−1 0 0 1




.

From subfigure (d) in Fig 2.3, it can be noted that the union ofG(1), G(2), andG(3) has a directed
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spanning tree. We choose sampling periodT = 0.2 sec andα = 6. It can be computed that the

condition in Theorem 2.4.2 is satisfied. Figs. 2.4(a) and 2.4(b) show, respectively, the positions and

velocities of the four vehicles using (2.6) when the interaction graph switches fromG(1) to G(2) and

then toG(3) everyT sec. The same process then repeats. It can be seen that coordination is achieved

on positions with a zero final velocity as urged in Theorem 2.4.2. Note that the velocities of the four

vehicles demonstrate large oscillation as shown in Fig. 2.4(b) because the interaction graph does not

have a directed spanning tree at each time interval and switches very fast.

For coordination algorithm (2.7), letr[0] = [0.5, 1, 1.5, 2]T andv[0] = [−1, 0, 1, 0]T . The

interaction graph switches from a set{G(4),G(5),G(6)} as shown in Fig. 2.5 with the corresponding

(nonsymmetric) Laplacian matrices chosen as

L(4) =




1 −1 0 0

0 1 −1 0

0 −1 1 0

−1 0 0 1




,

L(5) =




2 −1 −1 0

−1 1 0 0

−1 0 2 −1

−1 −1 0 2




,

1 2oo

4 3
(a) Directed
graphG(1).

1 2

4 3

OO

(b) Directed
graphG(2).

1 2

4

OO

3oo
(c) Directed
graphG(3).

1 2oo

4

OO

3oo

OO

(d) The
union of
G(1),G(2),G(3).

Fig. 2.3: Interaction graphs for four vehicles. An arrow from j to i denotes that vehiclei can receive
information from vehiclej.
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Fig. 2.4: Convergence results using (2.6) with a switching interaction.

and

L(6) =




1 −1 0 0

−1 2 −1 0

0 0 1 −1

0 −1 0 1




.

Note that directed graphsG(i), i = 4, 5, 6, all have a directed spanning tree. We choose sampling

periodT = 0.1 sec andα = 1. It can be computed that the condition in Theorem 2.4.3 is satisfied.

Figs. 2.6(a) and 2.6(b) show, respectively, the positions and velocities of the four vehicles using (2.7)

when the interaction graph switches fromG(4) toG(5) and then toG(6) everyT sec. The same process

then repeats. It can be seen that coordination is achieved onpositions with a constant final velocity

as urged in Theorem 2.4.3.

We also show an example to illustrate that using (2.7) for (2.5), coordination is not necessarily

achieved even if the interaction graph has a directed spanning tree jointly, andα andT satisfy

1

��>
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2oo

4 3

OO

(a) Directed
graphG(4).
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�� ��>
>>

>>
>>

2

����
��
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oo

4 // 3

^^>>>>>>>

(b) Directed
graphG(5).

1 // 2oo

����
��

��
�

4 // 3

OO

(c) Directed
graphG(6).

Fig. 2.5: Interaction graphs for four vehicles. An arrow from j to i denotes that vehiclei can receive
information from vehiclej.
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Fig. 2.6: Convergence results using (2.7) withα = 1, T = 0.1 sec, and the interaction graph
switches from a set{G(4),G(5),G(6)}.

conditions1) and2) in Lemma 2.4.7. The initial positions and velocities,α, andT are chosen to be

the same as those for Figs. 2.6(a) and 2.6(b). Figs. 2.7(a) and 2.7(b) show, respectively, the positions

and velocities of the four vehicles using (2.7) when the interaction graph switches fromG(1) to G(2)

then toG(3) everyT sec. The same process then repeats. It can be seen that coordination is not

achieved even when the interaction graph has a directed spanning tree jointly andα andT satisfy

conditions1) and2) in Lemma 2.4.7.
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Fig. 2.7: Convergence results using (2.7) withα = 1, T = 0.1 sec, and the interaction graph
switches from a set{G(1),G(2),G(3)}.
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Chapter 3

Decentralized Coordination Algorithms with a Group Reference State

In Chapter 2, we studied decentralized coordination algorithms without a group reference state.

Although the study of decentralized coordination in the absence of any group reference state is in-

teresting, it is of great importance to study decentralizedcoordination algorithms in the presence of

a group reference which usually represents the interest of the group. In this chapter, we focus on

the study of decentralized coordination algorithms with a group reference state. The unique group

reference state is also called “leader.” Decentralized coordination with a group reference state is

also called “coordinated tracking.” When the leader’s state is constant, the leader can be considered

one agent which has no local neighbors. Therefore, the decentralized coordination problem is a

special case of decentralized coordination without a groupreference state. In the following, we as-

sume that the group references is time-varying for generality. The existing literature [67–69,72,73]

focuses on the study of coordinated tracking algorithms forcontinuous-time systems requiring the

availability of the velocity and/or acceleration measurements or the design of distributed observers.

In this following, we will study three problems in this chapter: decentralized consensus tracking,

decentralized swarm tracking, and PD-like (proportional and derivative like) consensus tracking.

In particular, the first two problems are studied in a continuous-time setting. Compared with the

aforementioned references, the proposed approaches require milder condition on the information

transmission between the leader and the followers and less information from the leader and/or the

followers. The last is investigated in a discrete-time setting and the proposed algorithms can be

easily implemented in real systems.

3.1 Continuous-time Setting

In this section, we will study decentralized coordinated tracking, including consensus tracking
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and swarm tracking, in a continuous-time setting. Both single-integrator kinematics and double-

integrator dynamics will be considered accordingly.

3.1.1 Decentralized Coordinated Tracking for Single-integrator Kinematics

In this section, we study decentralized coordinated tracking for first-order kinematics. Suppose

that in addition to then vehicles, labeled as vehicles1 to n, calledfollowershereafter, there exists

a virtual leader, labeled as vehicle 0, with a (time-varying) positionr0 and velocityṙ0. We assume

that |ṙ0| ≤ γℓ, whereγℓ is a positive constant.

Consider followers with first-order kinematics given by

ṙi = ui, i = 1, . . . , n, (3.1)

whereri ∈ R is the position andui ∈ R is the control input associated with theith vehicle. Here

we have assumed that all vehicles are in a one-dimensional space for the simplicity of presentation.

However, all results hereafter are still valid for any high-dimensional case by introduction of the

Kronecker product.

Decentralized Consensus Tracking under Fixed and Switching Network Topologies

In this subsection, we designui for (3.1) such that all followers track the virtual leader with

local interaction in the absence of velocity measurements.We propose the decentralized consensus

tracking algorithm for (3.1) as

ui = −α
n∑

j=0

aij(ri − rj) − βsgn[
n∑

j=0

aij(ri − rj)], (3.2)

whereaij, i, j = 1, . . . , n, is the(i, j)th entry of the adjacency matrixA, ai0, i = 1, . . . , n, is a

positive constant if the virtual leader’s position is available to followeri andai0 = 0, otherwise,

α is a nonnegative constant,β is a positive constant, and sgn(·) is the signum function. We first

consider the case of a fixed network topology.
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Theorem 3.1.1 Suppose that the fixed undirected graphG is connected and at least oneai0 is

nonzero (and hence positive). Using(3.2) for (3.1), if β > γℓ, thenri(t) → r0(t) in finite time. In

particular, ri(t) = r0(t) for anyt ≥ t̄, where

t =

√
r̃T (0)Mr̃(0)

√
λmax(M)

(β − γℓ)λmin(M)
, (3.3)

wherer̃ is the column stack vector ofr̃i, i = 1, · · · , n,with r̃i = ri−r0,M = L+diag(a10, · · · , an0)

with L being the Laplacian matrix, andλmin(·) andλmax(·) denote, respectively, the smallest and

the largest eigenvalue of a symmetric matrix.

Proof: Noting thatr̃i = ri − r0, we can rewrite the closed-loop system of (3.1) using (3.2) as

˙̃ri = −α
n∑

j=0

aij(r̃i − r̃j) − βsgn[
n∑

j=0

aij(r̃i − r̃j)] − ṙ0. (3.4)

Equation (3.4) can be written in matrix form as

˙̃r = −αMr̃ − βsgn(Mr̃) − 1ṙ0,

wherer̃ andM are defined in (3.3), and sgn(·) is defined componentwise. Because the fixed undi-

rected graphG is connected and at least oneai0 is nonzero (and hence positive),M is symmetric

positive definite.

Consider the Lyapunov function candidateV = 1
2 r̃

TMr̃. The derivative ofV is

V̇ = r̃TM [−αMr̃ − βsgn(Mr̃) − 1ṙ0]

≤ −αr̃TM2r̃ − β ‖Mr̃‖1 + |ṙ0| ‖Mr̃‖1

≤ −αr̃TM2r̃ − (β − γℓ) ‖Mr̃‖1 , (3.5)

where we have used the Hölder’s inequality to obtain the first inequality and|ṙ0| ≤ γℓ to obtain

the second inequality. Note thatM2 is symmetric positive definite,α is nonnegative, andβ > γℓ.

Therefore, it follows thaṫV is negative definite.
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We next show thatV will decrease to zero in finite time, i.e.,r̃i(t) → 0 in finite time. Note

thatV ≤ 1
2λmax(M) ‖r̃‖2

2. It then follows from (3.5) that the derivative ofV satisfies

V̇ ≤ −(β − γℓ) ‖Mr̃‖2

= −(β − γℓ)
√
r̃TM2r̃

≤ −(β − γℓ)

√
λ2

min(M) ‖r̃‖2
2

= −(β − γℓ)λmin(M) ‖r̃‖2

≤ −(β − γℓ)

√
2λmin(M)√
λmax(M)

√
V .

After some manipulation, we can get that

2
√
V (t) ≤ 2

√
V (0) − (β − γℓ)

√
2λmin(M)√
λmax(M)

t.

Therefore, we haveV (t) = 0 whent ≥ t, wheret is given by (3.3). This completes the proof.

Let N i ⊆ {0, 1, . . . , n} denote the neighbor set of followeri in the team consisting of the

n followers and the virtual leader. We next consider the case of a switching network topology by

assuming thatj ∈ N i(t), i = 1, · · · , n, j = 0, · · · , n, if |ri − rj| ≤ R at timet andj /∈ N i(t)

otherwise, whereR denotes the communication/sensing radius of the vehicles.In this case, we

consider the decentralized consensus tracking algorithm for (3.1) as

ui = −α
∑

j∈N i(t)

bij(ri − rj) − βsgn[
∑

j∈N i(t)

bij(ri − rj)], (3.6)

wherebij, i = 1, . . . , n, j = 0, . . . , n, are positive constants, andα, β, and sgn(·) are defined as

in (3.2).

Theorem 3.1.2 Suppose that the undirected graphG(t) is connected and the virtual leader is a

neighbor of at least one follower, i.e.,0 ∈ N i(t) for somei, at each time instant. Using(3.2)

for (3.1), if β > γℓ, thenri(t) → r0(t) ast→ ∞.

Proof: Let Vij = 1
2bij(ri − rj)

2, i, j = 1, . . . , n, when |ri − rj| ≤ R andVij = 1
2bijR

2 when



49

|ri − rj| > R. Also letVi0 = 1
2bi0(ri − r0)

2, i = 1, . . . , n, when|ri − r0| ≤ R andVi0 = 1
2bi0R

2

when|ri−r0| > R. Consider the Lyapunov function candidateV = 1
2

∑n
i=1

∑n
j=1 Vij +

∑n
i=1 Vi0.

Note thatV is not smooth but is regular. We use differential inclusions[91, 92] and nonsmooth

analysis [5, 93] to analyze the stability of (3.1) using (3.6). Therefore, the closed-loop system

of (3.1) using (3.6) can be written as

ṙi ∈a.e. −K

[
α
∑

j∈N i(t)

bij(ri − rj) + βsgn[
∑

j∈N i(t)

bij(ri − rj)]

]
, (3.7)

whereK[·] is the differential inclusion [92] and a.e. stands for “almost everywhere.”

The generalized derivative ofV is given by

V o =
1

2

n∑

i=1

n∑

j=1

bij

[
∂Vij

∂ri
ṙi +

∂Vij

∂rj
ṙj

]
+

n∑

i=1

bi0

[
∂Vij

∂ri
ṙi +

∂Vij

∂r0
ṙ0

]

=
1

2

n∑

i=1

∑

j∈N i(t),j 6=0

bij [(ri − rj)ṙi + (rj − ri)ṙj ] +
∑

0∈N i(t)

bi0 [(ri − r0)ṙi + (r0 − ri)ṙ0]

= −α
n∑

i=1




∑

j∈N i(t)

bij(ri − rj)




2

− β
n∑

i=1

∣∣∣∣∣∣

∑

j∈N i(t)

bij(ri − rj)

∣∣∣∣∣∣
+

∑

0∈N i(t)

bi0(r0 − ri)ṙ0

= −αr̃T [M̂ (t)]2r̃ − β
∥∥∥M̂(t)r̃

∥∥∥
1
+ ṙ0

∑

0∈N i(t)

bi0(r0 − ri) + ṙ0

n∑

i=1

∑

j∈N i(t),j 6=0

bij(ri − rj)

(3.8)

= −αr̃T [M̂ (t)]2r̃ − β
∥∥∥M̂(t)r̃

∥∥∥
1
+ ṙ0

n∑

i=1

∑

j∈N i(t)

bij(ri − rj)

≤ −αr̃T [M̂ (t)]2r̃ − β
∥∥∥M̂(t)r̃

∥∥∥
1
+ ṙ0

∥∥∥M̂(t)r̃
∥∥∥

1

≤ −αr̃T [M̂ (t)]2r̃ − (β − γℓ)
∥∥∥M̂(t)r̃

∥∥∥
1
, (3.9)

where we have used the fact
∑n

i=1

∑
j∈N i(t),j 6=0 bij(ri − rj) = 0 to derive (3.8) and|ṙ0| ≤ γℓ

to derive (3.9),̃r is the column stack vector of̃ri, i = 1, · · · , n, with r̃i = ri − r0, andM̂(t) =
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[m̂ij(t)] ∈ R
n×n is defined as

m̂ij(t) =






−bij, j ∈ N i(t), j 6= i,

0, j /∈ N i(t), j 6= i,

∑
k∈N i(t)

bik, j = i.

(3.10)

Note thatM̂(t) is symmetric positive definite at each time instant under thecondition of the theorem.

Becauseβ > γℓ, it then follows that the generalized derivative ofV is negative definite under the

condition of the theorem, which implies thatV (t) → 0 as t → ∞. Therefore, we can get that

ri(t) → r0(t) ast→ ∞.

Remark 3.1.3 Under the condition of Theorem 3.1.2, decentralized consensus tracking can be

achieved in finite time under a switching network topology. However, in contrast to the result in

Theorem 3.1.1, it is not easy to explicitly compute the boundof the time, i.e.,t in Theorem 3.1.1,

because the switching pattern of the network topology also plays an important role in determining

the bound of the time.

Decentralized Swarm Tracking under a Switching Network Topology

In this subsection, we extend the decentralized consensus tracking algorithm in Section 3.1.1

to achieve decentralized swarm tracking. The objective here is to designui for (3.1) such that all

followers move cohesively with the virtual leader while avoiding inter-vehicle collision with local

interaction in the absence of velocity measurements. Before moving on, we need to define potential

functions which will be used in the decentralized swarm tracking algorithms.

Definition 3.1.4 The potential functionVij is a differentiable, nonnegative function of||ri − rj||1

satisfying the following conditions:

1) Vij achieves its unique minimum when||ri − rj|| is equal to its desired valuedij .

2) Vij → ∞ if ||ri − rj || → 0.

3) ∂Vij

∂(‖ri−rj‖) = 0 if ||ri − rj|| > R, whereR > maxi,j dij is a positive constant.

4) Vii = c, i = 1, · · · , n, wherec is a positive constant.

1In this definition,ri can bem-dimensional.
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Lemma 3.1.1 LetVij be defined in Definition 3.1.4. The following equality holds

1

2

n∑

i=1

n∑

j=1

(
∂Vij

∂ri
ṙi +

∂Vij

∂rj
ṙj

)
=

n∑

i=1

n∑

j=1

∂Vij

∂ri
ṙi.

Proof: Note that

1

2

n∑

i=1

n∑

j=1

(
∂Vij

∂ri
ṙi +

∂Vij

∂rj
ṙj

)

=
1

2

n∑

i=1

n∑

j=1

∂Vij

∂ri
ṙi −

1

2

n∑

i=1

n∑

j=1

∂Vij

∂ri
ṙj

=
1

2

n∑

i=1

n∑

j=1

∂Vij

∂ri
ṙi −

1

2

n∑

j=1

n∑

i=1

∂Vji

∂rj
ṙi

=
1

2

n∑

i=1

n∑

j=1

∂Vij

∂ri
ṙi +

1

2

n∑

j=1

n∑

i=1

∂Vij

∂ri
ṙi

=
n∑

i=1

n∑

j=1

∂Vij

∂ri
ṙi,

where we have used the fact that∂Vij

∂ri
= −∂Vij

∂rj
from Definition 3.1.4. Therefore, the lemma holds.

We propose the decentralized swarm tracking algorithm for (3.1) as

ui = −α
∑

j∈N i(t)

∂Vij

∂ri
− βsgn




∑

j∈N i(t)

∂Vij

∂ri



 , (3.11)

whereα, β, andN i(t) are defined as in Section 3.1.1, andVij is defined in Definition 3.1.4.

Theorem 3.1.5 Suppose that the undirected graphG(t) is connected and the virtual leader is a

neighbor of at least one follower, i.e.,0 ∈ N i(t) for somei, at each time instant. Using(3.11)

for (3.1), if β > γℓ, the relative distances of all followers and the virtual leader will move closely

with the virtual leader and the inter-vehicle collision is avoided.
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Proof: Consider the Lyapunov function candidate

V =
1

2

n∑

i=1

n∑

j=1

Vij +

n∑

i=1

Vi0.

Taking derivative ofV gives that

V̇ =
1

2

n∑

i=1

n∑

j=1

(
∂Vij

∂ri
ṙi +

∂Vij

∂rj
ṙj

)
+

n∑

i=1

(
∂Vi0

∂ri
ṙi +

∂Vi0

∂r0
ṙ0

)

=
n∑

i=1

n∑

j=1

∂Vij

∂ri
ṙi +

n∑

i=1

(
∂Vi0

∂ri
ṙi +

∂Vi0

∂r0
ṙ0

)
(3.12)

=

n∑

i=1

n∑

j=1

∂Vij

∂ri



−α
n∑

j=0

∂Vij

∂ri
− βsgn




n∑

j=0

∂Vij

∂ri









+
n∑

i=1

∂Vi0

∂ri



−α
n∑

j=0

∂Vij

∂ri
− βsgn




n∑

j=0

∂Vij

∂ri







+
n∑

i=1

∂Vi0

∂r0
ṙ0

= − α
n∑

i=1




n∑

j=0

∂Vij

∂ri




2

− β
n∑

i=1

∣∣∣∣∣∣

n∑

j=0

∂Vij

∂ri

∣∣∣∣∣∣
+

n∑

i=1

∂Vi0

∂r0
ṙ0

= − α
n∑

i=1




n∑

j=0

∂Vij

∂ri




2

− β
n∑

i=1

∣∣∣∣∣∣

n∑

j=0

∂Vij

∂ri

∣∣∣∣∣∣
+

n∑

i=1

∂Vi0

∂r0
ṙ0 +

n∑

i=1

n∑

j=1

∂Vij

∂ri
ṙ0 (3.13)

≤− α
n∑

i=1




n∑

j=0

∂Vij

∂ri




2

− β
n∑

i=1

∣∣∣∣∣∣

n∑

j=0

∂Vij

∂ri

∣∣∣∣∣∣
+ ṙ0

n∑

i=1

∣∣∣∣∣∣

n∑

j=0

∂Vij

∂ri

∣∣∣∣∣∣
,

where we have used Lemma 3.1.1 to derive (3.12) and the fact that
∑n

i=1

∑n
j=1

∂Vij

∂ri
= 0 to de-

rive (3.13). Becauseβ > γℓ, we get thatV̇ ≤ 0, which in turn proves the theorem.

3.1.2 Decentralized Coordinated Tracking for Second-order Dynamics

In this section, we study decentralized coordinated tracking for second-order dynamics. Sup-

pose that there exists a virtual leader, labeled as vehicle0, with a (time-varying) positionr0 and

velocity v0. We consider four different cases.
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Decentralized Consensus Tracking with a Varying Virtual Leader’s Velocity

Consider followers with second-order dynamics given by

ṙi = vi, v̇i = ui, i = 1, . . . , n, (3.14)

whereri ∈ R andvi ∈ R are, respectively, the position and velocity of followeri, andui ∈ R is the

control input. We assume that|v̇0| ≤ ϕℓ, whereϕℓ is a positive constant. Again we only consider

the case when all vehicles are in a one-dimensional space. All results hereafter are still valid for the

m-dimensional (m > 1) case by introduction of the Kronecker product.

In this subsection, we assume that the virtual leader has a varying velocity, i.e.,v0 is time-

varying. The objective here is to designui for (3.14) such that all followers track the virtual leader

with local interaction in the absence of acceleration measurements. We propose the decentralized

consensus tracking algorithm for (3.14) as

ui = −
n∑

j=0

aij [(ri − rj) + α(vi − vj)]

− βsgn{
n∑

j=0

aij [γ(ri − rj) + (vi − vj)]}, (3.15)

whereaij, i, j = 1, . . . , n, is the(i, j)th entry of the adjacency matrixA, ai0, i = 1, . . . , n, is a

positive constant if the virtual leader’s position and velocity are available to followeri andai0 = 0

otherwise, andα, β, andγ are positive constants. We first consider the case of a fixed network

topology. Before moving on, we need the following lemma.

Lemma 3.1.2 Suppose that the fixed undirected graphG is connected and at least oneai0 is nonzero

(and hence positive). LetP =




1
2M

2 γ
2M

γ
2M

1
2M


 andQ =



γM2 αγ

2 M
2

αγ
2 M

2 αM2 − γM


, whereγ andα

are positive constants andM = L + diag(a10, . . . , an0). If γ satisfies

0 < γ < min{
√
λmin(M),

4αλmin(M)

4 + α2λmin(M)
}, (3.16)

then bothP andQ are symmetric positive definite.
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Proof: When the fixed undirected graphG is connected and at least oneai0 is nonzero (and hence

positive),M is symmetric positive definite. It follows thatM can be diagonalized asM = Γ−1ΛΓ,

whereΛ = diag{λ1, · · · , λn} with λi being theith eigenvalue ofM . It then follows thatP can be

written as

P =




Γ−1 0n×n

0n×n Γ−1







1
2Λ2 γ

2Λ

γ
2Λ 1

2Λ




︸ ︷︷ ︸
F




Γ 0n×n

0n×n Γ


 , (3.17)

where0n×n is then× n zero matrix. Letµ be an eigenvalue ofF . BecauseΛ is a diagonal matrix,

it follows from (3.17) thatµ satisfies(µ− 1
2λ

2
i )(µ− 1

2λi) − γ2

4 λ
2
i = 0, which can be simplified as

µ2 − 1

2
(λ2

i + λi)µ+
1

4
(λ3

i − γ2λ2
i ) = 0. (3.18)

BecauseF is symmetric, the roots of (3.18) are real. Therefore, all roots of (3.18) are positive if

and only if 1
2 (λ2

i +λi) > 0 and 1
4(λ3

i − γ2λ2
i ) > 0. Becauseλi > 0, it follows that 1

2 (λ2
i +λi) > 0.

Whenγ2 < λi, it follows that 1
4(λ3

i − γ2λ2
i ) > 0. It thus follows that whenγ2 < λi, the roots

of (3.18) are positive. Noting thatP has the same eigenvalues asF , we can get thatP is positive

definite if0 < γ <
√
λmin(M).

By following a similar analysis, we can get thatQ is positive definite if0 < γ < 4αλmin(M)
4+α2λmin(M)

.

Combining the above arguments proves the lemma.

Theorem 3.1.6 Suppose that the fixed undirected graphG is connected and at least oneai0 is

nonzero (and hence positive). Using(3.15)for (3.14), if β > ϕℓ andγ satisfies(3.16), thenri(t) →

r0(t) andvi(t) → v0(t) globally exponentially ast→ ∞. In particular, it follows that

∥∥∥∥∥

[
r̃T (t) ṽT (t)

]T
∥∥∥∥∥

2

≤ κ1e
−κ2t, (3.19)

wherer̃ andṽ are, respectively, the column stack vectors ofr̃i andṽi, i = 1, . . . , n, with r̃i = ri−r0

andṽi = vi−v0,P andQ are defined in Lemma 3.1.2,κ1 =

√√√√
[

r̃T (0) ṽT (0)

]
P

[

r̃T (0) ṽT (0)

]T

λmin(P ) ,

andκ2 = λmin(Q)
2λmax(P ) .
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Proof: Noting that r̃i = ri − r0 and ṽi = vi − v0, we rewrite the closed-loop system of (3.14)

using (3.15) as

˙̃ri = ṽi

˙̃vi = −
n∑

j=0

aij[(r̃i − r̃j) + α(ṽi − ṽj)]

− βsgn






n∑

j=0

aij[γ(r̃i − r̃j) + (ṽi − ṽj)]




− v̇0. (3.20)

Equation (3.20) can be written in matrix form as

˙̃r = ṽ

˙̃v = −Mr̃ − αMṽ − βsgn[M(γr̃ + ṽ)] − 1v̇0,

wherer̃ andṽ are defined in (3.19) andM = L + diag(a10, . . . , an0).

Consider the Lyapunov function candidate

V =

[
r̃T ṽT

]
P



r̃

ṽ




=
1

2
r̃TM2r̃ +

1

2
ṽTMṽ + γr̃TMṽ. (3.21)

Note that according to Lemma 3.1.2,P is symmetric positive definite whenγ satisfies (3.16). The

derivative ofV is

V̇ =r̃TM2ṽ + ṽTM ˙̃v + γṽTMṽ + γr̃TM ˙̃v

= −
[
r̃T ṽT

]
Q



r̃

ṽ


− (γr̃T + ṽT )M{βsgn[M(γr̃ + ṽ)] + 1v̇0}

≤ −
[
r̃T ṽT

]
Q



r̃

ṽ


− (β − ϕℓ) ‖M(γr̃ + ṽ)‖1 , (3.22)
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where the last inequality follows from the fact that|v̇0| ≤ ϕℓ. Note that according to Lemma 3.1.2,

Q is symmetric positive definite whenγ satisfies (3.16). Also note thatβ > ϕℓ. It follows thatV̇ is

negative definite. Therefore, it follows thatr̃(t) → 0n andṽ(t) → 0n ast → ∞, where0n is the

n× 1 zero vector. Equivalently, it follows thatri(t) → r0(t) andvi(t) → v0(t) ast→ ∞.

We next show that decentralized consensus tracking is achieved at least globally exponentially.

Note thatV ≤ λmax(P )

∥∥∥∥∥

[
r̃T ṽT

]T
∥∥∥∥∥

2

2

. It then follows from (3.22) that

V̇ ≤ −
[
r̃T ṽT

]
Q



r̃

ṽ




≤ −λmin(Q)

∥∥∥∥∥

[
r̃T ṽT

]T
∥∥∥∥∥

2

2

≤ − λmin(Q)

λmax(P )
V.

Therefore, we can get thatV (t) ≤ V (0)e
− λmin(Q)

λmax(P )
t. Note also thatV ≥ λmin(P )

∥∥∥∥∥

[
r̃T ṽT

]T
∥∥∥∥∥

2

2

.

After some manipulation, we can get (3.19).

Remark 3.1.7 In the proof of Theorem 3.1.6, the Lyapunov function is chosen as(3.21). HereP

can also be chosen asP =




1
2M

γ
2M

γ
2M

1
2M


 and the derivative ofV also satisfies(3.22)with Q =




γM2 αγ
2 M

2 + M2−γM
2

αγ
2 M

2 + M2−γM
2 αM2 − γM


. By following a similar analysis to that of Lemma 3.1.2,

we can show that there always exist positiveα andγ such that bothP andQ are symmetric positive

definite and derive proper conditions forα andγ. In particular, one special choice forα andγ is

αγ = 1 andγ < 4λmin(M)
4λmin(M)+1 .

We next consider the case of a switching network topology. Weassume that the network

topology switches according to the same model as described right before (3.6). In this case, we
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propose the decentralized consensus tracking algorithm for (3.14) as

ui = −
∑

j∈N i(t)

bij [(ri − rj) + α(vi − vj)]

− β
∑

j∈N i(t)

bij

(
sgn





∑

k∈N i(t)

bik[γ(ri − rk) + (vi − vk)]






− sgn





∑

k∈N j(t)

bjk[γ(rj − rk) + (vj − vk)]






)
, (3.23)

whereN i(t) is defined as in Section 3.1.1,bij, i = 1, · · · , n, j = 0, · · · , n, are positive constants,

andα, β, andγ are positive constants.2 Before moving on, we need the following lemma.

Lemma 3.1.3 Suppose that the undirected graphG(t) is connected and the virtual leader is a neigh-

bor of at least one follower, i.e.,0 ∈ N i(t) for somei, at each time instant. Let̂M(t) be defined

as in(3.10). Let P̂ (t) =




1
2M̂(t) γ

2 In

γ
2 In

1
2In


 andQ̂(t) =



γM̂(t) αγ

2 M̂(t)

αγ
2 M̂(t) αM̂(t) − γIn


, whereγ andα

are positive constants. Ifγ satisfies

0 < γ < min
t
{
√
λmin(M̂(t)),

4αλmin(M̂(t))

4 + α2λmin(M̂(t))
}, (3.24)

then bothP̂ (t) andQ̂(t) are symmetric positive definite at each time instant.

Proof: The proof is similar to that of Lemma 3.1.2 and is therefore omitted here.

Theorem 3.1.8 Suppose that the undirected graphG(t) is connected and the virtual leader is a

neighbor of at least one follower, i.e.,0 ∈ N i(t) for somei, at each time instant. Using(3.23)

for (3.14), if β > ϕℓ and (3.24) is satisfied, thenri(t) → r0(t) andvi(t) → v0(t) ast→ ∞.

Proof: Let Vij = 1
2bij(ri − rj)

2, i, j = 1, . . . , n, when |ri − rj| ≤ R andVij = 1
2bijR

2 when

|ri − rj| > R. Also letVi0 = 1
2bi0(ri − r0)

2, i = 1, . . . , n, when|ri − r0| ≤ R andVi0 = 1
2bi0R

2

when|ri−r0| > R. Consider the Lyapunov function candidateV = 1
2

∑n
i=1

∑n
j=1 Vij+

∑n
i=1 Vi0+

2Because the virtual leader has no neighbor, we let sgn
{∑

k∈N0(t) b0k[γ(r0 − rk) + (v0 − vk)]
}

= 0.
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1
2 ṽ

T ṽ+ γr̃T ṽ, wherer̃ = [r̃1, · · · , r̃n]T with r̃i = ri − r0 andṽ = [ṽ1, · · · , ṽn]T with ṽi = vi − v0.

Note thatV can be written as

V =

[
r̃T ṽT

]
P̂ (t)



r̃

ṽ


+

1

4

n∑

i=1

∑

j /∈N i(t),j 6=0

bijR
2 +

1

2

∑

0∈N i(t)

bi0R
2. (3.25)

Note also that according to Lemma 3.1.3,P̂ (t) is symmetric positive definite when (3.24) is sat-

isfied. By following a similar line to the proof of Theorem 3.1.6 and using nonsmooth analysis,

we can obtain that the generalized derivative ofV is negative definite under the condition of the

theorem. Therefore, we have thatri(t) → r0(t) andvi(t) → v0(t) ast→ ∞.

Remark 3.1.9 It can be noted that(3.23)requires the availability of the information from both the

neighbors, i.e., one-hop neighbors, and the neighbors’ neighbors, i.e., two-hop neighbors. However,

accuratemeasurements of the two-hop neighbors’ information are notnecessary because only the

signs, i.e., ‘+’ or ‘-’, are required in (3.23). In fact, (3.23) can be easily implemented in real

systems in the sense that followeri, i = 1, · · · , n, shares both its own state, i.e., position and

velocity, and the sign of
∑

j∈N i(t)
bij[γ(ri − rj) + (vi − vj)] with its neighbors. Note that follower

i also has to compute
∑

j∈N i(t)
bij(ri − rj) and

∑
j∈N i(t)

bij(vi − vj) in (3.23)(correspondingly,
∑n

j=0 aij(ri − rj) and
∑n

j=0 aij(vi − vj) in (3.15)) in order to derive the corresponding control

input for itself.

Remark 3.1.10 Under the condition of Theorem 3.1.8, the decentralized consensus tracking algo-

rithm (3.23) guarantees at least global exponential tracking under a switching network topology.

However, in contrast to the result in Theorem 3.1.6, it mightnot be easy to explicitly compute the

decay rate, i.e.,κ2 in Theorem 3.1.8, because the switching pattern of the network topology will

play an important role in determining the decay rate.

Remark 3.1.11 Similar to the analysis in Remark 3.1.7, in Lyapunov function (3.25), we can choose

P̂ (t) =




1
2In

γ
2 In

γ
2 In

1
2In


. It then follows thatQ̂(t) =




γM̂ (t) αγ
2 M̂(t) + M̂(t)−γIn

2

αγ
2 M̂(t) + M̂(t)−γIn

2 αM̂(t) − γIn


.

We can show that there always exist positiveα andγ such that bothP̂ (t) andQ̂(t) are symmetric
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positive definite and derive proper conditions forα andγ. In particular, one special choice forα

andγ is αγ = 1 andγ < mint
4λmin[M̂(t)]

4λmin[M̂(t)]+1
.

Remark 3.1.12 In Theorems 3.1.2 and 3.1.8, it is assumed that the undirected graphG(t) is con-

nected and the virtual leader is a neighbor of at least one follower at each time instant. However,

this poses an obvious constraint in real applications because the connectivity requirement is not

necessarily always satisfied. Next, we propose an adaptive connectivity maintenance mechanism in

which the adjacency matrix with entriesbij in (3.6)and (3.23) is redefined as follows:

1) When||ri(0) − rj(0)|| > R, bij(t) = 1 if ||ri(t) − rj(t)|| ≤ R andbij(t) = 0, otherwise.

2) When||ri(0) − rj(0)|| ≤ R, bij(t) is defined such that: 1)bij(0) > 0; 2) bij(t) is nonde-

creasing; 3)bij(t) is differentiable (or differentiable almost everywhere);4) bij(t) goes to infinity if

||ri(t) − rj(t)|| goes toR.

The motivation here is to maintain the initially existing connectivity patterns. That is, if two

followers are neighbors of each other (correspondingly, the virtual leader is a neighbor of a fol-

lower) at t = 0, the two followers are guaranteed to be neighbors of each other (correspondingly,

the virtual leader is guaranteed to be a neighbor of this follower) att > 0. However, if two fol-

lowers are not neighbors of each other (correspondingly, the virtual leader is not a neighbor of a

follower) at t = 0, the two followers are not necessarily guaranteed to be neighbors of each other

(correspondingly, the virtual leader is not necessarily guaranteed to be a neighbor of this follower)

at t > 0.

Using the proposed adaptive adjacency matrix, the consensus tracking algorithm for(3.1)can

be chosen as

ui = −α
∑

j∈N i(t)

bij(t)(ri − rj) − β
∑

j∈N i(t)

bij(t)




sgn[
∑

k∈N i(t)

bik(t)(ri − rk)] − sgn[
∑

k∈N j(t)

bjk(t)(rj − rk)]




 (3.26)

with the Lyapunov function chosen asV = 1
2 r̃

T r̃ while the consensus tracking algorithm for(3.14)
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can be chosen as(3.23)with the Lyapunov function chosen asV =

[
r̃T ṽT

]
P̂ (t)



r̃

ṽ


 with P̂ (t)

chosen as in Remark 3.1.11. Note that there always existα andγ satisfying the conditions in Re-

mark 3.1.11 becauseλmin[M̂(t)] is nondecreasing under the connectivity maintenance mechanism.

When the control gains are chosen properly, i.e.,α > 0 and β > γℓ for single-integrator kine-

matics andα andγ satisfies Remark 3.1.11 andβ > ϕℓ for double-integrator dynamics, it can be

shown that decentralized consensus tracking can be guaranteed for both first-order kinematics and

second-order dynamics if the undirected graphG(t) is initially connected and the virtual leader is

initially a neighbor of at least one follower, i.e., att = 0. The proof follows a similar analysis to

that of the corresponding algorithm in the absence of connectivity maintenance mechanism except

that the initially existing connectivity patterns can be maintained because otherwisėV → −∞ as

||ri(t) − rj(t)|| → R by noting thatV̇ = −αr̃M̂(t)r̃ − (β − γℓ)
∥∥∥M̂(t)r̃

∥∥∥ for single-integrator

kinematics anḋV = −
[
r̃T ṽT

]
Q̂(t)



r̃

ṽ


 for double-integrator dynamics, wherêQ(t) is defined

in Remark 3.1.11.

Decentralized Consensus Tracking with a Constant Virtual Leader’s Velocity

In this subsection, we assume that the virtual leader has a constant velocity, i.e.,v0 is constant.

We propose the decentralized consensus tracking algorithmfor (3.14) as

ui = −
n∑

j=0

aij(ri − rj) − βsgn




n∑

j=0

aij(vi − vj)



 , (3.27)

whereaij is defined as in (3.15) andβ is a positive constant. We first consider a fixed network

topology.

Theorem 3.1.13Suppose that the fixed undirected graphG is connected and at least oneai0 is

nonzero (and hence positive). Using(3.27)for (3.14), ri(t) → r0(t) andvi(t) → v0 ast→ ∞.
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Proof: Letting r̃i = ri − r0 and ṽi = vi − v0, we can rewrite the closed-loop system of (3.14)

using (3.27) as

˙̃ri = ṽi

˙̃vi = −
n∑

j=0

aij(r̃i − r̃j) − βsgn




n∑

j=0

aij(ṽi − ṽj)



 . (3.28)

Equation (3.28) can be written in matrix form as

˙̃r = ṽ, ˙̃v = −Mr̃ − βsgn(Mṽ), (3.29)

where r̃ and ṽ are, respectively, the column stack vectors ofr̃i and ṽi, i = 1, . . . , n, andM =

L + diag(a10, . . . , an0).

Consider the Lyapunov function candidateV = 1
2 r̃

TM2r̃ + 1
2 ṽ

TMṽ. The derivative ofV is

given by

V̇ = r̃TM2ṽ + ṽTM ˙̃v

= r̃TM2ṽ + ṽTM [−Mr̃ − βsgn(Mṽ)]

= −β ‖Mṽ‖1 .

BecauseM is symmetric positive definite, it follows thaṫV is negative semidefinite. Note that

V̇ ≡ 0 implies thatṽ ≡ 0n, which in turn implies that̃r ≡ 0n from (3.29). By using the LaSalle’s

invariance principle for nonsmooth systems [94], it follows that r̃(t) → 0n and ṽ(t) → 0n as

t→ ∞. Equivalently, it follows thatri(t) → r0(t) andvi(t) → v0(t) ast → ∞.
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Remark 3.1.14 When the network topology is switching according to the model described right

before(3.6), we propose the decentralized consensus tracking algorithm for (3.14)as

ui = −
∑

j∈N i(t)

bij(ri − rj)

− β
∑

j∈N i(t)

bij

{
sgn




∑

k∈N i(t)

bik(vi − vk)





− sgn




∑

k∈N j(t)

bjk(vj − vk)




}
, (3.30)

whereN i(t) is defined as in Section 3.1.1,bij, bik, bjk are defined as in(3.23), andβ is a positive

constant. For any positiveβ, the algorithm(3.30) guarantees decentralized consensus tracking

under the conditions of Theorem 3.1.8. The proof follows a similar line to that of Theorem 3.1.8 by

using the Lyapunov function candidateV = 1
2 r̃

TM̂ (t)r̃ + 1
2 ṽ

T ṽ and is omitted here. Meanwhile,

the adaptive connectivity maintenance mechanism proposedin Remark 3.1.12 can also be applied

here by noting thatV → ∞ when||ri(t)−rj(t)|| → R, which then contradicts the fact thatV̇ ≤ 0.

Remark 3.1.15 In contrast to(3.15)and (3.23), which require both accurate position and velocity

measurements,(3.27)and(3.30)do not necessarily requireaccuratevelocity measurements because

the velocity measurements are only used to calculate the sign, i.e., ‘+’ or ‘-’. Therefore, (3.27)

and (3.30)are more robust to measurement inaccuracy.

Decentralized Swarm Tracking with a Constant Virtual Leader’s Velocity

In this subsection, we study decentralized swarm tracking under switching network topologies

when the velocity of the virtual leader is constant. We againassume that the network topology

switches according to the model described right before (3.6). We propose the decentralized swarm
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tracking algorithm for (3.14) as

ui = −
∑

j∈N i(t)

∂Vij

∂ri

− β
∑

j∈N i(t)

bij

{
sgn




∑

k∈N i(t)

bik(vi − vk)





− sgn




∑

k∈N j(t)

bjk(vj − vk)




}
, (3.31)

whereVij is the potential function defined in Definition 3.1.4,N i(t) is defined as in Section 3.1.1,

β is a positive constant, andbij, bik, andbjk are defined as in (3.23). Note that (3.31) requires both

the one-hop and two-hop neighbors’ information.

Theorem 3.1.16Suppose that the undirected graphG(t) is connected and the virtual leader is a

neighbor of at least one follower, i.e.,0 ∈ N i(t) for somei, at each time instant. Using(3.31)

for (3.14), the velocity differences of all followers and the virtual leader will ultimately converge to

zero, the relative distances of all followers and the virtual leader will ultimately converge to local

minima, i.e.,limt→∞
∑

j∈N i(t)
∂Vij

∂ri
= 0, i = 1, · · · , n, and the inter-vehicle collision is avoided.

Proof: Letting r̃i = ri − r0 andṽi = vi − v0, it follows that (3.31) can be written as

ui = −
∑

j∈N i(t)

∂Vij

∂r̃i

− β
∑

j∈N i(t)

bij

{
sgn




∑

k∈N i(t)

bik(ṽi − ṽk)





− sgn




∑

k∈N j(t)

bjk(ṽj − ṽk)




}
.

Consider the Lyapunov function candidate

V =
1

2

n∑

i=1

n∑

j=1

Vij +

n∑

i=1

Vi0 +
1

2
ṽT ṽ,
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whereṽ is a column stack vector of̃vi. Taking derivative ofV gives that

V̇ =
1

2

n∑

i=1

n∑

j=1

(
∂Vij

∂r̃i
˙̃ri +

∂Vij

∂r̃j
˙̃rj

)

+

n∑

i=1

(
∂Vi0

∂r̃i
˙̃ri +

∂Vi0

∂r̃0
˙̃r0

)
+ ṽT ˙̃v

=
n∑

i=1

n∑

j=1

∂Vij

∂r̃i
˙̃ri +

n∑

i=1

∂Vi0

∂r̃i
˙̃ri −

n∑

i=1

ṽi

n∑

j=0

∂Vij

∂r̃i

− βṽT M̂(t)sgn
[
M̂(t)ṽ

]
(3.32)

= − β
∥∥∥M̂(t)ṽ

∥∥∥
1
, (3.33)

whereM̂(t) is defined in (3.10), (3.32) is derived by using Lemma 3.1.1 and the fact thaṫ̃r0 = 0,

and (3.33) is derived by using the fact thatM̂(t) is symmetric. By following a similar analysis to

that in the proof of Theorem 3.1.13, it follows from the LaSalle’s invariance principle for nonsmooth

systems [94] thatvi(t) → v0 and
∑n

j=0
∂Vij

∂ri
→ 0 ast→ ∞, which in turn proves the theorem.

Decentralized Swarm Tracking with a Varying Virtual Leader ’s Velocity

In this subsection, we assume that the virtual leader’s velocity is varying, i.e., the virtual

leader’s acceleration is, in general, nonzero. We propose the following decentralized swarm tracking

algorithm with a distributed estimator for (3.14) as

ui = − γsgn





∑

j∈N i(t)

bij [v̂i0 − v̂j0]




−
∑

j∈N i(t)

∂Vij

∂ri

− β
∑

j∈N i(t)

bij

{
sgn




∑

k∈N i(t)

bik(vi − vk)





− sgn




∑

k∈N j(t)

bjk(vj − vk)




}
, (3.34)
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whereγ andβ are positive constants,Vij , N i(t), bij , bik, andbkj are defined in (3.31), and

˙̂vi0 = −γsgn





∑

j∈N i(t)

bij [v̂i0 − v̂j0]




 , i = 1, · · · , n, (3.35)

with v̂i0 being theith vehicle’s estimate of the virtual leader’s velocity andv̂00 = v0. Here (3.35) is

a distributed estimator motivated by the results in Section3.1.1.

Theorem 3.1.17Suppose that the undirected graphG(t) is connected and the virtual leader is a

neighbor of at least one follower, i.e.,0 ∈ N i(t) for somei, at each time instant. Using(3.34)

for (3.14), if γ > ϕℓ, the velocity differences of all followers and the virtual leader will ultimately

converge to zero, the relative distances of all followers, the virtual leader will ultimately converge

to local minima, i.e.,limt→∞
∑

j∈N i(t)
∂Vij

∂ri
= 0, i = 1, · · · , n, and the inter-vehicle collision is

avoided.

Proof: For (3.35), it follows from Theorem 3.1.2 that there exists positivet such that̂vi0(t) = v0(t)

for anyt ≥ t. Note that˙̂vi0 in (3.35) is a switching signal, which is different froṁv0(t) at each time

instant. However, fort2 ≥ t1 ≥ t, we have that
∫ t2
t1

˙̂vi0(t)dt =
∫ t2
t1
v̇0(t)dt by noting that̂vi0(t) =

v0(t) for any t ≥ t. Therefore,ri will be unchanged when replacinĝ̇vi0 with v̇0 for t ≥ t. For

t ≥ t, by replacing˙̂vi0 with v̇0 and choosing the same Lyapunov function candidate as in the proof

of Theorem 3.1.16, it follows from a similar analysis to thatin the proof of Theorem 3.1.16 and the

LaSalle’s invariance principle for nonsmooth systems [94]thatvi(t) → v0(t) and
∑n

j=0
∂Vij

∂ri
→ 0

ast → ∞. This completes the proof.

Remark 3.1.18 Note that(3.31)and (3.34) require the availability of both the one-hop and two-

hop neighbors’ information. In contrast to some flocking algorithms[4, 73], the availability of the

virtual leader’s information, i.e., the position, velocity, and acceleration, to all followers is not

required in(3.34) due to the introduction of the distributed estimator. In addition, in contrast to

the flocking algorithms[4, 5, 73], (3.31)does not requireaccuratevelocity measurements because

the velocity measurements are only used to calculate the sign, i.e., ‘+’ or ‘-’, in (3.31)and (3.34).

Therefore,(3.31)and (3.34)are more robust to measurement inaccuracy.
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Remark 3.1.19 In Theorems 3.1.5, 3.1.16, and 3.1.17, it is assumed that theundirected graph

G(t) is connected and the virtual leader is a neighbor of at least one follower at each time instant.

However, this poses an obvious constraint in real applications because the connectivity requirement

is not necessarily always satisfied. In the following, a mildconnectivity requirement is proposed

for decentralized swarm tracking by adopting a connectivity maintenance mechanism in which the

potential function in Definition 3.1.4 is redefined as follows:

1) When||ri − rj || ≥ R at the initial time, i.e.,t = 0, Vij is defined as in Definition 3.1.4.

2) When||ri − rj || < R at the initial time, i.e.,t = 0, Vij is defined satisfying conditions 1),

2), and 4) in Definition 3.1.4 and condition 3) in Definition 3.1.4 is replaced with the condition

that Vij → ∞ as ||ri − rj|| → R. The motivation here is also to maintain the initially existing

connectivity patterns as in Remark 3.1.12.

Using the potential function defined above, decentralized swarm tracking can be guaranteed

for both first-order kinematics (cf. Theorem 3.1.5) and second-order dynamics (cf. Theorems 3.1.16

and 3.1.17) if the undirected graphG(t) is initially connected, i.e.,t = 0, the virtual leader is

initially a neighbor of at least one follower, and the other conditions for the control gains are

satisfied. The proof follows directly from those of Theorems3.1.5, 3.1.16, and 3.1.17 except that

a pair of followers who are neighbors of each other initiallywill always be the neighbors of each

other (correspondingly, if the virtual leader is initiallya neighbor of a follower, the virtual leader

will always be a neighbor of this follower) because otherwise the potential function will go to

infinity. This contradicts the fact thaṫV ≤ 0 in Theorems 3.1.5 and 3.1.16 and the facts that

V̇ ≤ −β
∥∥∥M̂(t)ṽ

∥∥∥
1
+ (γ + ϕℓ) ‖ṽ‖1

≤ (γ + ϕℓ)
√
n ‖ṽ‖2

≤ (γ + ϕℓ)
√
n
√

2V

for 0 ≤ t < t, which implies thatV (t) ≤ (
√
V (0) + (γ+ϕℓ)

√
n√

2
t)2, and V̇ ≤ 0 for t ≥ t in Theo-

rem 3.1.17. Note that the connectivity maintenance strategy in Zalvanos et al.[95] requires that the

number of edges be always nondecreasing. That is, if a pair offollowers are neighbors of each other
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(respectively, the virtual leader is a neighbor of a follower) at some time instantT ,3 then the pair of

followers are always neighbors of each other (respectively, the virtual leader is always a neighbor

of this follower) at any timet > T . This requirement might not be applicable in reality, especially

in large-scale systems where the size of the vehicles cannotbe ignored because the group of vehicles

will become very compact with the increasing number of edges. Meanwhile, the computation bur-

den will increase significantly as well. In contrast, the connectivity maintenance mechanism with

the corresponding potential function proposed in Remark 3.1.19 takes these practical issues into

consideration. In addition,hysteresisis introduced to the connectivity maintenance strategy[95]

to avoid the singularity of the Lyapunov function. However,the hysteresis is not required in the

potential function proposed in Remark 3.1.19.

To illustrate the connectivity maintenance mechanism as proposed in Remark 3.1.19, we com-

pare two different potential functionsV 1
ij andV 2

ij whose derivatives satisfy, respectively,

∂V 1
ij

∂ri
=






0, ||ri − rj|| > R,

2π(ri−rj) sin[2π(||ri−rj ||−dij)]
||ri−rj || , dij < ||ri − rj|| ≤ R,

20(ri−rj)
||ri−rj ||

||ri−rj ||−dij

||ri−rj || , ||ri − rj|| ≤ dij ,

(3.36)

and

∂V 2
ij

∂ri
=






ri−rj

||ri−rj ||
||ri−rj ||−dij

(||ri−rj ||−R)2
, dij < ||ri − rj|| < R,

20
ri−rj

||ri−rj ||
||ri−rj ||−dij

||ri−rj || , ||ri − rj|| ≤ dij ,
(3.37)

whereR = 2.5 anddij = 2. Figure 3.1 shows the plot of the potential functionsV 1
ij andV 2

ij .
4 It

can be seen from Fig. 3.1(b) thatV 2
ij approaches infinity as the distance||ri − rj|| approachesR.

However,V 1
ij does not have the property (cf. Fig. 3.1(a)). In particular,V 1

ij satisfies condition 3)

in Definition 3.1.4 as shown in Fig. 3.1(a). In addition, bothV 1
ij andV 2

ij satisfy conditions 1), 2),

and 4) in Definition 3.1.4. According to Remark 3.1.19, we canchoose the potential function asV 2
ij

when||ri(0) − rj(0)|| < R andV 1
ij otherwise.

3Equivalently, a pair of followers are within the communication range of each other (respectively, the virtual leader
is within the communication range of a follower).

4Note that neitherV 1
ij nor V 2

ij is unique because for positive constantC, V 1
ij + C andV 2

ij + C are also potential
functions satisfying, respectively, (3.36) and (3.37). Weonly plot one possible choice for them.
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Fig. 3.1: Potential functionsV 1
ij andV 2

ij with R = 2.5 anddij = 2.

Simulation

In this section, we present several simulation examples to validate some theoretical results in

the previous sections. We consider a group of six followers with a virtual leader. We letaij = 1 if

vehiclej is a neighbor of vehiclei, wherej = 0, 1, · · · , 6 andi = 1, · · · , 6, andaij = 0, otherwise.

In the case of first-order kinematics, the network topology is chosen as in Fig. 3.2(a). It can

be noted that the undirected graphG for all followers1 to 6 is connected and the virtual leader is a

neighbor of follower4. Using (3.2) in 2D, we chooser0(t) = [t−5,−5+10 sin(πt
25)]T , α = 1, and

β = 1.5. The trajectories of the followers and the virtual leader are shown in Fig. 3.3. The tracking

errors of thex andy positions are shown in, respectively, Fig. 3.4(a) and Fig. 3.4(b). It can be seen

from Fig. 3.4 that the tracking errors converge to zero in finite time. That is, all followers track the

virtual leader accurately after a finite period of time as also shown in Fig. 3.3.

For decentralized swarm tracking in the case of first-order kinematics, we chooseR = 2.5,

dij = 2, α = 1, β = 3, andaij = 1 if dij ≤ R andaij = 0 otherwise. The partial derivative

L // F4

��

// F5
oo // F6

oo

F3

OO

// F2
oo // F1

oo

(a) Graph1.

L

��?
??

??
??

? F6

��

// F5
oo // F4

oo

��
F1

OO

// F2
oo // F3

oo

OO

(b) Graph2.

Fig. 3.2: Network topology for a group of six followers with avirtual leader. HereL denotes the
virtual leader whileFi, i = 1, · · · , 6, denote the followers.
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Fig. 3.3: Trajectories of the followers and the virtual leader using (3.2) in 2D. The circle denotes the
starting position of the virtual leader while the squares denote the starting positions of the follwers.
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Fig. 3.4: Position tracking errors using (3.2) in 2D.
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of the potential function is chosen as in (3.36). Using (3.11) for (3.1) in 2D, Fig. 3.5 shows the

consecutive snapshots of decentralized swarm tracking for48 followers with a virtual leader. The

initial states of the followers are randomly chosen from thesquare box[−5, 15]2 andr0(t) is chosen

as[t, 5+10 sin(πT
25 )]T . It can be seen that the relative distances of the followers and the virtual leader

ultimately converge to local minima.

In the case of second-order dynamics, the network topology is chosen as in Fig. 3.2(b). It can

be noted that the undirected graphG for all followers 1 to 6 is connected as well and the virtual

leader is a neighbor of follower1. Using (3.15) in 2D, we chooser0(t) = [t, t + sin(t)]T , α = 1,

β = 5, andγ = 0.1. The trajectories of the followers and the virtual leader are shown in Fig. 3.6.

The tracking errors of thex andy positions are shown in Figs. 3.7(a) and 3.7(b). The trackingerrors

of thex andy velocities are shown in Figs. 3.7(c) and 3.7(d). It can be seen from Fig. 3.7 that the

tracking errors ultimately converge to zero. That is, all followers ultimately track the virtual leader

as also shown in Fig. 3.6.

For decentralized swarm tracking in the case of second-order dynamics,R, dij , α, β, aij , and

the partial derivative of the potential function is chosen as in the case of single-integrator kinematics.

In the case of a constant virtual leader’s velocity, the initial states of the followers are randomly

chosen from the square box[−5, 10]2 andr0(t) is chosen as[t, 2t+ 5]T . Using (3.31) for (3.14) in

2D, Fig. 3.8 shows the consecutive snapshots of decentralized swarm tracking for49 followers with

a virtual leader. In the case of a dynamic virtual leader’s velocity, the initial states of the followers

are randomly chosen from the square box[−5, 15]2 andr0(t) is chosen as[t, 5 + t + 2 sin(t)]T .

Using (3.34) for (3.14) in 2D, Fig. 3.9 shows the consecutivesnapshots of decentralized swarm

tracking for 50 followers with a virtual leader. Due to the random choice of the initial states,

the vehicles form separated subgroups initially. As a result, fragmentation appears in this case.

However, for each subgroup, the relative distances of the followers and the virtual leader if the

virtual leader is in the subgroup reach local minima.

For decentralized consensus tracking with the connectivity maintenance mechanism in Re-

mark 3.1.12, we chooseR = 3, α andβ the same as those without connectivity maintenance,

and bij(t) according to Remark 3.1.12 withddtbij(t) =
100||ri(t)−rj(t)||

R2−||ri(t)−rj(t)||2 and bij(0) = 1 when
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Fig. 3.5: Decentralized swarm tracking for48 followers using (3.11) in 2D in the presence of a
virtual leader. The circles denote the positions of the followers while the square denotes the position
of the virtual leader. An undirected edge connecting two followers means that the two followers are
neighbors of each other while a directed edge from the virtual leader to a follower means that the
virtual leader is a neighbor of the follower.
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Fig. 3.6: Trajectories of the followers and the virtual leader using (3.15) in 2D. The circle denotes the
starting position of the virtual leader while the squares denote the starting positions of the followers.
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Fig. 3.7: Position and velocity tracking errors using (3.15) in 2D.
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Fig. 3.8: Decentralized swarm tracking for49 followers using (3.31) in 2D in the presence of a
virtual leader. The circles denote the positions of the followers while the square denotes the position
of the virtual leader. An undirected edge connecting two followers means that the two followers are
neighbors of each other while a directed edge from the virtual leader to a follower means that the
virtual leader is a neighbor of the follower.
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Fig. 3.9: Decentralized swarm tracking for50 followers using (3.34) in 2D in the presence of a
virtual leader. The circles denote the positions of the followers while the square denotes the position
of the virtual leader. An undirected edge connecting two followers means that the two followers are
neighbors of each other while a directed edge from the virtual leader to a follower means that the
virtual leader is a neighbor of the follower.
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||ri(0)− rj(0)|| ≤ R, andbij(t) = 1 if ||ri(t)− rj(t)|| ≤ R andbij(t) = 0 if ||ri(t)− rj(t)|| > R

when||ri(0) − rj(0)|| > R. Using (3.26) for (3.1) in 2D with the connectivity maintenance mech-

anism in Remark 3.1.12, Fig. 3.10 shows the trajectories of the followers and the virtual leader.

The initial positions of the followers are randomly chosen from the square box[−2, 2]2 andr0(t)

is chosen as[t, 3 sin(πt
10)]T . The tracking errors of thex andy positions are shown in Figs. 3.11(a)

and 3.11(b). It can be seen that the tracking errors ultimately converge to zero. That is, all followers

ultimately track the virtual leader as also shown in Fig. 3.10. Using (3.23) for (3.14) in 2D with

the connectivity maintenance mechanism in Remark 3.1.12, Fig. 3.12 shows the trajectories of the

followers and the virtual leader. The initial positions of the followers are randomly chosen from

the square box[−2, 2]2 andr0(t) is chosen as[t, t + sin(t)]T . The tracking errors of thex andy

positions are shown in Figs. 3.13(a) and 3.13(b). It can be seen from Fig. 3.13 that the tracking

errors ultimately converge to zero. That is, all followers ultimately track the virtual leader as also

shown in Fig. 3.12.

For decentralized swarm tracking with the connectivity maintenance mechanism as in Re-

mark 3.1.19,R, dij, α, β, andaij are chosen the same as those for decentralized swarm tracking

without connectivity maintenance. When two followers are initially neighbors of each other or the

virtual leader is initially a neighbor of some follower(s),the partial derivative of the corresponding

potential function is chosen as (3.37). Otherwise, the partial derivative of the potential function is

chosen as (3.36). The initial positions of the followers arerandomly chosen from the square box

[−6, 4]2 andr0(t) is chosen the same as the corresponding simulation in the absence of connectivity

maintenance mechanism. In the case of single-integrator kinematics, Fig. 3.14 shows the consecu-

tive snapshots of decentralized swarm tracking for50 followers with a virtual leader in 2D with the

connectivity maintenance mechanism in Remark 3.1.19. In the case of double-integrator dynamics

with a constant virtual leader’s velocity, Fig. 3.15 shows the consecutive snapshots of decentralized

swarm tracking for50 followers with a virtual leader in 2D with the connectivity maintenance mech-

anism in Remark 3.1.19. In the case of double-integrator dynamics with a varying virtual leader’s

velocity, Fig. 3.16 shows the consecutive snapshots of decentralized swarm tracking for50 followers

with a virtual leader in 2D with the connectivity maintenance mechanism in Remark 3.1.19. It can
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Fig. 3.10: Trajectories of the followers and the virtual leader using (3.26) in 2D with connectivity
maintenance mechanism. The circle denotes the starting position of the virtual leader while the
squares denote the starting positions of the followers.
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Fig. 3.11: Position tracking errors using (3.26) in 2D in thepresence of connectivity maintenance
mechanism.
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Fig. 3.12: Trajectories of the followers and the virtual leader using (3.23) in 2D with connectivity
maintenance mechanism. The circle denotes the starting position of the virtual leader while the
squares denote the starting positions of the followers.
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Fig. 3.13: Position tracking errors using (3.23) in 2D in thepresence of connectivity maintenance
mechanism.

be seen that at each snapshot the network topology for the50 followers is connected and the virtual

leader is a neighbor of at least one follower because of the initial connectivity and the existence of

the connectivity maintenance mechanism. Meanwhile, the relative distances of the followers and

the virtual leader ultimately converge to local minima. In contrast to Figs. 3.5, 3.8, and 3.9 where

the initially existing connectivity patterns might not always exist, the initially existing connectivity

patterns in Fig. 3.14, 3.15, and 3.16 always exist due to the existence of connectivity maintenance

mechanism.

3.2 PD-like Discrete-time Consensus Tracking Algorithms with a Reference State

In this section, we propose and study a PD-like discrete-time consensus tracking algorithm in

the presence of a group reference state. The comparison between the proposed PD-like discrete-time

consensus tracking algorithm and the P-like (proportionallike) discrete-time consensus tracking

algorithm is also studied.

3.2.1 Existing PD-like Continuous-time Consensus Algorithm

Consider vehicles with single-integrator dynamics given by

ṙi(t) = ui(t), i = 1, · · · , n (3.38)
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Fig. 3.14: Decentralized swarm tracking for50 followers with a virtual leader using (3.11) in 2D in
the presence of the connectivity maintenance mechanism in Remark 3.1.19. The circles denote the
positions of the followers while the square denotes the position of the virtual leader. An undirected
edge connecting two followers means that the two followers are neighbors of each other while a
directed edge from the virtual leader to a follower means that the virtual leader is a neighbor of the
follower.
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Fig. 3.15: Decentralized swarm tracking for50 followers with a virtual leader using (3.31) in 2D in
the presence of the connectivity maintenance mechanism in Remark 3.1.19. The circles denote the
positions of the followers while the square denotes the position of the virtual leader. An undirected
edge connecting two followers means that the two followers are neighbors of each other while a
directed edge from the virtual leader to a follower means that the virtual leader is a neighbor of the
follower.
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Fig. 3.16: Decentralized swarm tracking for50 followers with a virtual leader using (3.34) in 2D in
the presence of the connectivity maintenance mechanism in Remark 3.1.19. The circles denote the
positions of the followers while the square denotes the position of the virtual leader. An undirected
edge connecting two followers means that the two followers are neighbors of each other while a
directed edge from the virtual leader to a follower means that the virtual leader is a neighbor of the
follower.
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whereri(t) andui(t) represent, respectively, the state and control input of theith vehicle. Suppose

that there exists a virtual leader, labeled as vehiclen+1, whose state isrc(t). A PD-like continuous-

time consensus algorithm with a time-varying reference state is proposed as [69]

ui(t) =
1

ηi

n∑

j=1

aij {ṙj(t) − γ[ri(t) − rj(t)]}

+
1

ηi
ai(n+1) {ṙc(t) − γ[ri(t) − rc(t)]} , (3.39)

whereaij is the(i, j)th entry of adjacency matrixA, i, j = 1, 2, · · · , n, γ is a positive gain,rc(t) is

the time-varying reference state,ai(n+1) > 0 if the ith vehicle can access the virtual leader’s state5

andai(n+1) = 0 otherwise, andηi ,
∑n+1

j=1 aij .

3.2.2 PD-like Discrete-time Consensus Algorithm

Note that (3.39) requires each vehicle to obtain measurements of the derivatives of its neigh-

bors’ states and the reference state. This requirement may not be realistic in real applications. We

next propose a PD-like discrete-time consensus algorithm with a time-varying reference state. In

discrete-time formulation, the single-integrator dynamics (3.38) can be approximated by

ri[k + 1] − ri[k]

T
= ui[k], (3.40)

whereT is the sampling period, andri[k] andui[k] represent, respectively, the state and control

input of theith vehicle att = kT . We sample (3.39) to obtain

ui[k] =
1

ηi

n∑

j=1

aij

(
rj[k] − rj[k − 1]

T
− γ{ri[k] − rj [k]}

)

+
1

ηi
ai(n+1)

(
rc[k] − rc[k − 1]

T
− γ{ri[k] − rc[k]}

)
, (3.41)

whererc[k] is the reference state att = kT , and rj [k]−rj[k−1]
T and rc[k]−rc[k−1]

T are used to approx-

imate, respectively,̇rj[k] and ṙc[k] in (3.39) becauserj[k + 1] andrc[k + 1] cannot be accessed

5That is, the virtual leader is a neighbor of vehiclei.
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at t = kT . Using (3.41) for (3.40), we get the PD-like discrete-time consensus algorithm with a

time-varying reference state as

ri[k + 1] = ri[k]

+
T

ηi

n∑

j=1

aij

(
rj [k] − rj[k − 1]

T
− γ{ri[k] − rj [k]}

)

+
Tai(n+1)

ηi

(
rc[k] − rc[k − 1]

T
− γ{ri[k] − rc[k]}

)
. (3.42)

Note that using algorithm (3.42), each vehicle essentiallyupdates its next state based on its current

state and its neighbors’ current and previous states as wellas the virtual leader’s current and previous

states if the virtual leader is a neighbor of the vehicle. As aresult, (3.42) can be easily implemented

in practice.

3.2.3 Convergence Analysis of the PD-like Discrete-time Consensus Algorithm with a Time-

varying Reference State

In this section, we analyze algorithm (3.42). We letdiag{c1, · · · , cn} denote a diagonal matrix

with diagonal entriesci.

By definingδi[k] , ri[k] − rc[k], it follows that (3.42) can be written as

δi[k + 1] =δi[k] +
T

ηi

n∑

j=1

aij

(
δj [k] − δj [k − 1]

T
− γ{δi[k] − δj [k]}

)

+
Tai(n+1)

ηi

{
rc[k] − rc[k − 1]

T
− γδi[k]

}

− {rc[k + 1] − rc[k]} +
1

ηi

n∑

j=1

aij{rc[k] − rc[k − 1]},

which can then be written in matrix form as

∆[k + 1] =[(1 − Tγ)In + (1 + Tγ)D−1A]∆[k] −D−1A∆[k − 1] +Xr[k], (3.43)

where∆[k] = [δ1[k], · · · , δn[k]]T ,D = diag{η1, · · · , ηn},Xr[k] = {2rc[k] − rc[k − 1] − rc[k +
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1]}1n, andA is the adjacency matrix. By definingY [k+1]
△
=




∆[k + 1]

∆[k]


 , it follows from (3.43)

that

Y [k + 1] = ÃY [k] + B̃Xr[k], (3.44)

where

Ã =




(1 − Tγ)In + (1 + Tγ)D−1A −D−1A

In 0n×n


 , (3.45)

andB̃ =




In

0n×n


. It follows that the solution of (3.44) is

Y [k] =

k∑

i=1

Ãk−iB̃Xr[i− 1] + ÃkY [0]. (3.46)

Note that the eigenvalues of̃A play an important role in determining the value ofY [k] ask → ∞.

In the following, we will study the eigenvalues of̃A. Before moving on, we first need to study the

eigenvalues ofD−1A.

Lemma 3.2.1 Suppose that the virtual leader has a directed path to all vehicles1 ton. ThenD−1A

satisfies
∥∥(D−1A)n

∥∥
∞ < 1, whereD is defined right after(3.43)andA is the adjacency matrix. If

∥∥(D−1A)n
∥∥
∞ < 1,D−1A has all eigenvalues within the unit circle.

Proof: For the first statement, denoteī1 as the set of vehicles that are the children of the virtual

leader, and̄ij , j = 2, 3, · · · ,m, as the set of vehicles that are the children ofīj−1 that are not in the

set īr, 1 ≤ r ≤ j − 1. Because the virtual leader has a directed path to all vehicles1 to n, there

are at mostn edges from the virtual leader to all vehicles1 to n, which impliesm ≤ n. Let pi and

qT
i denote, respectively, theith column and row ofD−1A. When the virtual leader has a directed

path to all vehicles1 to n, without loss of generality, assume thatkth vehicle is a child of the virtual

leader, i.e.,ak(n+1) > 0. It follows thatqk1n = 1 − ak(n+1)∑n+1
j=1 akj

< 1. The same property also applies

to other elements in setī1. Similarly, assume that thelth vehicle (one node in setī2) is a child of

thekth vehicle (one node in setī1), which impliesalk > 0. It follows that the sum of thelth row of
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(D−1A)2 can be written asqT
l

∑n
i=1 pi ≤ qT

l 1n = 1 − alk∑n+1
j=1 alj

< 1. Meanwhile, the sum of the

kth row of (D−1A)2 is also less than1. By following a similar analysis, every row of(D−1A)m

has a sum less than one when the virtual leader has a directed path to all vehicles1 to n. Because

m ≤ n andD−1A is nonnegative,
∥∥(D−1A)n

∥∥
∞ < 1 holds.

For the second statement, when
∥∥(D−1A)n

∥∥
∞ < 1, it follows thatlims→∞

∥∥[(D−1A)n]s
∥∥
∞ ≤

lims→∞
∥∥(D−1A)n

∥∥s

∞ = 0. Assume that some eigenvalues ofD−1A are not within the unit circle.

By writingD−1A in a canonical Jordan form, it can be computed thatlims→∞[(D−1A)n]s 6= 0n×n,

which contradicts the fact thatlims→∞
∥∥(D−1A)n

∥∥s

∞ = 0. Therefore,D−1A has all eigenvalues

within the unit circle.

It can be noted from Lemma 3.2.1 that the eigenvalues ofD−1A are all within the unit circle

if the virtual leader has a directed path to all vehicles1 to n. We next study the eigenvalues ofÃ.

Based on Lemmas 3.2.1 and 2.3.1, we next show under what condition the eigenvalues of̃A are all

within the unit circle.

Lemma 3.2.2 Assume that the virtual leader has a directed path to all vehicles1 to n. Letλi be

the ith eigenvalue ofD−1A, whereD is defined right after(3.43) andA is the adjacency ma-

trix. Then |1−λi|2{2[1−Re(λi)]−|1−λi|2}
|1−λi|4+4[Im(λi)]2

> 0 holds, whereRe(·) and Im(·) denote, respectively,

the real and imaginary parts of a number. If positive scalarsT and γ are chosen satisfying

Tγ < min{1,mini=1,··· ,n
2|1−λi|2{2[1−Re(λi)]−|1−λi|2}

|1−λi|4+4[Im(λi)]2
}, Ã, defined in(3.45), has all eigenvalues

within the unit circle.

Proof: For the first statement, when the virtual leader has a directed path to all vehicles1 to n,

it follows from the second statement in Lemma 3.2.1 that|λi| < 1. It then follows that|1 −

λi|2 > 0 and|1 − λi|2 = 1 − 2Re(λi) + [Re(λi)]
2 + [Im(λi)]

2 < 2[1 − Re(λi)], which implies

|1−λi|2{2[1−Re(λi)]−|1−λi|2}
|1−λi|4+4[Im(λi)]2

> 0.



85

For the second statement, note that the characteristic polynomial ofÃ is given by

det(sI2n − Ã)

= det






sIn − [(1 − Tγ)In + (1 + Tγ)D−1A] D−1A

−In sIn







= det
(
[sIn − (1 − Tγ)In − (1 + Tγ)D−1A]sIn +D−1A

)

= det
(
[s2 + (Tγ − 1)s]In + [1 − (1 + Tγ)s]D−1A

)
,

where we have used Lemma 2.3.1 to obtain the last equality becausesIn − [(1 − Tγ)In + (1 +

Tγ)D−1A],D−1A, −In andsIn commute pairwise. Noting thatλi is theith eigenvalue ofD−1A,

we can getdet(sIn +D−1A) =
∏n

i=1(s + λi). It thus follows thatdet(sI2n − Ã) =
∏n

i=1{s2 +

(Tγ − 1)s + [1 − (1 + Tγ)s]λi}. Therefore, the roots ofdet(sI2n − Ã) = 0 satisfy

s2 + s[Tγ − 1 − (1 + Tγ)λi] + λi = 0. (3.47)

It can be noted that each eigenvalue ofD−1A, λi, corresponds to two eigenvalues ofÃ.

Instead of computing the roots of (3.47) directly, we apply the bilinear transformations = z+1
z−1

in (3.47) to get

Tγ(1 − λi)z
2 + 2(1 − λi)z + (2 + Tγ)λi + 2 − Tγ = 0. (3.48)

Because the bilinear transformation maps the left half of the complex s-plane to the interior of the

unit circle in the z-plane, it follows that (3.47) has all roots within the unit circle if and only if (4.27)

has all roots in the open left half plane (LHP). In the following, we will study the condition onT

andγ under which (4.27) has all roots in the open LHP. Lettingz1 andz2 denote the roots of (4.27),

it follows from (4.27) that

z1 + z2 = − 2

Tγ
(3.49)

z1z2 =
(2 + Tγ)λi + 2 − Tγ

Tγ(1 − λi)
. (3.50)

Noting that (3.49) implies thatIm(z1) + Im(z2) = 0, we definez1 = a1 + jb andz2 = a2 − jb,
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wherej is the imaginary unit. It can be noted thatz1 andz2 have negative real parts if and only if

a1a2 > 0 anda1 + a2 < 0. Note that (3.49) impliesa1 + a2 < 0 becauseTγ > 0. We next show

the sufficient condition onT andγ such thata1a2 > 0 holds. By substituting the definitions ofz1

andz2 into (3.50), we have

a1a2 + b2 + j(a2 − a1)b =
(2 + Tγ)λi + 2 − Tγ

Tγ(1 − λi)
,

which implies

a1a2 + b2 = −2 + Tγ

Tγ
+

4[1 − Re(λi)]

Tγ|1 − λi|2
(3.51)

(a2 − a1)b =
4Im(λi)

Tγ|1 − λi|2
. (3.52)

It follows from (3.52) thatb = 4Im(λi)
Tγ(a2−a1)|1−λi|2 . Considering also the fact that(a2 − a1)

2 =

(a1 + a2)
2 − 4a1a2 = 4

T 2γ2 − 4a1a2. After some manipulation, (3.51) can be written as

K1(a1a2)
2 +K2a1a2 +K3 = 0, (3.53)

whereK1 = T 2γ2|1− λi|4,K2 = −|1− λi|4 + (2 + Tγ)Tγ|1− λi|4 − 4[1−Re(λi)]Tγ|1− λi|2

andK3 = 1
Tγ {4[1 − Re(λi)]|1 − λi|2 − (2 + Tγ)|1 − λi|4} − 4[Im(λi)]

2. It can be computed

that K2
2 − 4K1K3 = {|1 − λi|4 + (2 + Tγ)Tγ|1 − λi|4 − 4[1 − Re(λi)]Tγ|1 − λi|2}2 +

16T 2γ2|1 − λi|4[Im(λi)]
2 ≥ 0, which implies that (3.53) has two real roots. Because|λi| <

1, it is straightforward to knowK1 > 0. Therefore, a sufficient condition fora1a2 > 0 is

that K2 < 0 andK3 > 0. When0 < Tγ ≤ 1, because|1 − λi|2 < 2[1 − Re(λi)] as is

shown in the proof of the first statement, it follows thatK2 < −|1 − λi|4 + (2 + Tγ)Tγ|1 −

λi|4 − 2|1 − λi|2Tγ|1 − λi|2 = |1 − λi|4[−1 + (Tγ)2] ≤ 0. Similarly, when0 < Tγ <

2|1−λi|2{2[1−Re(λi)]−|1−λi|2}
|1−λi|4+4[Im(λi)]2

, it follows thatK3 > 0. Therefore, if positive scalarsγ andT sat-

isfy Tγ < min{1,mini=1,··· ,n
2|1−λi|2{2[1−Re(λi)]−|1−λi|2}

|1−λi|4+4[Im(λi)]2
}, all eigenvalues ofÃ are within the

unit circle.

In the following, we apply Lemma 3.2.2 into (3.46) to derive the bound of the tracking errors.

Theorem 3.2.1 Assume that the reference staterc[k] satisfies| rc[k−1]−rc[k]
T | ≤ r̄, and the virtual
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leader has a directed path to all vehicles1 to n. Letλi be theith eigenvalue ofD−1A, whereD

is defined right after(3.43)andA is the adjacency matrix. When positive scalarsγ andT satisfy

Tγ < min{1,mini=1,··· ,n
2|1−λi|2{2[1−Re(λi)]−|1−λi|2}

|1−λi|4+4[Im(λi)]2
}, using algorithm(3.42), ||Y [k]||∞, defined

before(3.44), is bounded by2T r̄
∥∥∥Ã(I2n − Ã)−1

∥∥∥
∞

ask → ∞, whereÃ is defined in(3.45).

Proof: When the virtual leader has a directed path to all vehicles1 ton, it follows from Lemma 3.2.2

that Ã has all eigenvalues within the unit circle if positive scalars T andγ are chosen satisfying

Tγ < min{1,mini=1,··· ,n
2|1−λi|2{2[1−Re(λi)]−|1−λi|2}

|1−λi|4+4[Im(λi)]2
}. Therefore,limk→∞ Ãk = 02n×2n. It

follows from (3.46) that

lim
k→∞

‖Y [k]‖∞ = lim
k→∞

∥∥∥∥∥

k−1∑

i=1

Ãk−iB̃Xr[k]

∥∥∥∥∥
∞

≤ lim
k→∞

∥∥∥∥∥

k−1∑

i=1

Ãi

∥∥∥∥∥
∞

∥∥∥B̃
∥∥∥
∞
‖Xr[k]‖∞ .

Similarly, we have

lim
k→∞

‖Xr[k]‖∞ = ‖{2rc[k] − rc[k − 1] − rc[k + 1]}1n‖∞

≤2T r̄, (3.54)

where we have used the fact that| rc[k]−rc[k−1]
T | ≤ r̄ to derive (3.54). Meanwhile, because all

eigenvalues ofÃ are within the unit circle, it follows from Lemma5.6.10 [86] that there exists a

matrix norm||| · ||| such that|||Ã||| < 1. It then follows from Theorem 4.3 [96] that

lim
k→∞

‖Y [k]‖∞ ≤ 2T r̄
∥∥∥Ã(I2n − Ã)−1

∥∥∥
∞
.

Remark 3.2.2 From Theorem 3.2.1, it can be noted that the bound of the tracking error using PD-

like discrete-time consensus algorithm with a time-varying reference state is proportional to the

sampling periodT . AsT → 0, the tracking error will go to zero ultimately when| rc[k]−rc[k−1]
T | is

bounded and the virtual leader has a directed path to all vehicles1 to n.
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3.2.4 Comparison Between P-like and PD-like Discrete-timeConsensus Algorithms with a

Time-varying Reference State

A P-like continuous-time consensus algorithm without a reference state is studied for (3.38)

as [36,37,39]ui(t) =
∑n

j=1 aij [rj(t)− ri(t)]. When there exists a virtual leader whose state is the

reference stateξr(t), a P-like continuous-time consensus algorithm is given as

ui(t) =
n∑

j=1

aij [rj(t) − ri(t)] + ai(n+1)[r
c(t) − ri(t)], (3.55)

whereaij andai(n+1) are defined as in (3.39). By sampling (3.55), we obtain

ui[k] =

n∑

j=1

aij{rj [k] − ri[k]} + ai(n+1){rc[k] − ri[k]}. (3.56)

Using (3.56) for (3.40), we get the P-like discrete-time consensus algorithm with a time-varying

reference state as

ri[k + 1] =ri[k] + T
n∑

j=1

aij(rj [k] − ri[k]) + Tai(n+1)(r
c[k] − ri[k]), (3.57)

whereT is the sampling period. By definingδi[k] , ri[k] − rc[k], we rewrite (3.57) as

δi[k + 1] =δi[k] + T
n∑

j=1

aij(δj [k] − δi[k]) − Tai(n+1)δi[k] − (rc[k + 1] − rc[k]),

which can then be written in matrix form as

∆[k + 1] = Q∆[k] − (rc[k + 1] − rc[k])1n, (3.58)

where∆[k] = [δ1[k], · · · , δn[k]]T , Q = In − TL − Tdiag{a1(n+1), · · · , an(n+1)}, andL is the

Laplacian matrix. It follows thatQ is nonnegative whenT < mini=1,··· ,n 1∑n+1
j=1 aij

.

Lemma 3.2.3 Assume that the virtual leader has a directed path to all vehicles1 to n. WhenT <

mini=1,··· ,n 1∑n+1
j=1 aij

, Q satisfies‖Qn‖∞ < 1, whereQ is defined right after(3.58). Furthermore,

if ‖Qn‖∞ < 1,Q has all eigenvalues within the unit circle.
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Proof: The proof is similar to that of Lemma 3.2.1 and is omitted here.

Theorem 3.2.3 Assume that the reference staterc[k] satisfies| rc[k]−rc[k−1]
T | ≤ r̄, and the virtual

leader has a directed path to all vehicles1 to n. WhenT < mini=1,··· ,n 1∑n+1
j=1 aij

, using algo-

rithm (3.57), ‖∆[k]‖∞ is bounded bȳr
∥∥Q(L+ diag{a1(n+1), · · · , an(n+1)})−1

∥∥
∞ as k → ∞,

whereQ and∆[k] are defined after(3.58).

Proof: The solution of (3.58) is

∆[k] = Qk∆[0] −
k−1∑

i=1

Qk−i(rc[k + 1] − rc[k])1n. (3.59)

When the virtual leader has a directed path to all vehicles1 to n, it follows from Lemma 3.2.3

thatQ has all eigenvalues within the unit circle whenT < mini=1,··· ,n 1∑n+1
j=1 aij

, which implies

Qk → 0n×n ask → ∞. It follows from (3.59) that

lim
k→∞

∆[k] = − lim
k→∞

k∑

i=1

Qk−i(rc[k + 1] − rc[k])1n.

As | rc[k]−rc[k−1]
T | ≤ r̄, it follows that

lim
k→∞

‖∆[k]‖∞ ≤ lim
k→∞

r̄T

∥∥∥∥∥

k−1∑

i=1

Qk−i

∥∥∥∥∥
∞
. (3.60)

BecauseQ has all eigenvalues within the unit circle, it follows from Lemma5.6.10 [86] that there

exists a matrix norm||| · ||| such that|||Q||| < 1. It then follows from (3.60) that

lim
k→∞

‖∆[k]‖∞

≤ lim
k→∞

r̄T
∥∥∥(Q+Q2 + . . .+Qk−1)

∥∥∥
∞

= r̄T
∥∥Q(In −Q)−1

∥∥
∞

= r̄
∥∥Q(L + diag{a1(n+1), · · · , an(n+1)})−1

∥∥
∞ ,

where we have used Theorem4.3 [96] to obtain the last equality.
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Remark 3.2.4 In contrast to the results in Theorem 3.2.1, the bound of the tracking error using

P-like discrete-time consensus algorithm(3.57) is not proportional to the sampling periodT . In

fact, asT → 0, the tracking error using(3.57)will not go to zero[69].

The comparison between Theorem 3.2.1 and Theorem 3.2.3 shows the benefit of the PD-like discrete-

time consensus algorithm over the P-like discrete-time consensus algorithm when there exists a

time-varying reference state that is available to only a subset of the team members. As a spe-

cial case, when the reference state is time-invariant, i.e., r̄ = 0, it follows from Theorems 3.2.1

and 3.2.3 that the tracking error will go to zero ultimately for both P-like and PD-like discrete-time

consensus algorithms.

Remark 3.2.5 From Theorem 3.2.1, it can be noted that the productTγ should be less than a

positive upper bound to ensure system stability when using PD-like discrete-time consensus algo-

rithm (3.42). Accordingly, the sampling periodT can be increased by decreasing the control gain

γ. In contrast, when using P-like discrete-time consensus algorithm (3.57), the sampling period

T should be less than a positive upper bound to ensure system stability. In real applications, the

sampling period may be large. In this case, PD-like discrete-time consensus algorithm also shows

benefit over P-like discrete-time consensus algorithm.

3.2.5 Simulation

In this section, a simulation example is presented to illustrate the PD-like discrete-time consen-

sus algorithm. To show the benefit of the PD-like discrete-time consensus algorithm, the simulation

result using the P-like discrete-time consensus algorithmis also presented. We consider a team of

four vehicles with a directed graph given by Fig. 3.17 and letthe first, third and fourth vehicles

access the time-varying reference state. It can be noted that the virtual leader has a directed path to

all four vehicles. The Laplacian matrix is chosen asL =




1 −1 0 0

−1 2 −1 0

−1 0 1 0

0 −1 −1 2




.
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Fig. 3.17: Directed graph for four vehicles. A solid arrow from j to i denotes that vehiclei can
receive information from vehiclej. A dashed arrow fromξr to l denotes that vehiclel can receive
information from the virtual leader.

For both the P-like and PD-like discrete-time consensus algorithms with a time-varying refer-

ence state, we let the initial states of the four vehicles[r1[0], r2[0], r3[0], r4[0]] = [3, 1,−1,−2]

and [r1[−1], r2[−1], r3[−1], r4[−1]] = [0, 0, 0, 0]. The reference state is chosen assin(t) + t.

Figs. 3.18(a) and 3.18(b) show, respectively, the statesri(t) and tracking errorsrc(t) − ri(t) by

using PD-like discrete-time consensus algorithm (3.42) with a time-varying reference state when

T = 0.5 sec andγ = 1. From Fig. 3.18(b), it can be seen that the four vehicles can track the refer-

ence state with large tracking errors. Figures 3.18(c) and 3.18(d) show, respectively, the statesξi(t)

and tracking errorsrc(t) − ri(t) by using PD-like discrete-time consensus algorithm (3.42)with

the same reference state whenT = 0.1 sec andγ = 5. From Fig. 3.18(d), it can be seen that the

four vehicles can track the reference state with very small tracking errors. This shows that the track-

ing errors will be larger if the sampling period becomes larger. As a counterexample, Figs. 3.18(e)

and 3.18(f) show, respectively, the stateri(t) and tracking errorsrc(t)−ri(t) whenT = 0.2 sec and

γ = 5. It can be noted that the system is unstable when the productTγ is larger than the positive

upper bound proposed in Theorem 3.2.1. Figures. 3.19(a) and3.19(b) show, respectively, the states

ri(t) and tracking errorsrc(t)− ri(t) by using P-like discrete-time consensus algorithm (3.57) with

the same time-varying reference state whenT = 0.1 sec andγ = 5. It can be seen that the tracking

error using P-like discrete-time consensus algorithm (3.57) is much larger than that using PD-like

discrete-time consensus algorithm (3.42) under the same condition. This shows the benefit of the

PD-like discrete-time consensus algorithm over the P-likediscrete-time consensus algorithm when

there exists a time-varying reference state that is available to only a subset of the team members.
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(a) States (T = 0.5 sec andγ = 1).
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(b) Tracking errors (T = 0.5 sec andγ = 1).
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(c) States (T = 0.1 sec andγ = 5).
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(d) Tracking errors (T = 0.1 sec andγ = 5).
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(e) States (T = 0.2 sec andγ = 5).
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(f) Tracking errors (T = 0.2 sec andγ = 5).

Fig. 3.18: Consensus tracking with a time-varying reference state using PD-like discrete-time con-
sensus algorithm (3.42) under differentT andγ.
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(a) States (T = 0.1 sec andγ = 5).
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(b) Tracking errors (T = 0.1 sec andγ = 5).

Fig. 3.19: Consensus tracking with a time-varying reference state using P-like discrete-time con-
sensus algorithm (3.57).
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Chapter 4

Decentralized Containment Control with Multiple Group Ref erence

States

In the previous several chapters, we have investigated the coordination problems when there

exists at most one group reference state. In this chapter, westudy the case when there exists multiple

group reference states. The group reference states are alsocalled “leaders.” We study the decentral-

ized containment control problem in which all followers will converge to the convex hull formed

by the leaders and consistently stay within the convex hull.A stop-and-go strategy was proposed

to solve the problem of driving a collection of mobile agentsto the convex polytope spanned by

dedicated leaders under an undirected network topology [97]. This stop-and-go strategy was then

used to solve the problem of driving a collection of mobile agents to the convex polytope formed

by the stationary/dynamic leaders in an orderly manner [76]. Note that the study focused on fixed

undirected interaction.

In this chapter, we will study containment problems for bothsingle-integrator kinematics and

double-integrator dynamics in both fixed and switching directed network topology. In addition, we

will also present experimental results on a multi-robot platform to validate some theoretical results.

4.1 Definitions and Notations

Definition 4.1.1 For a directed graphG = (V,W), an agent is called aleaderif the agent has no

neighbor. An agent is called afollower if the agent is not a leader. Assume that there arem leaders,

wherem < n. We useR andF to denote, respectively, the leader set and the follower set. The

directed graphG has aunited directed spanning treeif for any one of then −m followers, there

exists at least one leader which has a directed path to the follower.
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Definition 4.1.2 LetC be a set in a real vector spaceV ⊆ R
p. The setC is calledconvexif, for any

x andy in C, the point(1 − z)x + zy is in C for anyz ∈ [0, 1]. The convex hull for a set of points

X = {x1, · · · , xq} in V is the minimal convex set containing all points inX. We useCo(X) to

denote the convex hull ofX. In particular, whenV ⊆ R, Co(X) = {x|x ∈ [mini xi,maxi xi]}.

Definition 4.1.3 The matrixB ∈ R
n×n is called a (row)stochastic matrixif each entry ofB is

nonnegative and each row ofB has a sum equal to one.

4.2 Single-integrator Kinematics

4.2.1 Stability Analysis with Multiple Stationary Leaders

In this section, we study the conditions on, respectively, the fixed and switching directed net-

work topologies such that all followers will ultimately converge to the stationary convex hull formed

by the stationary leaders.

Consider a group ofn autonomous agents with single-integrator kinematics given by

ṙi(t) = ui(t), i = 1, . . . , n, (4.1)

whereri(t) ∈ R
p andui(t) ∈ R

p are, respectively, the state and the control input of theith agent.

A common consensus algorithm for (4.1) was studied as [36,37,39,98,99]

ui(t) = −
n∑

j=1

aij(t)[ri(t) − rj(t)], i = 1, . . . , n, (4.2)

whereaij(t) is the (i, j)th entry of the adjacency matrixA(t) at time t. The objective of (6.2)

is to guarantee consensus, i.e.,ri(t) → rj(t) for arbitrary initial conditionsri(0), i = 1, · · · , n.

Conditions on the network topology to ensure consensus werestudied [36,37,39,98,99], but these

references only considered the case when there exists at most one leader in the group.
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Suppose that there arem,m < n, stationary leaders andn − m followers. Equation (4.2)

becomes

ui(t) = 0, i ∈ R

ui(t) = −
∑

j∈F ⋃R
aij(t)[ri(t) − rj(t)], i ∈ F . (4.3)

Note thatrj, j ∈ R, is constant because the leaders are stationary.

Fixed Directed Interaction

In this subsection, we assume that the directed interactionis fixed, i.e., allaij(t) in (4.14) are

constant. We first assume that all agents are in a one-dimensional space, i.e.,p = 1 in (4.1).

Theorem 4.2.1 For ann-agent system, using(4.14)for (4.1), all followers will always converge to

the stationary convex hullCo{rj , j ∈ R} for arbitrary initial conditionsri(0), i ∈ F , if and only

if the directed graphG for then agents has a united directed spanning tree.

Proof: (Necessity) Suppose that the directed graphG does not have a united directed spanning tree.

Then there exists a follower, labeled ask, to which all leaders do not have a directed path. It follows

that the state of followerk is independent of the states of the leaders. Therefore, followerk cannot

always converge to the stationary convex hullCo{rj , j ∈ R} for arbitrary initial conditions.

(Sufficiency) Definer+L
△
= max{rj , j ∈ R}, r−L

△
= min{rj , j ∈ R}, r+F

△
= max{xj , j ∈ F},

andr−F
△
= min{xj , j ∈ F}. To show that all followers will converge to the stationary convex hull

Co{rj , j ∈ R}, we study the following four cases:

Case 1. All followers are initially within the stationary convex hullCo{rj , j ∈ R}. In this case,

it follows from (4.14) that the states of then −m followers cannot be larger thanr+L or less than

x−L because for any followerj, ṙj < 0 if rj > r+L and ṙj > 0 if rj < r−L . Therefore, alln − m

followers will always be within the stationary convex hullCo{rj , j ∈ R}.

Case 2. The initial states of some followers are larger thanr+L and the others are initially within the

stationary convex hullCo{rj , j ∈ R}. We next show thatr+F ≤ r+L ast → ∞ andr−F ≤ r−L for all

t.
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Step1: r+F is a nonincreasing function ifr+F > r+L . From (4.14), for the follower(s) with the state

r+F , the control input will be less than or equal to zero. Therefore, the state(s) of the follower(s) with

the stater+F will not increase. Meanwhile, the states of the other followers inF cannot be larger

than the current maximal stater+F according to (4.14). Therefore,r+F is a nonincreasing function.

Step2: r+F will decrease after a finite period of time ifr+F > r+L and the directed graphG has a

united directed spanning tree. The proof of this part is motivated by Moreau’s work [98]. Different

from the analysis in Moreau’s work [98], we consider the multi-leader case. By using the convexity

property and following a similar analysis to that in Moreau’s work [98], it can be shown thatr+F will

decrease after a finite period of time.

Combining Steps1 and2, we get thatr+F ≤ r+L ast → ∞. Note also thatr−F ≥ r−L for all t

according to (4.14). Therefore, all followers will converge to the stationary convex hullCo{rj , j ∈

R}.

Case 3. The initial states of some followers are less thanr−L and the others are initially within the

stationary convex hullCo{rj , j ∈ R}. The analysis of this case is similar to the analysis of Case 2

by showing thatr−F ≥ r−L ast→ ∞ andr+F ≤ r+L for all t.

Case 4. The initial states of some followers are larger thanr+L , the initial states of some followers

are less thanr−L , and the others are initially within the stationary convex hull Co{rj , j ∈ R}. The

analysis of this case is a combination of Cases 2 and 3.

Remark 4.2.2 In Theorem 4.2.1, the containment control problem is studied in a one-dimensional

space. We next show that the same conclusion holds for any high-dimensional space. In the case of

a high-dimensional space, i.e.,p > 1 in (4.1), by using the decoupling technique, it follows that all

followers will converge to the smallest hyperrectangle containing the stationary leaders under the

conditions of Theorem 4.2.1. Note that from(4.1)and (4.14),

Rṙi(t) = −R
∑

j∈F ⋃R
aij(t)[ri(t) − rj(t)]

= −
∑

j∈F ⋃R
aij(t)[Rri(t) −Rrj(t)], i ∈ F ,
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whereR ∈ R
p×p represents any coordinate transformation matrix. It follows that the closed-loop

system is independent of the coordinate frame. That is, all followers will converge to the smallest

hyperrectangle containing the leaders under any coordinate frame. Therefore, all followers will

converge to the intersection of all smallest hyperrectangles containing the leaders under various

coordinate frames. Note that the intersection of all smallest hyperrectangles containing the leaders

under various coordinate frames is essentially the minimalgeometric space spanned by the leaders,

i.e., the convex hull formed by the leaders. Therefore, all followers will converge to the convex hull

formed by the leaders in any high-dimensional space. We illustrate the idea in a two-dimensional

space. Assume that there are four stationary leaders whose positions are denoted by the four squares

in Fig. 4.1. Under the condition of Theorem 4.2.1, it followsfrom the above analysis that the

followers will ultimately converge to the red rectangle under the(X1, Y1) coordinate frame and the

blue rectangle under the(X2, Y2) coordinate frame. Therefore, the followers will converge to the

intersection of the two rectangles, i.e., the convex hull formed by the leaders.

In the following of this subsection and Section 4.2.1, we assume thatp = 1 in (4.1) for the sim-

plicity of presentation. However, all the results in the following of this subsection and Section 4.2.1

are still valid forp > 1 in (4.1)by following the previous analysis.

Remark 4.2.3 Using (4.14) for (4.1), the final states for then agents are unique constants. When

all aij(t) in (4.14)are constant, using(4.14), (4.1)can be written as

Ẋ(t) = −LX(t), (4.4)

whereX(t) = [r1(t), · · · , rn(t)]T andL is the Laplacian matrix. Note that each entry of thejth

row of L is equal to zero forj ∈ R. Because the zero eigenvalue ofL has the same algebraic

and geometric multiplicities[100] and the other eigenvalues ofL are on the open right half plane,

by writing −L into a Jordan canonical form, it follows that the solution to(4.4) is unique and

constant. In particular, letre
i andXe denote, respectively, the steady state ofri(t) andX(t). Under

the condition of Theorem 4.2.1, the steady state of(4.4) obtained by solvingLXe = 0, where0 is

an all-zero column vector with a compatible size, satisfies the fact thatre
i ∈ Co{rj , j ∈ R}, i ∈ F .
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Fig. 4.1: Containment control under different coordinate frames in the two-dimensional space. The
squares denote the positions of the four leaders. The blue and red rectangles represent the smallest
rectangles containing the leaders under, respectively, the(X1, Y1) coordinate frame and the(X2, Y2)
coordinate frame.

Remark 4.2.4 Existing consensus algorithms primarily studied the case where the Laplacian ma-

trix has exactly one zero eigenvalue. When there exist multiple leaders, the Laplacian matrixL

in (4.4) has multiple zero eigenvalues[101]. Theorem 4.2.1 studied the case when the Laplacian

matrix has multiple zero eigenvalues.

Remark 4.2.5 Ji et al. [76] focused on the case where the network topology for the followers is

undirected and connected. Theorem 4.2.1 considers a general case where the network topology for

the followers is directed and not necessarily connected.

Switching Directed Interaction

In this subsection, we assume thatA(t), i.e., the interaction among then agents, is constant

over time intervals[
∑k

j=1 ∆j,
∑k+1

j=1 ∆j)
1 and switches at timet =

∑k
j=1 ∆j with k = 0, 1, · · · ,

where∆j > 0, j = 1, · · · . LetGk andAk denote, respectively, the directed graph and the adjacency

matrix for then agents fort ∈ [
∑k

j=1 ∆j,
∑k+1

j=1 ∆j). Equation (4.4) becomes

Ẋ(t) = −LkX(t), (4.5)

whereLk ∈ R
n×n represents the Laplacian matrix associated withAk.

1Whenk = 0, we define
∑k

j=1 ∆j
△
= 0.
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Theorem 4.2.6 For ann-agent system, using(4.14)for (4.1), all followers will always converge to

the stationary convex hullCo{rj , j ∈ R} for arbitrary initial conditionsri(0), i ∈ F , if and only

if there existsN2 such that the union ofGi, i = N1, · · · , N1 + N2, has a united directed spanning

tree for any finiteN1.

Proof: The proof is motivated by Moreau’s work [38] but here we consider the multi-leader case.

(Necessity) When there does not existN2 such that the union ofGi, i = N1, · · · , N1 + N2, has a

united directed spanning tree for any finiteN1, there exists at least one follower such that all leaders

do not have a directed path to the follower fort ∈ [
∑N1

j=1 ∆j,∞). It follows that the state of the

follower is independent of the states of the leaders fort ≥ ∑N1
j=1 ∆j. A similar analysis to that

in Theorem 4.2.1 shows that at least one follower cannot converge to the stationary convex hull

Co{xj , j ∈ R} for arbitrary initial states.

(Sufficiency) Definer+L , r−L , r+F , andr−F as in the proof of Theorem 4.2.1. By considering the

same four cases as in the proof of Theorem 4.2.1, using the convexity property, and following a

similar analysis to that in Moreau’s work [38], the theorem is proved.

Remark 4.2.7 Different from the existing consensus algorithms using which the final states for all

agents are fixed, when there exist multiple stationary leaders, the final states of all followers might

not be constant under a switching network topology.

Remark 4.2.8 In Section 4.2.1, we assume that each leader has no neighbor.However, for some

network topologies, it is possible to view a subgroup of agents as one leader. For example, for the

network topology given by Fig. 4.2, agents1 and2 (respectively, agents5 and6) can reach consen-

sus on a constant value independent of the states of the otheragents. The results in Section 4.2.1 can

also be applied to this case by viewing agents1 and2 (respectively, agents5 and6) as one leader

with the state being the constant consensus equilibrium of agents1 and2 (respectively, agents5 and

6).

Remark 4.2.9 For the discrete-time consensus algorithm, i.e., the distributed weighted averaging

algorithm, with multiple stationary leaders, the convergence results are the same as those in Theo-

rems 4.2.1 and 4.2.6 by following a similar analysis.
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Fig. 4.2: A special network topology when a subgroup of agents can be viewed as a leader.

4.2.2 Stability Analysis with Multiple Dynamic Leaders

In this section, we propose a decentralized tracking control algorithm without velocity mea-

surements and then analyze the stability condition under both fixed and switching network topolo-

gies.

For agents with the single-integrator kinematics (4.1), when there existm,m < n, dynamic

leaders andn−m followers, we propose the following tracking control algorithm without velocity

measurements as

ui(t) =vi(t), i ∈ R

ui(t) = − α
∑

j∈F ⋃R
aij(t)[ri(t) − rj(t)]

− βsgn





∑

j∈F ⋃R
aij(t)[ri(t) − rj(t)]




 , i ∈ F , (4.6)

wherevi(t) ∈ R
p denotes the time-varying velocity of leaderi, i ∈ R, aij(t) is defined as in (6.2),

sgn(·) is the signum function defined entrywise,α is a nonnegative constant scalar, andβ is a

positive constant scalar. We assume that||vi(t)||, i ∈ R, is bounded.

Fixed Directed Interaction

In this subsection, we assume that the directed interactionis fixed, i.e., allaij(t) in (4.6) are

constant. We first assume that all agents are in a one-dimensional space, i.e.,p = 1 in (4.6). Before

moving on, we need the following lemma.

Lemma 4.2.1 Suppose that the directed graphG has a directed spanning tree. Forn agents with

kinematics given by(4.1), usingui(t) = −∑n
j=1 aijfi,j[ri(t), rj(t), t], i = 1, · · · , n, consensus
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can be achieved iffi,j(·, ·, ·) satisfies

fi,j[x(t), y(t), t]






> ǫ, x(t) > y(t)

= 0, x(t) = y(t)

< −ǫ, x(t) < y(t),

(4.7)

or

fi,j[x(t), y(t), t] = fi,j[x(t), y(t)]






> 0, x(t) > y(t)

= 0, x(t) = y(t)

< 0, x(t) < y(t)

(4.8)

for any nonnegativet, whereǫ can be any positive constant.

Proof: The proof of this lemma is motivated by Moreau’s work [98]. Consider the Lyapunov

function candidateV (t) = maxi ri(t) − mini ri(t). Whenfi,j(x(t), y(t), t) satisfies (4.7) or (4.8),

the convexity property [98] is also satisfied. By following asimilar analysis to that in Moreau’s

work [98], when the directed graphG has a directed spanning tree, we can get thatV (t) → 0 as

t→ ∞, which implies thatxi(t) → xj(t) ast→ ∞.

Theorem 4.2.10For an n-agent system, suppose thatβ > γl, whereγl
△
= supi∈R ||vi(t)||. Us-

ing (4.6) for (4.1), all followers will always converge to the dynamic convex hull Co{rj(t), j ∈ R}

as t → ∞ for arbitrary initial conditionsri(0), i ∈ F , if and only if the directed graphG has a

united directed spanning tree.

Proof: (Necessity) The necessity proof is similar to that in Theorem 4.2.1.

(Sufficiency) Without loss of generality, suppose that agents 1 to n − m are followers and

agentsn −m + 1 to n are leaders. DenoteX(t)
△
= [r1(t), · · · , rn(t)]T and letL ∈ R

n×n be the

Laplacian matrix for then agents. It can be noted that the lastm rows ofL are all equal to zero.

Using (4.6), (4.1) can be written in matrix form as

Ẋ(t) = −αLX(t) − βsgn[LX(t)] + V (t), (4.9)
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whereV (t) = [0, · · · , v(n−m+1)(t), · · · , vn(t)]T . Let Z(t) = [z1(t), · · · , zn(t)]T = LX(t). It

follows

Ż(t) = LẊ(t) = −αLZ(t) − βLsgn[Z(t)] + LV (t). (4.10)

Because the lastm rows ofL are equal to zero, we get thatzi(t) ≡ 0, i = n −m + 1, · · · , n. We

can thus view agentsn −m + 1 to n as a single agent, labeled as0, instead ofm agents. It thus

follows thatz0(t) ≡ 0. WhenG has a united directed spanning tree, it follows that agent0 has a

directed path to then−m followers.

Considering the group consisting of agents0 to n−m, we know that

z0(t) ≡ 0,

żi(t) = −α
n−m∑

j=1

aij ([zi(t) − zj(t)] + β{sgn[zi(t)] − sgn[zj(t)]})

−
n∑

j=n−m+1

aij{zi(t) + βsgn[zi(t)] − vj(t)}, i = 1, . . . , n−m,

where we have used (4.10) by noting thatzi(t) ≡ 0, i = n − m + 1, · · · , n. We next show

that (4.10) satisfies the condition (4.7) or (4.8). Whenβ > 0 andzi(t) > zj(t), it follows that

α[zi(t) − zj(t)] + β[sgn(zi(t)) − sgn(zj(t))] > 0, j = 1, · · · , n −m. Similarly, whenβ > 0 and

zi(t) < zj(t), it follows thatα[zi(t) − zj(t)] + β[sgn(zi(t)) − sgn(zj(t))] < 0, j = 1, · · · , n−m.

Therefore,α[zi(t)− zj(t)] + β[sgn(zi(t)) − sgn(zj(t))] satisfies the condition (4.7). Whenβ > γl

andzi(t) > z0(t) ≡ 0, it follows thatαzi(t) + βsgn(zi(t)) − vj(t) > β − γl > 0. Whenβ > γl

andzi(t) < z0(t) ≡ 0, it follows thatαzi(t) + βsgn(zi(t)) − vj(t) < −(β − γl) < 0. Therefore,

αzi(t) + βsgn(zi(t)) − vj(t) satisfies the condition (4.8). Because agent0 has a directed path to

agents1 to n −m, i.e., the network topology for agents0 to n −m has a directed spanning tree,

it follows from Lemma 4.2.1 thatzi(t) → z0(t) ≡ 0, i = 1, · · · , n − m, as t → ∞. Because

Z(t) → 0 ast → ∞, it follows thatLX(t) → 0 ast → ∞. Therefore, all followers will always

converge to the dynamic convex hullCo{rj(t), j ∈ R} as t → ∞ under the condition of the

theorem.
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Remark 4.2.11 When the agents are in a one-dimensional space, it is shown inTheorem 4.2.10

that LX(t) → 0 as t → ∞. Similarly, when the agents are in ap-dimensional space (p > 1),

by using the decoupling technique, it can be shown that(L ⊗ Ip)X(t) → 0 as t → ∞ under the

condition of Theorem 4.2.10. Note that(L ⊗ Ip)X(t) → 0 implies thatri(t) ∈ Co{rj(t), j ∈ R}

ast→ ∞. That is, the same conclusion in Theorem 4.2.10 holds for anyhigh-dimensional space.

Switching Directed Interaction

In this subsection, we assume that the adjacency matrixA(t) (and hence the interaction) is

switching over time but remains constant fort ∈ [
∑k

j=1 ∆j,
∑k+1

j=1 ∆j) as in Section 4.2.1. We first

study the case when all agents are in a one-dimensional space.

Theorem 4.2.12For ann-agent system, suppose thatβ > γl, whereγl is defined in Theorem 4.2.10.

Using (4.6) for (4.1), all followers will always converge to the dynamic convex hull Co{rj(t), j ∈

R} as t → ∞ for arbitrary initial conditions ri(0), i ∈ F , if the directed graphG has a united

directed spanning tree at each time interval[
∑k

j=1 ∆j ,
∑k+1

j=1 ∆j).

Proof: Definer+L (t)
△
= max{rj(t), j ∈ R} andr̃i(t)

△
= ri(t) − r+L (t), i ∈ F ⋃R. It follows that

r̃i(t) ≤ 0, i ∈ R. Using (4.6) for (4.1), the closed-loop system can be written as

˙̃ri(t) = vi(t) − ṙ+L (t), i ∈ R

˙̃ri(t) = −α
∑

j∈F ⋃R
aij[k][r̃i(t) − r̃j(t)]

− βsgn





∑

j∈F ⋃R
aij[k][r̃i(t) − r̃j(t)]




− ṙ+L (t), i ∈ F , (4.11)

whereaij[k] is the(i, j)th entry of the adjacency matrixA(t) for t ∈ [
∑k

j=1 ∆j,
∑k+1

j=1 ∆j).

Definer̃+(t)
△
= max{r̃i(t), i ∈ F ⋃R}. We next studỹr+(t) in the following two cases:

Case 1:r̃+(t) is a nonincreasing function if̃r+(t) ≥ 0 at t = 0. We prove this statement

by contradiction. Suppose thatr̃+(t) increases over some time period[t1, t2]. It then follows that

there exists at least one follower, labeled asj, with the statẽr+(t) satisfying that̃rj(t) will increase

over [t1, t3], wheret3 ≤ t2. From (4.11), if the states of the neighbors of agentj are less than
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or equal tor̃+(t) and r̃j(t) increases for an arbitrary small amount, it follows from theanalysis

in Theorem 4.2.10 that̃̇rj(t) < 0, which implies thatr̃j(t) cannot increase. This results in a

contradiction.

Case 2: r̃+(t) will decrease after a finite period of time if the graph has a united directed

spanning tree at each time interval andr̃+(t) > 0 at t = 0. Suppose that the states of some

followers, labeled ask1, · · · , ks, are equal tõr+(t). Because the directed graph at each time interval

has a united directed spanning tree, followersk1, · · · , ks as a subgroup has at least one neighbor

which is not within this subgroup at each time interval. By following a similar analysis to that in the

proof of Theorem 4.2.10, it then follows from (4.11) that˙̃rki
(t) < −ǫ̃ < 0 for someki and some

positive constant̃ǫ, which implies that̃rki
(t) will decrease. By following a similar analysis to that

for follower ki, we can get that all other followers with the maximal stater̃+(t) will also decrease.

Therefore,̃r+(t) will decrease after a finite period of time.

Combining the previous two cases shows thatr̃+(t) → 0 ast→ ∞.

Similarly, definer−L (t) = min{rj(t), j ∈ R} and r̆i(t)
△
= ri(t) − r−L (t). It follows that

r̆i(t) ≥ 0, i ∈ R. Note that (4.6) can be written as

˙̆ri(t) = −α
∑

j∈F ⋃R
aij [k][r̆i(t) − r̆j(t)]

− βsgn





∑

j∈F ⋃R
aij [k][r̆i(t) − r̆j(t)]




− ṙ−L (t), i ∈ F .

Define r̆−(t)
△
= min{r̆i(t), i ∈ F ⋃R}. A similar analysis to that for̃r+(t) can also show

that r̆−(t) → 0 as t → ∞. Combining the previous arguments shows thatri(t) ≤ r+L (t) and

ri(t) ≥ r−L (t) ast→ ∞, which implies that all followers will converge to the dynamic convex hull

Co{rj(t), j ∈ R} ast→ ∞ under the condition of the theorem.

Remark 4.2.13 Unlike the case of stationary leaders, the case of dynamic leaders requires more

stringent conditions on network topologies to guarantee dynamic containment control. This is due

to the fact that the leaders move with time-varying velocities rather than remain still.
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Remark 4.2.14 Theorem 4.2.12 focuses on the one-dimensional space. For any high-dimensional

space, by using the decoupling technique, all followers will converge to the smallest hyperrectangle

containing the dynamic leaders under the conditions of Theorem 4.2.12. Note that all followers

might not converge to the dynamic convex hull formed by the dynamic leaders because the closed-

loop system depends on the coordinate frame, which is different from Remark 4.2.2. To illustrate,

we present the following counterexample. Consider a group of agents with four leaders and one

follower where the leaders have the same velocity. The network topology switches from Fig. 4.3(a)

to Fig. 4.3(b) every0.4 seconds and the process repeats. Simulation results using(4.6) in the two-

dimensional space are given in Fig. 4.4 where the red square represents the position of the follower

and the blue circles represent the positions of the four leaders. From the simulation results, it can

be seen that even if the follower is originally within the dynamic convex hull, it cannot always stay

to the dynamic convex hull although the directed graph has a united directed spanning tree at each

time interval. Instead, the follower will converge to the smallest rectangle containing the dynamic

leaders.

Remark 4.2.15 For a high-dimensional space, the sgn(ν) function in(4.6)can also be defined as2

sgn(ν) =






0, ν = 0,

ν
‖ν‖ , otherwise.

(4.12)

2In a one-dimensional space, sgn(ν) becomes the standard signum function.

L1

��~~
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~~
~~

L4

F L2 L3
(a) Graph1.

L1 L4

F L2
oo L3

(b) Graph2.

Fig. 4.3: Switching directed network topologies for a groupof agents with four leaders and one
follower. HereLi, i = 1, · · · , 4, denote the leaders whileF denotes the follower.
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Fig. 4.4: A counterexample to illustrate that the follower cannot converge to the dynamic convex
hull in the two-dimensional space. The red square represents the position of the follower and the
blue circles represent the positions of the four leaders.

Under this definition, the closed-loop system is independent of the coordinate frame. However, all

followers might still not converge to the dynamic convex hull formed by the dynamic leaders. We

consider the same example as in Remark 4.2.14 but with sgn(·) defined by(4.12). Simulation results

are given in Fig. 4.5. It can be noted that the follower cannotconverge to the dynamic convex hull

formed by the dynamic leaders even if the follower is initially within the convex hull.

Remark 4.2.16 For decentralized containment control with multiple dynamic leaders under a switch-

ing directed network topology, it is, in general, impossible to find decentralized tracking control

algorithms without velocity measurements to guarantee that all followers will converge to the dy-

namic convex hull formed by the dynamic leaders in a high-dimensional space. In a one-dimensional

space, the degree of freedom of the dynamic leaders is1 and only the minimum and maximum states

of the dynamic leaders are required to determine the dynamicconvex hull formed by the dynamic

leaders. Therefore, the signum function can be used to driveall followers to the dynamic convex

hull formed by the dynamic leaders under a switching directed network topology given that the

network topology and the control gain satisfy the conditions in Theorem 4.2.12. However, in a

high-dimensional space, the degree of freedom of the dynamic leaders is larger than1. The dy-

namic convex hull formed by the dynamic leaders might dependon a number of leaders’ states.

Therefore, the signum function, in general, does not have the capability to drive all followers to the
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Fig. 4.5: A counterexample to illustrate that the follower cannot converge to the dynamic convex
hull in the two-dimensional space when sgn(·) is defined by (4.12). The red square represents the
position of the follower and the blue circles represent the positions of the four leaders.

dynamic convex hull formed by the dynamic leaders. Similarly, without velocity measurements, the

basic linear decentralized control algorithms do not have such capability either. Therefore, more

information, i.e., velocity measurements, topology switching sequence, topologies, etc., is needed

in order to guarantee decentralized containment control with multiple dynamic leaders under a

switching directed network topology in a high-dimensionalspace.

4.3 Double-integrator Dynamics

4.3.1 Stability Analysis with Multiple Stationary Leaders

In this section, we study the conditions on, respectively, the fixed and switching network

topologies such that all followers will converge to the stationary convex hull formed by the sta-

tionary leaders.

Consider a group ofn vehicles with double-integrator dynamics given by

ṙi(t) = vi(t), v̇i(t) = ui(t) i = 1, . . . , n, (4.13)

whereri(t) ∈ R
p, vi(t) ∈ R

p, andui(t) ∈ R
p are, respectively, the position, the velocity, and

the control input associated with theith vehicle. We propose the following containment control
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algorithm for (4.13) as

vi(t) =0, i ∈ R,

ui(t) = − βvi(t) −
∑

j∈F ⋃R
aij(t)

{
β[ri(t) − rj(t)]

+ [vi(t) − vj(t)]
}
, i ∈ F , (4.14)

whereR andF are defined in Definition 4.1.1,aij(t) is the(i, j)th entry of the adjacency matrixA

at timet, andβ is a positive constant. The objective of (4.14) is to guarantee that all vehicles move

into the convex hull formed by the leaders. Note thatrj(t), j ∈ R, is constant because the leaders

are stationary.

We assume thatA(t), i.e., the interaction among then vehicles, is constant over time intervals

[
∑k

j=1 ∆j,
∑k+1

j=1 ∆j)
3 and switches randomly at timet =

∑k
j=1 ∆j with k = 0, 1, · · · , where

∆j > 0, j = 1, · · · . Let Gk andA[k] denote, respectively, the directed graph and the adjacency

matrix for then vehicles fort ∈ [
∑k

j=1 ∆j,
∑k+1

j=1 ∆j). We first consider the case when the vehicles

are in a one-dimensional space, i.e.,p = 1 in (4.13).

Theorem 4.3.1 Using(4.14)for (4.13), all followers will always converge to the stationary convex

hull Co{rj , j ∈ R} for arbitrary initial conditions xi(0), i ∈ F , if and only if there exists a

positive integerN2 such that the union ofGi, i = N1, · · · , N1 +N2, has a united directed spanning

tree for any finiteN1.

Proof: (Necessity) The proof follows a similar analysis to that in the proof of Theorem3.5 [82].

(Sufficiency) Definezi(t)
△
= βri(t) + vi(t), i = 1, · · · , n. Using (4.14) for (4.13), we can get

that

żi(t) = 0, i ∈ R,

żi(t) = −
∑

j∈R⋃F
aij [k][zi(t) − zj(t)], i ∈ F . (4.15)

3Whenk = 0, we define
∑k

j=1 ∆j
△
= 0.
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By following a similar analysis to that in the proof of Theorem 3.1 [82], it can be shown that

zi(t), i ∈ F , will converge to the convex hullCo{zj , j ∈ R} under the condition of the theorem.

Definez
△
= maxi∈R zi, r

△
= maxi∈R ri andδi

△
= ri − r, i ∈ F . Note thatzi(t) − z(t) is bounded

andzi(t) − z(t) ≤ 0 ast→ ∞. Lettingfi(t) = zi(t) − z(t), it then follows that

δ̇i(t) + βδi(t) = fi(t), (4.16)

where we have used the fact thatxi(t), i ∈ R, are constant. Therefore, the solution of (4.16) is

given by

δi(t) = e−βtδi(0) +

∫ t

0
e−β(t−τ)fi(τ)dτ.

It follows that

lim
t→∞

δi(t) = lim
t→∞

e−βtδi(0) + lim
t→∞

∫ t

0
e−β(t−τ)fi(τ)dτ

= lim
t→∞

∫ t
0 e

βτfi(τ)dτ

eβt
.

We consider two cases. In the first case, if
∫ t
0 e

βτfi(τ)dτ is bounded, thenδi(t) → 0 ast → ∞. If

limt→∞
∫ t
0 e

βτfi(τ)dτ → ∞, then it follows from L’Hopital’s rule that

lim
t→∞

∫ t
0 e

βτfi(τ)dτ

eβt
=

d
dt

∫ t
0 e

βτfi(τ)dτ
d
dte

βt
= lim

t→∞
eβtfi(t)

βeβt
= lim

t→∞
fi(t)

β
.

Noting thatβ > 0 and fi(t) ≤ 0 as t → ∞, it then follows thatδi(t) ≤ 0 as t → ∞, i.e.,

ri(t) ≤ r(t) as t → ∞. This implies thatri(t) ≤ maxj∈R rj(t) as t → ∞. By following a

similar analysis, it can be shown thatri(t) ≥ minj∈R rj(t) ast→ ∞. Therefore, all followers will

converge to the convex hull formed by the leaders.

Remark 4.3.2 In Theorem 4.3.1, all followers are shown to converge to the convex hull in a one-

dimensional space. For any high-dimensional space, by using the decoupling technique, it is

straightforward to show that all followers will converge tothe smallest hyperrectangles contain-

ing the leaders. Note that the closed-loop system by using(4.14) for (4.13) is independent of the
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coordinate frame. Therefore, the followers will converge to the intersection of various smallest

hyperrectangle containing the leaders under different coordinate frames. Note also that the inter-

section of various smallest hyperrectangles containing the leaders under different coordinate frames

is essentially the convex hull formed by the leaders. Therefore, all followers will converge to the

convex hull formed by the leaders in any high-dimensional space.

4.3.2 Stability Analysis with Multiple Dynamic Leaders

In this section, we study decentralized containment control for double-integrator dynamics in

the presence of multiple dynamic leaders. We consider two cases: leaders with an identical velocity

and leaders with nonidentical velocities.

Leaders with an Identical Velocity

In this subsection, we assume that the velocities of all leaders are the same, i.e.,vi(t) = vj(t)

for i, j ∈ R.

For (4.13), we propose the following containment control algorithm as

vi(t) =vo(t), i ∈ R,

ui(t) = − γsgn

(
∑

j∈F ⋃R
aij(t)

{
β[ri(t) − rj(t)]

+ [vi(t) − vj(t)]
})

− βvi(t), i ∈ F , (4.17)

wherevo(t) is the common velocity of the leaders,β andγ are positive constants, and sgn(·) is

the signum function defined entrywise. We first study the casewhen the vehicles are in a one-

dimensional space.

Theorem 4.3.3 Assume that the network topology switches according to the same model as de-

scribed right before Theorem 4.3.1. Assume also thatγ > γℓ, whereγℓ
△
= supi∈R ||v̇o(t)+βvo(t)||.

All followers will always converge to the dynamic convex hull Co{rj , j ∈ R} for arbitrary initial
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conditionsxi(0), i ∈ F , if the network topology has a united directed spanning treeat each time

interval.

Proof: Definezi(t)
△
= βxi(t) + vi(t). Using (4.17) for (4.13) gives

żi(t) = v̇o(t) + βvo(t), i ∈ R,

żi(t) = −γsgn





∑

j∈R⋃F
aij [k][zi(t) − zj(t)]




 , i ∈ F . (4.18)

We next show thatzi(t) will converge to the convex hullCo{zj , j ∈ R} in finite time.

Definez
△
= maxi∈R zi, z

△
= mini∈R zi, z̃

△
= maxi∈F zi − z, andz̆

△
= mini∈F zi − z. We will

show thatz̃(t) ≤ 0 and z̆(t) ≥ 0 in finite time. Here we only consider the case whenz̃(0) > 0

and z̆(0) ≥ 0. Similar analysis can also be applied to other cases. We nextshow that when

z̃(t) > 0 for t ≤ T with T > 0, ˙̃z(t) ≤ −γ + γℓ for t ≤ T except for some isolated time

instants. We prove this by contradiction. Becausez̃(t) > 0 for t ≤ T , it follows from (4.18) and

the definition ofz̃ that ˙̃z(t) = −ż(t) or ˙̃z(t) < −γ + γℓ for t ≤ T . Assume thaṫ̃z(t) = −ż(t)

for t ∈ [t1, t2], wheret1 < t2 ≤ T . There exists some vehicle, labeledj, with the maximal state

satisfying żj(t) = −ż(t) for t ∈ [t1, t3], wheret1 < t3 ≤ t2. It then follows from (4.18) that
∑

i∈R⋃ F aji[k][zj(t) − zi(t)] = 0 for t ∈ [t1, t3]. Because vehiclej is with the maximal state,

it then follows thatzi(t) = zj(t),∀i ∈ Nj, for t ∈ [t1, t3]. By following a similar analysis, when

G has a united directed spanning tree at each time interval,zκ(t) = zj(t) for someκ ∈ R for

t ∈ [t1, t3], which results in a contradiction becausez̃(T ) > 0. Therefore,̃z(t) will keep decreasing

with a speed large thanγ − γℓ for t ≤ T except for some isolated time instants. From the proof of

Theorem4.2 [82], if z̃(t1) ≤ 0, thenz̃(t) ≤ 0 for t ≥ t1. It then follows that̃z(t) ≤ 0 in finite time.

Similarly, it can be shown that̆z(t) ≥ 0 in finite time. Therefore,zi(t), i ∈ F , will converge to the

convex hullCo{zj , j ∈ R} in finite time.

Becausezi(t), i ∈ F , will converge to the convex hullCo{zj , j ∈ R} in finite time, there

exists positivet such thatminj∈R zj(t) ≤ zi(t) ≤ maxj∈R zj(t), i ∈ F , for t ≥ t. Because the

leaders have the same velocity, ifri(0) ≥ rj(0),∀i, j ∈ R, thenri(t) ≥ rj(t) for any t > 0,

which implies thatzi(t) ≥ zj(t) for any t > 0. Without loss of generality, letmaxj∈R zj(t) =
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βrp(t)+ ṙp(t) for somep ∈ R andminj∈R zj(t) = βrq(t)+ ṙq(t) for someq ∈ R. It then follows

thatβrq(t) + ṙq(t) ≤ βri(t) + ṙi(t) ≤ βrp(t) + ṙp(t), i ∈ F , for t ≥ t. For t ≥ t andi ∈ F ,

ṙi(t) − ṙq(t) ≥ −β[ri(t) − rq(t)],

ṙi(t) − ṙp(t) ≤ −β[ri(t) − rp(t)].

Therefore,rq(t) ≤ ri(t) ≤ rp(t), i ∈ F , ast→ ∞. Because the leaders have the same velocity, all

followers will converge to the convex hull formed by the leaders.

Remark 4.3.4 When the directed network topology is fixed and the vehicles are in a one-dimensional

space, by following a similar analysis to that of Theorem4.1 [82], it can be shown thatLZ(t) → 0

as t → ∞, whereZ(t) = [z1(t), · · · , zn(t)]T and0 is an all-zero vector with a compatible size,

under the condition of Theorem 4.3.3. Noting that all leaders have the same velocity, it is easy to

show thatLX(t) → 0 ast → ∞, whereX(t) = [r1(t), · · · , rn(t)]T . Similarly, when the vehicles

are in any high-dimensional space, i.e.,p > 1 in (4.13), by using the decoupling technique, it can

be shown that(L ⊗ Ip)X(t) → 0 as t → ∞, where⊗ is the Kronecker product. Therefore, all

followers will converge to the convex hull formed by the leaders for any high-dimensional space

under a fixed directed network topology when the conditions of Theorem 4.3.3 are satisfied. In con-

trary, when the directed network topology is switching and the vehicles are in a high-dimensional

space, it can only be shown by using the decoupling techniquethat the followers will converge to

the smallest hyperrectangle containing the leaders but notnecessarily the convex hull formed by the

leaders.

We next propose a decentralized containment control algorithm which can guarantee that all

followers converge to the convex hull formed by the leaders in finite time. In the following of

this subsection and Section 4.3.2, we assume that all vehicles are in a one-dimensional space for

the simplicity of presentation. However, all the results hereafter are still valid for arbitrary high-

dimensional space by using the decoupling technique and theKronecker product.
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Inspired by Bhat and Bernstein’s work [102], we propose the following finite-time containment

control algorithm as

ui(t) = ˙̂vi(t) − sgn[vi(t) − v̂i(t)]|vi(t) − v̂i(t)|κ

− sgn[φ(t)]|φ(t)| κ
2−κ , (4.19)

where0 < κ < 1, φ(t) = ri(t) − r̂i(t) + 1
2−κsgn[vi(t) − v̂i(t)]|vi(t) − v̂i(t)|2−κ, and

˙̂ri(t) = v̂i(t) − ρ1sgn





∑

j∈R⋃ F
aij [r̂i(t) − r̂j(t)]




 , (4.20)

˙̂vi(t) = −ρ2sgn





∑

j∈R⋃F
aij [v̂i(t) − v̂j(t)]




 , i ∈ F (4.21)

with r̂i(t) = ri(t) andv̂i(t) = vo(t) for i ∈ R.

Theorem 4.3.5 Assume that the fixed network topology has a united directed spanning tree. Us-

ing (4.19) for (4.13), all followers will converge to the dynamic convex hull formed by the leaders

in finite time ifρ1 > 0 andρ2 > supt |v̇o(t)|.

Proof: Note thatv̂j(t) = vo(t),∀j ∈ R. Whenρ2 > supt |v̇o(t)|, it follows from (4.21) and

a similar proof to that of Theorem 4.3.3 thatv̂i(t), i ∈ F , will converge tovo(t) in finite time.

Without loss of generality, let̂vi(t) = vo(t), i ∈ F ⋃R, for t ≥ t1, wheret1 is some positive

constant. Fort ≥ t1, (4.20) can be written in matrix form as

˙̂r(t) = vo(t)1 − ρ1sgn[Lr̂(t)], (4.22)

wherer̂(t) = [r̂1(t), · · · , r̂n(t)]T andL is the Laplacian matrix of then vehicles including both the

leaders and the followers. Letz(t) = [z1(t), · · · , zn(t)]T = Lr̂(t). BecauseL1 = 0, it follows

that (4.22) can be rewritten as

ż(t) = −ρ1Lsgn[z(t)].
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Note thatzi(t) = 0, i ∈ R, because theith row of L is zero. When the fixed graph has a united

directed spanning tree, it can be shown thatzi(t) → 0 in finite time by showing that both the

maximal and minimal states will go to zero in finite time. Thisimplies thatr̂i(t), i ∈ F , will

be within the convex hull formed by the leaders in finite time.It then follows from (4.22) that

˙̂ri(t) → vo(t) in finite time. Without loss of generality, let̂̇ri(t) = vo(t) for t ≥ t2, wheret2

is some positive constant. Note also that˙̂vi(t) can be replaced witḣvo(t) for t ≥ t2 because
∫ t2
t1

˙̂vi(t)dt =
∫ t2
t1
v̇o
i (t)dt for anyt2 ≥ t1 ≥ t2. Defineδi

△
= ri(t) − r̂i(t). For t ≥ t2, by replacing

˙̂vi(t) with v̇o(t), (4.19) can be rewritten as

δ̈i(t) = − sgn[δ̇i(t)]|δ̇i(t)|κ − sgn[φi(t)] |φi(t)|
κ

2−κ .

It then follows from Proposition1 [102] thatδi(t) → 0 in finite time.

Combining the previous statements completes the proof.

Leaders with Nonidentical Velocities

In this subsection, we assume that the velocities of the leaders are nonidentical. Without loss

of generality, we assume that the firstn−m vehicles are leaders.

For (4.13), we propose the following containment control algorithm as

ui(t) =ai(t), i = 1, · · · , n−m

ui(t) = −
∑

j∈R⋃F
aij [(ri − rj) + α(vi − vj)]

− βsgn{
∑

j∈R⋃F
aij [γ(ri − rj) + (vi − vj)]},

i = n−m+ 1, · · · , n, (4.23)

whereai(t) is the acceleration input for theith leader, andα, β, andγ are positive constants.

Using (4.23), (4.13) can be written in matrix form as

Ẍ = −LX − αLẊ − βsgn(γLX + LẊ) − Ψ, (4.24)
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whereX = [r1, · · · , rn]T , Ψ(t) = [ψ1(t), · · · , ψn(t)]T with ψi(t) = ai(t) for i = 1, · · · , n −m,

andψi(t) = 0 for i = n −m+ 1, · · · , n, andL is the Laplacian matrix. Note that the firstn−m

rows ofL are equal to zero. DefinẽX
△
= LX. It follows that the firstn−m entries ofX̃ are equal

to zero. Then (4.24) can be written as

¨̃X = −LX̃ − αL ˙̃X − βLsgn(γX̃ + ˙̃X) − LΨ. (4.25)

Let X̃F be the vector containing only the lastm entries ofX̃ andΨF be the vector containing only

the lastm entries ofLΨ. Therefore, (4.26) can be rewritten as

¨̃XF = −MX̃F − αM ˙̃XF − βMsgn(γX̃F + ˙̃XF ) − ΨF , (4.26)

whereM = [mij ] ∈ R
m×m with mij = ℓij if i 6= j andmii =

∑
k 6=i ℓik.

Lemma 4.3.1 Assume that the fixed graph has a united directed spanning tree and the commu-

nication patterns among the followers are undirected. LetP =




In
γ
2M

−1

γ
2M

−1 M−1


 and Q =



γIn

αγ
2 In

αγ
2 In αIn − γM−1


, whereγ andα are two positive constants andM is defined right before

this lemma. Ifα and γ are chosen satisfyingγ < min{
√

4λmin(M), 4αλmin(M)
4+α2λmin(M)

}, bothP and

Q are symmetric positive definite, whereλmin(·) denotes the smallest eigenvalue of a symmetric

matrix.

Proof: When the graph has a united directed spanning tree and the communication patterns among

the followers are undirected,M is symmetric positive definite. Therefore,M−1 is also symmetric

positive definite. ThenM−1 can be diagonalized asM−1 = Γ−1ΛΓ, whereΛ = diag{ 1
λ1
, · · · , 1

λm
}

with λi being theith eigenvalue ofM . Letµ be an eigenvalue ofP . It then follows thatµ satisfies

(µ− 1)(µ− 1

λi
) − γ2

4λ2
i

= 0, (4.27)
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which can be simplified as

µ2 − (1 +
1

λi
)µ+

1

λi
− γ2

4λ2
i

= 0.

BecauseP is symmetric, the eigenvalues ofP are real. Therefore, the roots of (4.27) are all positive

if and only if 1 + 1
λi
> 0 and 1

λi
− γ2

4λ2
i
> 0. After some simplification, we can get thatγ <

√
4λi.

Therefore,P is symmetric positive definite ifγ <
√

4λmin(M).

Similarly, it can be shown thatQ is symmetric positive definite ifγ < 4αλmin(M)
4+α2λmin(M)

.

Theorem 4.3.6 Assume that the fixed graph has a united directed spanning tree and the commu-

nication patterns among the followers are undirected. Using (4.23) for (4.13), if α and γ satisfy

the conditions in Lemma 4.3.1 andβ >
∥∥M−1ΨF

∥∥
1
, all followers will converge to the convex hull

formed by the leaders, whereΨF is defined right before(4.26)andM are defined right after(4.26).

Proof: Consider the Lyapunov function candidate

V =

[
X̃T

F
˙̃XT
F

]
P



X̃F

˙̃XF




=X̃T
F X̃F + γX̃T

FM
−1 ˙̃XF + ˙̃XT

FM
−1 ˙̃XF .

Note that according to Lemma 4.3.1,P is symmetric positive definite whenα andγ satisfy the

conditions in Lemma 4.3.1. Taking derivative ofV gives that

V̇ = X̃T
F X̃F + ˙̃XT

FM
−1 ¨̃X + γ ˙̃XTM−1 ˙̃X + γX̃TM ¨̃X

= −
[
X̃T

F
˙̃XT
F

]
Q



X̃F

˙̃XF




− (γX̃T
F + ˙̃XT

F )M{βsgn[M(γX̃F + ˙̃XF )] +M−1ΨF }

≤ −
[
X̃T

F
˙̃XT
F

]
Q



X̃F

˙̃XF




− (β −
∥∥M−1ΨF

∥∥
1
)
∥∥∥M(γX̃F + ˙̃XF )

∥∥∥
1
.
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Note that according to Lemma 4.3.1,Q is symmetric positive definite whenα andγ satisfy condi-

tions in Lemma 4.3.1. Noting also thatβ >
∥∥M−1ΨF

∥∥
1
, it follows that V̇ is negative definite. It

then follows thatX̃F = 0 and ˙̃XF = 0. Therefore,LX = 0, which implies that all followers will

converge to the convex hull formed by the leaders.

4.3.3 Simulation

In this section, we present several simulation results to validate some theoretical results. We

consider a group of vehicles with four leaders and four followers and the topology is given in

Fig. 4.6.

When the leaders are stationary, the fixed directed network topologyG is chosen as in Fig. 4.6(a).

It can be noted thatG has a united directed spanning tree. Simulation results using (4.14) are shown

in Fig. 4.7(a). We can see that all followers will converge tothe stationary convex hull formed

by the leaders. In the case of switching network topologies,the network topology switches from

Fig. 4.6(b) to Fig. 4.6(c) every0.5 seconds. Note that neither Figs. 4.6(b) nor 4.6(c) has a united

directed spanning tree while the union of Figs. 4.6(b) and 4.6(c) has a united directed spanning tree.

Simulation results using (4.14) are shown in Fig. 4.7(b). Wecan see that all followers will converge

to the stationary convex hull formed by the leaders.

For the algorithms (4.17) and (4.19), the fixed network topology is chosen as in Fig. 4.6(a).

Simulation results using (4.17) are shown in Fig. 4.8. We cansee that all followers will converge

to the dynamic convex hull formed by the leaders. In addition, two snapshots att = 25 s and

t = 50 s show that all followers remain in the dynamic convex hull formed by the dynamic leaders.

Simulation results using (4.19) are shown in Fig. 4.9. Note that all followers will converge to the

dynamic convex hull formed by the leaders in finite time. In addition, two snapshots att = 25 s and

t = 50 s show that all followers remain in the dynamic convex hull formed by the dynamic leaders

as well.

When the velocities of the leaders are nonidentical, the fixed network topologyG is chosen

as in Fig. 4.6(a). Note thatG has a united directed spanning tree and the communication patterns

among the followers are undirected. Simulation results using (4.23) are shown in Fig. 4.10. It can
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Fig. 4.6: Network topology for a group of vehicles with multiple leaders.Li, i = 1, · · · , 4, denote
the leaders.Fi, i = 1, · · · , 6, denote the followers.
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(a) Fixed directed network topology.
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(b) Switching directed network topology.

Fig. 4.7: Trajectories of the agents using (4.14) under a fixed and a switching directed network
topology in the two-dimensional space. Circles denote the starting positions of the stationary lead-
ers while the red and black squares denote, respectively, the starting and ending positions of the
followers.



120

0 10 20 30 40 50 60 70
−25

−20

−15

−10

−5

0

5

10

15

20

25

x (m)

y 
(m

)
t=0s

t=20s

t=40s

Fig. 4.8: Trajectories of the agents using (4.17) under a fixed directed network topology in the two-
dimensional space. Circles denote the positions of the dynamic leaders while the squares denote the
positions of the followers. Two snapshots att = 25s andt = 50 s show that all followers remain
in the dynamic convex hull formed by the dynamic leaders.
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Fig. 4.9: Trajectories of the vehicles using (4.19) under a fixed directed network topology in the two-
dimensional space. Circles denote the positions of the dynamic leaders while the squares denote the
positions of the followers. Two snapshots att = 25 s andt = 50 s show that all followers remain
in the dynamic convex hull formed by the dynamic leaders.
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be noted that all followers will converge to the dynamic convex hull formed by the dynamic leaders.

In addition, two snapshots att = 21.47 s and t = 45.17 s show that all followers remain in the

dynamic convex hull formed by the dynamic leaders.

4.3.4 Experimental Validation

In this section, we experimentally validate some of the proposed containment algorithms on

a multi-robot platform. In the experiments, five wheeled mobile robots are used to obtain the ex-

perimental results. In particular, three robots are designated as the leaders and the other two robots

are designated as the followers. We next briefly introduce the experiment platform developed in the

COoperative VEhicle Networks (COVEN) Laboratory at Utah State University.

The textbed in the COVEN Laboratory includes five Amigobots and two P3-DX from the

ActivMedia Robotics as shown in Fig. 4.11. Both the Amigobots and P3-DX are similar in terms

of functionalities. Each robot has a differential-drive system with rear caster, high-precision wheel

encoders, and eight sonar positioned around the robot. The robots can calculate their positions and

orientations based on the encoders. The eight sonar can be used for localization and detection of

obstacles. The maximum speed for the AmigoBots is 1 m/s and the AmigoBots can climb a1.5%

incline.

In order to control multiple mobile robots under various network topologies, a control software

was developed to emulate a limited or even changing network topology. The control platform can be

divided into two layers. The top layer is responsible for network topology setting, control algorithm

implementation, and bi-directional communication with the onboard micro-controller. The bottom

layer is responsible for sensor data acquisition and directPID loop control where both linear and

rotational velocity commands are generated and executed.

The system dynamics of the wheeled mobile robots can be described as

ẋi = vi cos(θi), ẏi = vi sin(θi), θ̇i = ωi, (4.28)

where(xi, yi) is the position of the center of theith robot,θi is the orientation of theith robot,

andvi andwi are the linear and angular velocities of theith robot. To avoid using the nonlinear
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Fig. 4.10: Trajectories of the vehicles using (4.23) under afixed directed network topology in the
two-dimensional space. Circles denote the positions of thedynamic leaders while the squares denote
the positions of the followers. Two snapshots att = 21.47 s andt = 45.17 s show that all followers
remain in the dynamic convex hull formed by the dynamic leaders.

Fig. 4.11: Multi-vehicle experimental platform at Utah State University.
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dynamics (4.28), we feedback linearize (4.28) for a fixed point off the center of the wheel axis

denoted as(xhi, yhi), wherexhi = xi + di cos(θi) andyhi = yi + di cos(θi) with d = 0.15 m. By

letting 

vi

ωi


 =




cos θi sin θi

− 1
di

sin θi
1
di

cos θi






uxi

uyi


 ,

we can get that 

ẋi

ẏi


 =



uxi

uyi


 . (4.29)

Note that (4.29) is a single-integrator kinematics model. By letting u̇xi = τxi and u̇yi = τyi, a

double-integrator dynamics model can be obtained by designing the control inputsτxi andτyi.

In the following, we present several experimental results to validate some theoretical results in

this paper. The network topology is chosen as shown in Fig. 4.12. It can be noted from Fig. 4.12 that

the network topology has a united directed spanning tree. Weuse triangles and circles to denote,

respectively, the starting and ending positions of the leaders, and diamonds and squares to denote,

respectively, the starting and ending positions of the followers.

When the velocities of leaders are identical, experimentalresults using (4.17) are given in

Fig. 4.13 where Figs. 4.13(a) and 4.13(b) together show the trajectories of the five robots. In each

subfigure, two snapshots are presented to show, respectively, the starting positions of the five robots

as well as the convex hull formed by the leaders and the endingpositions of the five robots as well

as the convex hull formed by the leaders. It can be seen from Fig. 4.13(b) that the two followers

moved into the convex hull formed by the leaders.

When the velocities of leaders are nonidentical, experimental results using (4.23) are given in

Fig. 4.14 where Figs. 4.14(a) and 4.14(b) together show the trajectories of the five robots. In each
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Fig. 4.12: Network topology for five mobile robots.Li, i = 1, · · · , 3, denote the leaders.Fi, i =
1, · · · , 2, denote the followers.
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Fig. 4.13: Trajectories of the five mobile robots using (4.17).

subfigure, we also use two snapshots to show, respectively, the starting positions of the five robots

as well as the convex hull formed by the leaders and the endingpositions of the five robots as well

as the convex hull formed by the leaders. It can be seen from Fig. 4.14(b) that the two followers

moved into the convex hull formed by the leaders.
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Fig. 4.14: Trajectories of the five mobile robots using (4.23).
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Chapter 5

LQR-based Optimal Consensus Algorithms

Among various studies of linear consensus algorithms, a noticeable phenomenon is that the

algorithms with different parameters, i.e., different Laplacian matrices, can be applied to the same

system to ensure consensus. It is natural to ask these questions: Is there an optimal linear consensus

algorithm with the associated optimal Laplacian matrix (under a given cost function)? How may the

optimal linear consensus algorithm be found?

Optimality issues in consensus algorithms have also been studied in the literature recently. A

(locally) optimal nonlinear consensus strategy was proposed by imposing individual objectives [103].

An optimal interaction graph, a de Bruijn’s graph, was proposed in the average consensus prob-

lem [104]. A semi-decentralized optimal control strategy was proposed by minimizing the indi-

vidual cost [105]. In addition, the cooperative game theorywas employed to ensure cooperation

with a team cost function. An iterative algorithm was proposed to maximize the second smallest

eigenvalue of a Laplacian matrix to optimize the control system performance [106]. The fastest

converging linear iteration was studied by using the semidefinite programming [107].

In contrast to the aforementioned literature, the purpose of this chapter is to study the optimal

linear consensus algorithms for vehicles with single-integrator dynamics from an LQR perspective.

Instead of studying locally optimal algorithms, this chapter focuses on the study of globally optimal

algorithms.

5.1 Definitions

Definition 5.1.1 We defineZn×n := {B = [bij ] ∈ R
n×n|bij ≤ 0, i 6= j}, 0m×n ∈ R

m×n as an

all-zero matrix, andIn ∈ R
n×n as an identity matrix.
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Definition 5.1.2 A matrixE ∈ R
m×n is said positive (nonnegative), i.e.,E > (≥)0, if each entry

ofE is positive (nonnegative). A square nonnegative matrix is (row) stochastic if all of its row sums

are1.

Definition 5.1.3 [108] A real matrixB = [bij ] ∈ R
n×n is called an M-matrix if it can be written

as

B = sIn − C, s > 0, C ≥ 0

whereC ∈ R
n×n satisfiesρ(C) ≤ s, whereρ(C) is the spectral radius of matrixC. Matrix B is

called a nonsingular M-matrix ifρ(C) < s.

Definition 5.1.4 [108] A matrixD ∈ R
n×n is called semiconvergent iflimi→∞Di exists.

5.2 Global Cost Functions

5.2.1 Continuous-time Case

Consider vehicles with single-integrator dynamics given by

ṙi(t) = ui(t) (5.1)

whereri(t) ∈ R andui(t) ∈ R are, respectively, the state and control input of theith vehicle. A

common linear consensus algorithm is studied as [36,37,39,99]

ui(t) = −
n∑

j=1

aij [ri(t) − rj(t)], (5.2)

whereaij is the(i, j)th entry of the weighted adjacency matrixA associated with graphG. The

objective of (6.2) is to guarantee consensus, i.e., for anyri(0), ri(t) → rj(t), ∀i, j ∈ {1, · · · , n},

ast → ∞. Substituting (6.2) into (5.1) and writing the closed-loopsystem in matrix form gives

Ẋ(t) = −LX(t), (5.3)
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whereX(t) = [r1(t), r2(t), · · · , rn(t)]T andL is the (nonsymmetric) Laplacian matrix associated

with A. It can be noted that (5.3) is a linear differential equation. Consensus is reached for (5.3) if

and only ifL has a simple zero eigenvalue or equivalently the directed graph associated withL has

a directed spanning tree [39].

Similar to the cost function used in optimal control problems for systems with linear differential

equations, we propose the following two consensus cost functions for system (5.1) as

Jf =

∫ ∞

0






n∑

i=1

i−1∑

j=1

cij [ri(t) − rj(t)]
2 +

n∑

i=1

κiu
2
i (t)




 dt, (5.4)

Jr =

∫ ∞

0






n∑

i=1

i−1∑

j=1

aij [ri(t) − rj(t)]
2 +

n∑

i=1

u2
i (t)




 dt, (5.5)

wherecij ≥ 0, κi > 0, andaij is defined in (6.2). In (5.4), bothcij andκi can be chosen freely.

ThereforeJf is called theinteraction-free cost function. Because (5.5) depends on the weighted

adjacency matrixA, Jr is called theinteraction-related cost function. The motivation of (5.4)

and (5.5) is to weigh both the consensus errors and the control effort. The optimization problems

can be written as

min
aij

Jf , subject to (5.1) and (6.2), (5.6)

min
β

Jr, subject to (5.1) andui(t) = −
n∑

j=1

βaij [ri(t) − rj(t)]. (5.7)

5.2.2 Discrete-time Case

In the discrete-time case, continuous-time dynamics (5.1)can be written as

ri[k + 1] − ri[k]

T
= ui[k], (5.8)
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wherek is the discrete-time index,T is the sampling period, andri[k] andui[k] denote, respectively,

the state and control input of theith vehicle att = kT . Sampling (6.2) gives

ui[k] = −
n∑

j=1

aij{ri[k] − rj [k]}. (5.9)

Substituting (5.9) into (5.8) and writing the closed-loop system in matrix form gives

X[k + 1] = (In − TL)X[k], (5.10)

whereX[k] = [r1[k], r2[k], · · · , rn[k]]T andL is the (nonsymmetric) Laplacian matrix defined

in (5.3). Consensus is reached for (5.10) ifL has a simple zero eigenvalue andT < 1
maxi ℓii

[37].

Similar to the two cost functions proposed in the continuous-time case, we propose the discrete-

time interaction-free and interaction-related cost functions as

Jf =
∞∑

k=0

n∑

i=1

i−1∑

j=1

cij{ri[k] − rj[k]}2 +
∞∑

k=0

n∑

i=1

κiu
2
i [k], (5.11)

Jr =
∞∑

k=0

n∑

i=1

i−1∑

j=1

aij{ri[k] − rj[k]}2 +
∞∑

k=0

n∑

i=1

u2
i [k], (5.12)

wherecij ≥ 0, ri > 0, andaij is defined in (6.2). The corresponding optimization problems can be

written as

min
aij

Jf subject to (5.8) and (5.9), (5.13)

min
β

Jr subject to (5.8) andui[k] = −
n∑

j=1

βaij{ri[k] − rj[k]}. (5.14)

5.3 LQR-based Optimal Linear Consensus Algorithms in a Continuous-time Setting

In this section, we derive the optimal linear consensus algorithms in a continuous-time set-

ting from an LQR perspective. We first derive the optimal (nonsymmetric) Laplacian matrix using

continuous-time interaction-free cost function (5.4). Wewill then find the optimal scaling factor
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for a prespecified symmetric Laplacian matrix using continuous-time interaction-related cost func-

tion (5.5). Finally, illustrative examples will be provided.

5.3.1 Optimal Laplacian Matrix Using Interaction-free Cost Function

With interaction-free cost function (5.4), optimal control problem (5.6) can be written as

min
L
Jf =

∫ ∞

0
[XT (t)QX(t) + UT (t)RU(t)]dt (5.15)

subject to:Ẋ(t) = U(t), U(t) = −LX(t),

whereX(t) is defined in (5.3),U(t) = [u1(t), · · · , un(t)]T , Q ∈ R
n×n is symmetric with the

(i, j)th entry (also the(j, i)th entry) given as−cij for i 6= j and the(i, i)th entry given as
∑n

j=1,j 6=i cij ,

R ∈ R
n×n is a positive definite (PD) diagonal matrix withri being theith diagonal entry, andL is

the (nonsymmetric) Laplacian matrix defined in (5.3). It canbe noted thatQ is a symmetric PSD

Laplacian matrix.

The main result for optimal control problem (5.15) is given in the following theorem.

Theorem 5.3.1 For optimal control problem(5.15), whereQ has a simple zero eigenvalue, the opti-

mal consensus algorithm isU(t) = −
√
R−1QX(t), that is, the optimal (nonsymmetric) Laplacian

matrix is
√
R−1Q. In addition,

√
R−1Q corresponds to a complete directed graph.1

Before proving the theorem, we need the following lemmas.

Lemma 5.3.1 [108] An M-matrixB ∈ R
n×n has exactly one M-matrix as its square root if the

characteristic polynomial ofB has at most a simple zero root.

If the characteristic polynomial of M-matrixB has at most a simple zero root, we use
√
B

hereafter to represent the M-matrix that is the square root of B.

Lemma 5.3.2 An M-matrix that has a zero eigenvalue with a corresponding eigenvector1n is a

(nonsymmetric) Laplacian matrix.

1Obviously, consensus is reached for (5.1) usingU(t) = −
√

R−1QX(t) since
√

R−1Q has a simple zero eigen-
value due to the fact that

√
R−1Q corresponds to a complete directed graph.
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Proof: Follow Definition 5.1.3 and definition of a (nonsymmetric) Laplacian matrix.

Lemma 5.3.3 Let Q andR be defined in(5.15). Suppose thatQ has a simple zero eigenvalue.

There exists exactly one (nonsymmetric) Laplacian matrixW satisfyingW =
√
R−1Q andW has

a simple zero eigenvalue.

Proof: The proof is divided into the following three steps:

Step1: R−1Q is a (nonsymmetric) Laplacian matrix with a simple zero eigenvalue. We first

note thatR−1Q is a (nonsymmetric) Laplacian matrix becauseQ is a symmetric Laplacian matrix

andR is a PD diagonal matrix. BecauseQ is a symmetric Laplacian matrix with a simple zero

eigenvalue, it follows that the undirected graph associated withQ is connected, which implies that

the directed graph associated withR−1Q is strongly connected. It thus follows that the (nonsym-

metric) Laplacian matrixR−1Q also has a simple zero eigenvalue.

Step2: W has a simple zero eigenvalue with an associated eigenvector1n. Let theith eigen-

value ofW beλi with an associated eigenvectorνi. Noting thatW 2 = R−1Q, it follows that the

ith eigenvalue ofR−1Q is λ2
i with an associated eigenvectorνi. BecauseR−1Q has a simple zero

eigenvalue with an associated eigenvector1n, it follows thatW has a simple zero eigenvalue with

an associated eigenvector1n.

Step3: W is a (nonsymmetric) Laplacian matrix.Note that a (nonsymmetric) Laplacian matrix

is a special case of an M-matrix according to Definition 5.1.3. It follows from Lemma 5.3.1 and

Step1 thatR−1Q has exactly one square rootW that is also an M-matrix. BecauseW has a simple

zero eigenvalue with an associated eigenvector1n as shown in Step2, it follows from Lemma 5.3.2

thatW is a (nonsymmetric) Laplacian matrix.

We next show that the (nonsymmetric) Laplacian matrixW in Lemma 5.3.3 corresponds to a

complete directed graph.

Lemma 5.3.4 LetQ andR be defined in(5.15). Suppose thatQ has a simple zero eigenvalue. Then

the (nonsymmetric) Laplacian matrix
√
R−1Q corresponds to a complete directed graph.

Proof: We show that each entry of
√
R−1Q is nonzero, which implies that

√
R−1Q corresponds to

a complete directed graph. Before moving on, we letqij denote the(i, j)th entry ofQ. We also let
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W =
√
R−1Q and denotewij , wi,:, andw:,i, respectively, as the(i, j)th entry, theith row, and the

ith column ofW .

First, we will show thatwij 6= 0 if qij 6= 0. We show this statement by contradiction. Assume

thatwij = 0. BecauseR−1Q = W 2, it follows that qij

ri
= wi,:w:,j. Wheni = j, it follows from

wii = 0 thatwi,: = 0n×1 becauseW is a (nonsymmetric) Laplacian matrix, which then implies

that qij

ri
= wi,:w:,j = 0. This contradicts the assumption thatqij 6= 0. Wheni 6= j, because we

assume thatwij = 0, it follows that qij

ri
= wi,:w:,j =

∑n
k=1,k 6=i,k 6=j wikwkj ≥ 0 due to the fact

wi,k ≤ 0,∀i 6= k, becauseW is a (nonsymmetric) Laplacian matrix. BecauseQ is a symmetric

Laplacian matrix, it follows thatqij ≤ 0,∀i 6= j. Therefore,qij

ri
≥ 0,∀i 6= j, implies qij = 0,

which also contradicts the assumption thatqij 6= 0.

Second, we will show thatwij 6= 0 if qij = 0. We also show this statement by contra-

diction. Assume thatwij = 0. To ensure thatqij = 0, it follows from qij

ri
= wi,:w:,j =

∑n
k=1,k 6=i,k 6=j wikwkj thatwikwkj = 0,∀k 6= i, k 6= j, k = 1, · · · , n. Denotek̂1 as the node set

such thatwim 6= 0 for eachm ∈ k̂1. Then we havewmj = 0 for eachm ∈ k̂1 becausewikwkj = 0.

Similarly, denotēk1 as the node set such thatwmj 6= 0 for eachm ∈ k̄1. Then we havewim = 0 for

eachm ∈ k̄1 becausewikwkj = 0. From the discussion in the previous paragraph, whenwmj = 0,

we haveqmj = 0, which implies thatwmpwpj = 0,∀p 6= m, p 6= j, p = 1, · · · , n. By following a

similar analysis, we can consequently definek̂i andk̄i, i = 2, · · · , κ, wherek̂i ∩ k̂j = Ø, k̄i ∩ k̄j =

Ø,∀j < i. Noting that the undirected graph associated withQ is connected and the directed graph

associated withW has a directed spanning tree becauseW has a simple zero eigenvalue, it follows

thatκ ≤ n. Therefore, each entry ofw:,j is equal to zero by following the previous analysis for at

mostn times. This implies thatqij = 0,∀i 6= j, becauseqij

ri
= wi,:w:,j. Considering the fact that

Q is a symmetric Laplacian matrix, it follows thatqii = 0, which also contradicts the fact that the

undirected graph associated withQ is connected.

We next prove Theorem 5.3.1 based on the previous lemmas.

Proof of Theorem 5.3.1:Consider the following standard LQR problem

min
U(t)

Jf subject to: Ẋ(t) = AX(t) +BU(t), (5.16)
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whereJf is defined by (5.15),A = 0n×n, andB = In. It can be noted that(A,B) is controllable,

which implies that there exists aP satisfying the continuous-time algebraic Riccati equation (ARE)

ATP + PA− PBR−1BTP +Q = 0n×n. (5.17)

It follows from (5.17) thatPR−1P = Q,which impliesR−1PR−1P = R−1Q. It then follows from

Lemma 5.3.3 thatR−1P =
√
R−1Q is also a (nonsymmetric) Laplacian matrix whenQ has a sim-

ple zero eigenvalue. Therefore, the optimal control isU(t) = −R−1BTPX(t) = −
√
R−1QX(t),

which implies that
√
R−1Q is the optimal (nonsymmetric) Laplacian matrix. It also follows from

Lemma 5.3.4 that
√
R−1Q corresponds to a complete directed graph.

Remark 5.3.2 From Theorem 5.3.1, it can be noted that the interaction graph corresponding to
√
R−1Q is in general different from that corresponding toQ.

Remark 5.3.3 One may think that since the discussion in Theorem 5.3.1 (correspondingly, the dis-

cussion in Theorem 5.4.1) is a standard LQR problem, the solution can be solved using the standard

Matlab command. However, it is not clear why the standard LQRsolution is a (nonsymmetric)

Laplacian matrix and the solution corresponds to a completedirected graph. The contribution of

Section 5.3.1(correspondingly, Section 5.4.1) is that we mathematically derive the conditions under

which the square root of a (nonsymmetric) Laplacian matrix is still a (nonsymmetric) Laplacian ma-

trix, explicitly derive the (nonsymmetric) optimal Laplacian matrix for a given global cost function,

and show that the optimal solution corresponds to a completedirected graph. Although it may be

intuitively true that a global optimization problem in the context of consensus building normally re-

quires that each agent have full knowledge of all other agents, it is nontrivial to theoretically prove

this fact. We have provided a theoretical explanation. In addition, the results in this paper can

also be used to interpret some phenomena in economy, management, and social science, to name a

few. For example, each company in a country needs to (theoretically) have a complete and correct

understanding of other companies’ status and act on the available information in order to achieve

a globally optimal objective. Unfortunately, an economic crisis might still happen because either
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the available information to each company is not complete orsome companies do not act correctly

on the available information.

Remark 5.3.4 Note that
√
R−1Q is not necessarily symmetric in general. WhenR is a diagonal

matrix with identical diagonal entries, i.e.,R = cIn with c > 0,
√
R−1Q is symmetric.

Remark 5.3.5 Theorem 5.3.1 requires thatQ be a symmetric PSD Laplacian matrix with a simple

zero eigenvalue. WhenQ has more than one zero eigenvalue,XT (t)QX(t) can be written as the

sum of at least two parts as

XT (t)QX(t) = XT
1 (t)Q1X1(t) +XT

2 (t)Q2X2(t) + · · · ,

whereXi, i = 1, 2, · · · , are column vectors,Qi, i = 1, 2, · · · , are square positive semi-definite

matrices with compatible sizes, andXi andXj ,∀i 6= j, are independent. This implies that optimal

control problem(5.15)can be decoupled into at least two independent optimal control problems. By

solving the independent optimal control problems, the finalstates ofXi, i = 1, 2, · · · , in general,

are not equal. Therefore, the requirement thatQ has a simple zero eigenvalue is necessary to ensure

consensus.

Theorem 5.3.6 Any symmetric Laplacian matrixL ∈ R
n×n with a simple zero eigenvalue is the

optimal symmetric Laplacian matrix for cost functionJ =
∫∞
0 [XT (t)L2XT + UT (t)U(t)]dt.

Proof: By lettingQ = L2 andR = In, it follows directly from the proof of Theorem 5.3.1 thatL is

the optimal symmetric Laplacian matrix.

5.3.2 Optimal Scaling Factor Using Interaction-related Cost Function

With interaction-related cost function (5.5), optimal control problem (5.7) can be written as

min
β
Jr =

∫ ∞

0

[
XT (t)LX(t) + UT (t)U(t)

]
dt (5.18)

subject to: Ẋ(t) = U(t), U(t) = −βLX(t),

whereL is a prespecified symmetric Laplacian matrix andβ is the scaling factor.
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Theorem 5.3.7 For optimal control problem(5.18), where the symmetric Laplacian matrixL has

a simple zero eigenvalue, the optimalβ is

√
XT (0)X(0)−XT (0)m1mT

1 X(0)

XT (0)LX(0)
, wherem1 = 1n√

n
.

Proof: The cost functionJr can be written as

Jr =

∫ ∞

0
XT (0)

[
e−βLtLe−βLt + β2e−βLtL2e−βLt

]
X(0)dt.

Taking derivative ofJr with respect toβ gives

dJr

dβ
=

∫ ∞

0
XT (0)

[
−2Lte−βLtLe−βLt + 2βe−βLtL2e−βLt − 2β2Lte−βLtL2e−βLt

]
X(0)dt.

SettingdJr
dβ = 0 gives

β2XT (0)

[∫ ∞

0
Lte−βLtL2e−βLtdt

]
X(0)

− βXT (0)

[∫ ∞

0
e−βLtL2e−βLtdt

]
X(0)

+XT (0)

[∫ ∞

0
Lte−βLtLe−βLtdt

]
X(0) = 0, (5.19)

where we have used the fact thatL ande−βLt commute. BecauseL is symmetric,L can be diago-

nalized as

L = M




λ1 0 · · · 0

0 λ2 · · · 0

· · · · · ·

0 0 · · · λn




︸ ︷︷ ︸
Λ

MT , (5.20)
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whereM is an orthogonal matrix andλi is theith eigenvalue ofL. It follows that

∫ ∞

0
Lte−βLtL2e−βLtdt

=

∫ ∞

0
M




0 0 · · · 0

0 e−2βλ2tλ3
2t · · · 0

· · · · · ·

0 0 · · · e−2βλntλ3
nt




MTdt

=
1

4β2
M




0 0 · · · 0

0 λ2 · · · 0

· · · · · ·

0 0 · · · λn




MT =
1

4β2
L. (5.21)

Similarly, it follows that

∫ ∞

0
e−βLtL2e−βLtdt =

∫ ∞

0
M




0 0 · · · 0

0 e−2βλ2tλ2
2 · · · 0

· · · · · ·

0 0 · · · e−2βλntλ2
n




MTdt =
1

2β
L, (5.22)

and

∫ ∞

0
Lte−βLtLe−βLtdt

=

∫ ∞

0
M




0 0 · · · 0

0 e−2βλ2tλ2
2t · · · 0

· · · · · ·

0 0 · · · e−2βλntλ2
nt




MTdt

=
In −m1m

T
1

4β2
, (5.23)
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wherem1 = 1n√
n

. By substituting (5.21), (5.22), and (5.23) into (5.19), itfollows that the optimal

gain satisfiesβ =

√
XT (0)X(0)−XT (0)m1mT

1 X(0)

XT (0)LX(0)
.

Remark 5.3.8 In Theorem 5.3.7, we considered a simple case when the coupling gain for each

vehicle is the same and presented the explicit optimal coupling gain. It is also possible to consider

the case when the coupling gain for each vehicle is different. However, it is, in general, hard to give

the explicit optimal coupling gains. Instead, numerical solutions can be obtained accordingly.

5.3.3 Illustrative Examples

In this subsection, we provide two illustrative examples about the optimal (nonsymmetric)

Laplacian matrix and the optimal scaling factor derived in Section 5.3.1 and Section 5.3.2, respec-

tively.

In (5.15), we randomly chooseQ =




2 −1 −1 0

−1 2 −1 0

−1 −1 3 −1

0 0 −1 1




andR =




1 0 0 0

0 2 0 0

0 0 3 0

0 0 0 4




.

It then follows from Theorem 5.3.1 that the optimal (nonsymmetric) Laplacian matrix is given by


1.3134 −0.5459 −0.5964 −0.1711

−0.2730 0.8491 −0.4206 −0.1556

−0.1988 −0.2804 0.8218 −0.3426

−0.0428 −0.0778 −0.2570 0.3775




. Note that the optimal (nonsymmetric) Laplacian

matrix corresponds to a complete directed graph.

In (5.18), we randomly chooseL =




2 −1 −1 0

−1 2 1 0

−1 −1 3 −1

0 0 −1 1




and initial stateX(0) = [1, 2, 3, 4]T .

Figure 5.1 shows how cost functionJr evolves as scaling factorβ increases. From Theorem 5.3.7,

it can be computed that the optimal scaling factor isβ = 0.845, which is consistent with the result

shown in Fig. 5.1.
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Fig. 5.1: Evolution of cost functionJr as a function ofβ.

5.4 LQR-based Optimal Linear Consensus Algorithms in a Discrete-time Setting

In this section, we study the optimal consensus algorithms in a discrete-time setting from an

LQR perspective. As shown later, the analysis in the discrete-time case is more challenging than

that in the continuous-time case. We will first derive the optimal (nonsymmetric) Laplacian matrix

using discrete-time interaction-free cost function (5.11). We will then derive the optimal scaling

factor for a prespecified symmetric Laplacian matrix using discrete-time interaction-related cost

function (5.12). Finally, illustrative examples will be provided.

5.4.1 Optimal Laplacian Matrix Using Interaction-free Cost Function

With discrete-time interaction-free cost function (5.11), optimal control problem (5.13) can be

written as

min
L
Jf =

∞∑

k=0

{X[k]QX[k] + U [k]RU [k]} (5.24)

subject to:X[k + 1] = X[k] + TU [k], U [k] = −LX[k],

whereQ,R, andL are defined as in (5.15).

The main result for optimal control problem (5.24) is given in the following theorem.
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Theorem 5.4.1 For optimal control problem(5.24), whereQ has a simple zero eigenvalue, the

optimal consensus algorithm is

U [k] = −T [
√

(R−1Q)2 + 4R−1Q/T 2 −R−1Q]

2
X[k], (5.25)

that is, the optimal (nonsymmetric) Laplacian matrix is
T [
√

(R−1Q)2+4R−1Q/T 2−R−1Q]

2 . In addition,

the optimal (nonsymmetric) Laplacian matrix corresponds to a complete directed graph.

Before proving the theorem, we need the following lemmas.

Lemma 5.4.1 [108] Let there be ann by n nonnegative matrixP = [pij], whereρ(P ) ≤ 1 and

pii > 0. Letα ≥ 1. Then the following three statements hold:

(a) There exists a nonnegative matrixB ∈ R
n×n, whereρ(B) ≤ α andIn −P = (αIn −B)2,

if and only if the iteration method

Xi+1 =
1

2α
[P + (α2 − 1)In +X2

i ], X0 = 0n×n, (5.26)

is convergent. In this case,B ≥ X⋆ = limi→∞Xi, X⋆ ≥ 0, ρ(X⋆) ≤ α, diagi(X
⋆) > 0,2

i = 1, · · · , n, and(αIn −X⋆)2 = In − P .

(b) If (5.26)is convergent, it follows thatP and X⋆

α are semiconvergent.

(c) If P is semiconvergent, then(5.26) is convergent for allα ≥ 1. Denoting in this case the

limit of the iteration method

Yi+1 =
1

2
(P + Y 2

i ), Y0 = 0n×n,

byY ⋆, the equationαIn −X⋆ = In − Y ⋆ holds.

Lemma 5.4.2 [108] B ∈ Zn×n, whereZn×n is defined in Definition 5.1.1, is a nonsingular M-

matrix if and only ifB has a square root which is a nonsingular M-matrix.

Lemma 5.4.3 [108] B ∈ Zn×n, whereZn×n is defined in Definition 5.1.1, is a nonsingular M-

matrix if and only ifB−1 exists andB−1 ≥ 0.
2Here, diagi(·) denotes theith diagonal entry of a square matrix.
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Lemma 5.4.4 Let P1 andP2 be twon by n nonnegative matrices satisfyingρ(Pi) ≤ 1 and their

diagonal entries are positive. Denote

Xi+1,j =
1

2
[Pj + (Xi,j)

2], X0,j = 0n×n, (5.27)

for j = 1, 2. Also letX⋆
j = limi→∞Xi,j , j = 1, 2. If P1 andP2 are commutable, the following

statements hold:

1)X⋆
j andPk are commutable forj, k ∈ {1, 2};

2)X⋆
1 andX⋆

2 are commutable.

Proof: We prove the lemma by induction. It can be computed from (5.27) thatX1,1 = 1
2P1 and

X1,2 = 1
2P2. Therefore, it is easy to verify thatPk andX1,j are commutable forj, k ∈ {1, 2}.

Similarly, X1,1 andX1,2 are also commutable. Assume thatPk andXn,j are commutable for

j, k ∈ {1, 2} andXn,1 andXn,2 are commutable. It can be computed from (5.27) thatXn+1,j =

1
2 [Pj + (Xn,j)

2] for j = 1, 2. It can also be easily verified thatXn+1,j andPk are commutable for

j, k ∈ {1, 2}. In addition, we also have

Xn+1,1Xn+1,2

=
1

4
[P1 + (Xn,1)

2][P2 + (Xn,2)
2]

=
1

4
[P1P2 + (Xn,1)

2P2 + P1(Xn,2)
2 + (Xn,1)

2(Xn,2)
2]

=
1

4
[P2P1 + P2(Xn,1)

2 + (Xn,2)
2P1 + (Xn,2)

2(Xn,1)
2]

=Xn+1,2Xn+1,1,

where we have used the assumption thatPk andXn,j are commutable forj, k ∈ {1, 2} andXn,1

andXn,2 are commutable to derive the final result. Therefore,Xn+1,1 andXn+1,2 are also com-

mutable. By induction,Pk andlimi→∞Xi,j are commutable forj, k ∈ {1, 2} andlimk→∞Xi,1 and

limk→∞Xi,2 are commutable. BecauseX⋆
j = limi→∞Xi,j, j = 1, 2, the lemma holds apparently.
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Lemma 5.4.5 LetG be a (nonsymmetric) Laplacian matrix that has a simple zero eigenvalue with

a corresponding eigenvector1n. Whenγ ≥ 0,
√
G2 + γG is a (nonsymmetric) Laplacian matrix

with a simple zero eigenvalue.

Proof: Whenγ = 0, the proof is trivial. Whenγ 6= 0, the proof follows three steps as follows:

Step1: The off-diagonal entries of
√
G+ γIn

√
G are nonpositive.BecauseG = [gij ] is a

(nonsymmetric) Laplacian matrix,G can be written asG = s(In − P ), wheres > 2maxi gii, and

P is a row stochastic matrix with positive diagonal entries. According to part(a) in Lemma 5.4.1,
√
G =

√
s(In −X⋆), whereX⋆ is defined in (5.26) forα = 1. Similarly,G + γIn can be written

asG + γIn = (s + γ)(In − s
s+γP ). By following a similar analysis to that ofG, it follows that

√
G+ γIn =

√
s+ γ(In − X̂⋆), whereX̂⋆ is defined in (5.26) by replacingP with s

s+γP for

α = 1. With P and s
s+γP playing the role ofP1 andP2 in Lemma 5.4.4, it follows from parts(a)

and(c) in Lemma 5.4.1 and Lemma 5.4.4 thatX⋆ andX̂⋆ are commutable becauseP and s
s+γP

are commutable. Then we have

1√
s(s+ γ)

√
G+ γIn

√
G

=(In −X⋆ − X̂⋆ +X⋆X̂⋆)

=In − 1

2
[P + (X⋆)2] − 1

2
[
s

s+ γ
P + (X̂⋆)2] +X⋆X̂⋆ (5.28)

=In − 1

2
[P +

s

s+ γ
P + (X⋆ − X̂⋆)2], (5.29)

where we have used the fact thatX⋆ = 1
2 [P +(X⋆)2] andX̂⋆ = 1

2 [ s
s+γP +(X̂⋆)2] as shown in part

(c) of Lemma 5.4.1 to derive (5.28) and the fact thatX⋆ andX̂⋆ are commutable to derive (5.29).

From (5.29), a sufficient condition to show that the off-diagonal entries of
√
G+ γIn

√
G are

nonpositive is to show thatX⋆ − X̂⋆ ≥ 0 becauseP is a row stochastic matrix. We next show that

this condition can be satisfied. It follows from part(a) of Lemma 5.4.1 thatI − P = (In −X⋆)2



141

andI − s
s+γP = (In − X̂⋆)2 whenα = 1. Therefore, we have

γ

s+ γ
P =(In − X̂⋆)2 − (In −X⋆)2

=2(X⋆ − X̂⋆) − (X⋆ − X̂⋆)(X⋆ + X̂⋆)

=(X⋆ − X̂⋆)(In −X⋆ + In − X̂⋆). (5.30)

We next show thatIn − X⋆ + In − X̂⋆ is a nonsingular M-matrix and then use Lemma 5.4.3

to show thatX⋆ − X̂⋆ ≥ 0. BecauseG + γIn is a nonsingular matrix from Definition 5.1.3, it

follows from Lemma 5.4.2 that
√
G+ γIn is also a nonsingular M-matrix. Because

√
G+ γIn =

√
s+ γ(In−X̂⋆), it follows thatρ(X̂⋆) < 1 according to Definition 5.1.3. Similarly, it follows from

Lemma 5.3.1 that
√
G is an M-matrix. Because

√
G =

√
s(In − X⋆), it follows thatρ(X⋆) ≤ 1

according to Definition 5.1.3. BecausêX⋆ andX⋆ are commutable as shown in (5.29), it then

follows thatρ(X̂⋆ + X⋆) ≤ ρ(X̂⋆) + ρ(X⋆) < 2 [109]. Therefore,In − X⋆ + In − X̂⋆ is a

nonsingular M-matrix according to Definition 5.1.3. Because In −X⋆ + In − X̂⋆ is a nonsingular

M-matrix, it follows from Lemma 5.4.3 that(In − X⋆ + In − X̂⋆)−1 ≥ 0, which implies that

X⋆ − X̂⋆ ≥ 0 becauseX⋆ − X̂⋆ = γ
s+γP (In −X⋆ + In − X̂⋆)−1 andP is a row stochastic matrix.

Therefore, it follows from (5.29) that the off-diagonal entries of
√
G+ γIn

√
G are nonpositive.

Step2:
√
G+ γIn

√
G =

√
G+ γIn

√
G =

√
G2 + γG. From Step1, we know that

√
G =

√
s(In −X⋆),

√
G+ γIn =

√
s+ γ(In − X̂⋆), andX⋆ andX̂⋆ are commutable. It follows that

√
G and

√
G+ γIn are also commutable, which implies that

√
G+ γIn

√
G =

√
G+ γIn

√
G =

√
G2 + γG.

Step3:
√
G2 + γG is a (nonsymmetric) Laplacian matrix with a simple zero eigenvalue.Sim-

ilar to the analysis in Step2 in Lemma 5.3.3,
√
G has a simple zero eigenvalue with a corresponding

eigenvector1n. Then
√
G+ γIn

√
G also has a simple zero eigenvalue with a corresponding eigen-

vector1n because
√
G+ γIn is a nonsingular M-matrix as shown in Step1. Combining with Step

1 indicates that
√
G+ γIn

√
G is a (nonsymmetric) Laplacian matrix with a simple zero eigen-

value, which implies that
√
G2 + γG is also a (nonsymmetric) Laplacian matrix with a simple zero

eigenvalue according to Step2.
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Lemma 5.4.6 LetG be a (nonsymmetric) Laplacian matrix that has a simple zero eigenvalue with

a corresponding eigenvector1n. Whenγ > 0,
√
G2 + γG−G is also a (nonsymmetric) Laplacian

matrix with a simple zero eigenvalue.

Proof: It can be computed thatP =
√
G2 + γG+G is the solution of the following matrix equation

P 2 − 2PG− γG = 0n×n, (5.31)

where we have used the fact that
√
G2 + γG andG are commutable because

√
G+ γIn and

√
G

are commutable as shown in Step2 of the proof in Lemma 5.4.5. From Lemma 5.4.5, we know that
√
G2 + γG is a (nonsymmetric) Laplacian matrix, which implies thatP is also a (nonsymmetric)

Laplacian matrix becauseP =
√
G2 + γG + G. Therefore,γIn + 2P is a nonsingular M-matrix

according to Definition 5.1.3. From (5.31), we can getG = (2P + γIn)−1P 2 = 1
2 [In − γ(2P +

γIn)−1]P, which implies

1

2
γ(2P + γIn)−1P =

1

2
P −G =

1

2
(
√
G2 + γG−G). (5.32)

Note also that

γ(γIn + 2P )−1P =
1

2
γ[In − γ(γIn + 2P )−1]. (5.33)

Combining (5.32) and (5.33) gives that

√
G2 + γG−G = P − 2G = γ[In − γ(γIn + 2P )−1]. (5.34)

From Lemma 5.4.3,(γIn+2P )−1 ≥ 0 becauseγIn+2P is a nonsingular M-matrix. It then follows

from (5.34) that the off-diagonal entries of
√
G2 + γG−G are nonpositive.

Because the off-diagonal entries of
√
G2 + γG−G are nonpositive, to show that

√
G2 + γG−

G is a (nonsymmetric) Laplacian matrix with a simple zero eigenvalue, it is sufficient to show

that
√
G2 + γG − G has a simple zero eigenvalue with an associated eigenvector1n. Because

√
G2 + γG is a (nonsymmetric) Laplacian matrix with a simple zero eigenvalue as shown in
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Lemma 5.4.5 andG is also a (nonsymmetric) Laplacian matrix with a simple zeroeigenvalue, it

follows that the interaction graphs associated with both
√
G2 + γG andG have a directed spanning

tree. BecauseP =
√
G2 + γG + G, it follows thatP is a (nonsymmetric) Laplacian matrix and

the interaction graph associated withP also has a directed spanning tree, which implies thatP has

a simple zero eigenvalue and the associated eigenvector is1n. Therefore,
√
G2 + γG−G also has

the same property according to (5.34). Therefore,
√
G2 + γG −G is a (nonsymmetric) Laplacian

matrix with a simple zero eigenvalue.

Lemma 5.4.7 For any nonsingular M-matrixB = [bij ] ∈ R
n×n with each off-diagonal entry not

equal to zero, each entry ofB−1 is positive.

Proof: From Definition 5.1.3,B = sIn − C. By choosings > maxi bii, it follows thatC > 0.

BecauseB is a nonsingular M-matrix, it follows from Definition 5.1.3 thatρ(C) < s. Therefore,

B−1 = s−1(In − C
s )−1 = s−1[In + C

s +(C
s )2 + · · · ] becauselimk→∞(C

s )k = 0n×n due to the fact

thatρ(C) < s. BecauseC > 0, it follows directly that each entry ofB−1 is positive.

Lemma 5.4.8 LetQ andR be defined in(5.24). SupposeQ has a simple zero eigenvalue. The (non-

symmetric) Laplacian matrix
√

(R−1Q)2 + γR−1Q − R−1Q corresponds to a complete directed

graph for anyγ > 0.

Proof: We study how
√

(R−1Q)2 + γR−1Q−R−1Q evolves whenγ increases. Taking the deriva-

tive ofR−1Q+ γIn with respect toγ gives

d(R−1Q+ γIn)

dγ
= In. (5.35)

We also have

d(
√
R−1Q+ γIn)2

dγ
= 2
√
R−1Q+ γIn

d
√
R−1Q+ γIn

dγ
. (5.36)
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Therefore, we have
d
√

R−1Q+γIn

dγ = 1
2(
√
R−1Q+ γIn)−1 from (5.35) and (5.36). It then follows

that

d
√

(R−1Q)2 + γR−1Q

dγ

=
√
R−1Q

d
√
R−1Q+ γIn

dγ
(5.37)

=
1

2

√
R−1Q(

√
R−1Q+ γIn)−1

=
1

2
In − 1

2γ
(
√
R−1Q+ γIn +

√
R−1Q)−1(

√
R−1Q+ γIn)−1, (5.38)

where we have used Step2 in the proof of Lemma 5.4.5 to derive (5.37). BecauseR−1Q +

γIn is a nonsingular M-matrix, it follows from Lemma 5.4.2 that
√
R−1Q+ γIn is also a non-

singular M-matrix. Meanwhile, by following a similar analysis to that of Lemma 5.3.4, each

entry of
√
R−1Q+ γIn is not equal to zero. It follows from Lemma 5.4.7 that each entry of

(
√
R−1Q+ γIn)−1 is positive. Similarly, each entry of(

√
R−1Q+ γIn +

√
R−1Q)−1 is also

positive. It then follows from (5.38) that each off-diagonal entry of
d
√

R−1Q2+γR−1Q
dγ is negative,

which implies that the off-diagonal entries of
√

(R−1Q)2 + γR−1Q−R−1Qwill decrease. Noting

that
√

(R−1Q)2 + γR−1Q − R−1Q = 0n×n whenγ = 0, it follows that the off-diagonal entries

are less than zero for anyγ > 0. Because
√

(R−1Q)2 + γR−1Q − R−1Q is a (nonsymmetric)

Laplacian matrix from Lemma 5.4.6 by consideringR−1Q asG, it follows that the diagonal entries

of
√

(R−1Q)2 + γR−1Q − R−1Q are also not equal to zero. Combining the previous arguments

shows that each entry of
√

(R−1Q)2 + γR−1Q − R−1Q is not equal to zero, which implies that

the (nonsymmetric) Laplacian matrix
√

(R−1Q)2 + γR−1Q − R−1Q corresponds to a complete

directed graph.

We next prove Theorem 5.4.1 based on the previous lemmas.

Proof of Theorem 5.4.1:We first show that (5.25) can always guarantee consensus. When

using (5.25) for (5.8), we have

X[k + 1] =

(
In − T 2[

√
(R−1Q)2 + 4R−1Q/T 2 −R−1Q]

2

)
X[k]. (5.39)
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Because
√

(R−1Q)2 + 4R−1Q/T 2 − R−1Q is a (nonsymmetric) Laplacian matrix with a simple

zero eigenvalue when consideringR−1Q and 4
T 2 as, respectively,G andγ in Lemma 5.4.6, a suffi-

cient condition to ensure consensus is that all diagonal entries ofIn−T 2[
√

(R−1Q)2+4R−1Q/T 2−R−1Q]

2

are positive according to Lemmas3.4 and3.7 [39]. Next, we show that this condition can be satis-

fied. By consideringT
2

4 R
−1Q asG andγ = 1, it follows from Step2 in the proof of Lemma 5.4.5

that
√
In + T 2

4 R
−1Q and

√
T 2

4 R
−1Q are commutable. After some manipulations, we have

In − T 2[
√

(R−1Q)2 + 4R−1Q/T 2 −R−1Q]

2
=

(√
In +

T 2

4
R−1Q−

√
T 2

4
R−1Q

)2

.

By following a similar proof to that of Lemma 5.4.8, we have that
√
γIn + T 2

4 R
−1Q−

√
T 2

4 R
−1Q

is an M-matrix with each entry not equal to zero for anyγ > 0, which implies that each entry of
√
In + T 2

4 R
−1Q −

√
T 2

4 R
−1Q is not equal to zero. Combining with Definition 5.1.3 shows that

all diagonal entries of(
√
In + T 2

4 R
−1Q −

√
T 2

4 R
−1Q)2 are positive. Therefore, consensus can

always be achieved when using (5.25).

We next show that (5.25) is the optimal consensus algorithm.Consider the following LQR

problem

min
U [k]

Jf =
∞∑

k=0

{X[k]QX[k] + U [k]RU [k]} (5.40)

subject to:X[k + 1] = AX[k] +BU [k],

whereQ andR are defined in (5.24),A = In, andB = TIn. It can be noted that(A,B) is

controllable in (5.40), which implies that there exists a matrix P satisfying the following discrete-

time algebraic Riccati equation (ARE)

P = Q+AT [P − PB(R+BTPB)−1BTP ]A. (5.41)

Noting thatA = In andB = TIn, (5.41) can be simplified as

Q = PT (R+ T 2P )−1TP. (5.42)
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By multiplyingR−1 on both sides of (5.42) and some manipulations, we can getR−1Q = R−1PT (In+

T 2R−1P )−1TR−1P. It then follow from the fact(In+T 2R−1P )−1 = In−(I+T 2R−1P )−1T 2R−1P

that

R−1Q = [In − (In + T 2R−1P )−1]R−1P, (5.43)

which can be simplified as

(R−1P )2 −R−1Q(R−1P ) − 1

T 2
R−1Q = 0n×n. (5.44)

It can be computed that (5.44) holds whenR−1P =
R−1Q+

√
(R−1Q)2+4(R−1Q)/T 2

2 . The optimal

control strategy of (5.40) is given byU [k] = −FX[k] with

F =(In + T 2R−1P )−1TR−1P

=T (R−1P −R−1Q)

=
T (
√

(R−1Q)2 + 4R−1Q/T 2 −R−1Q)

2
,

where we used (5.43) to derive from the second to the last equality. Because
√

(R−1Q)2 + 4R−1Q/T 2−

R−1Q is a (nonsymmetric) Laplacian matrix and corresponds to a complete directed graph by con-

sidering 4
T 2 asγ in Lemma 5.4.8, it follows that

T (
√

(R−1Q)2+4R−1Q/T 2−R−1Q)

2 is the optimal (non-

symmetric) Laplacian matrix and also corresponds to a complete directed graph.

Remark 5.4.2 From Theorem 5.4.1, it is easy to verify that whenT → 0, the optimal (nonsymmet-

ric) Laplacian matrix is the same as that in the continuous-time case in Theorem 5.3.1. In addition,

matrix
T (
√

(R−1Q)2+4R−1Q/T 2−R−1Q)

2 is not necessarily symmetric. WhenR is a diagonal matrix

with identical diagonal entries, i.e.,R = cIn with c > 0,
T (
√

(R−1Q)2+4R−1Q/T 2−R−1Q)

2 is sym-

metric.

Remark 5.4.3 It can be noted from Theorem 5.4.1 that there is no constrainton the sampling period

T . For any positive sampling periodT ,
T [
√

(R−1Q)2+4R−1Q/T 2−R−1Q]

2 is the optimal Laplacian

matrix that can always guarantee consensus.
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Similar to the discussion in Section 5.3, we next show that any symmetric Laplacian matrixL

that has a simple zero eigenvalue is the optimal symmetric Laplacian matrix for some given cost

function.

Theorem 5.4.4 Any symmetric Laplacian matrixL = [ℓij ] ∈ R
n×n that has a simple zero eigen-

value is the optimal symmetric Laplacian matrix for cost functionJ =
∑∞

k=0 {X[k]QX[k] + U [k]U [k]},

whereQ = (In − TL)−1L2 andT < min
i

1
ℓii

.

Proof: When T < min
i

1
ℓii

, it follows from the Gershgorin disc theorem [86] thatTL has all

eigenvalues within the unit circle andIn − TL has all eigenvalues not equal to zero. It then fol-

lows thatlimk→∞[TL]k = 0n×n. This implies(In − TL)[In + TL + (TL)2 + · · · ] = In, i.e.,

(In − TL)−1 = In + TL+ (TL)2 + · · · . It then follows thatQ is PSD because both(In − TL)−1

andL2 are PSD.

Note thatQ = (In − TL)−1L2 implies that(In − TL)Q = L2, i.e.,Q = L2 + TLQ, which

implies

(TQ)2 + 4Q = (2L + TQ)2. (5.45)

By taking square root of both sides of (5.45) and some simplifications, we can get
T (
√

Q2+4Q/T 2−Q)

2 =

L. Applying Theorem 5.4.1 finishes the proof.

5.4.2 Optimal Scaling Factor Using Interaction-related Cost Function

With interaction-related cost function (5.12), optimal control problem (5.14) can be written as

min
β
Jr =

∞∑

k=0

{
XT [k]LX[k] + UT [k]U [k]

}
, (5.46)

subject to:X[k + 1] = X[k] + TU [k],

U [k] = −βLX[k],

whereL is a prespecified symmetric Laplacian matrix andβ is the scaling factor. BecauseL is a

symmetric Laplacian matrix, it thus can be written in a diagonal form as in (5.20) withλi being the

ith eigenvalue ofL. Without loss of generality, letλi satisfy0 = λ1 ≤ λ2 ≤ · · · ≤ λn.
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Theorem 5.4.5 For optimal control problem(5.46), where symmetric Laplacian matrixL has a

simple zero eigenvalue, the optimal scaling factorβopt satisfies
−T+

√
T 2+ 4

λn

2 ≤ βopt ≤
−T+

√
T 2+ 4

λ2

2 .3

Proof: By rewritingL in a diagonal form as shown in (5.20), (5.46) can be written as

Jr =

∞∑

k=0

XT [0]M{(In − βTΛ)kΛ(In − βTΛ)k + (In − βTΛ)k(βΛ)2(In − βTΛ)k}MTX[0].

BecauseL has a simple zero eigenvalue, it follows thatλi > 0, i = 2, · · · , n. After some manip-

ulations, we haveJr = XT [0]M




0 0 · 0

0
1
T

2β+T

1+β2λ2
−T

· 0

· · · · · ·

0 0 ·
1
T

2β+T

1+β2λn
−T




MTX[0]. For i = 2, · · · , n,

taking derivative of 2β+T
1+β2λi

− T with respect toβ and setting the derivative to zero gives

2(1 + β2λi) − 2βλi(2β + T )

(1 + β2λi)2
= 0.

It can be computed thatβ =
−T+

√
T 2+ 4

λi

2 . Note that forβ <
−T+

√
T 2+ 4

λn

2 , the cost function

Jr will decrease whenβ increases because
1
T

2β+T

1+β2λi
−T

increases whenβ increases,i = 2, · · · , n.

Similarly, for β >
−T+

√
T 2+ 4

λ2

2 , the cost functionJr will increase whenβ increases because
1
T

2β+T

1+β2λi
−T

decreases whenβ increases,i = 2, · · · , n. Combining the previous arguments shows

that
−T+

√
T 2+ 4

λn

2 ≤ βopt ≤
−T+

√
T 2+ 4

λ2

2 .

Remark 5.4.6 The optimal control problem in Theorem 5.4.5 is essentiallya polynomial optimiza-

tion problem. Numerical optimization methods can be used tosolve this problem[110].

5.4.3 Illustrative Examples

In this subsection, we provide two illustrative examples about the optimal (nonsymmetric)

3Note that there always existsβ such that consensus can be achieved. In this case,Jr is finite. Therefore, the optimal
βopt can always guarantee consensus because otherwiseJr will go to infinity, which will then result in a contradiction.
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Laplacian matrix and the optimal scaling factor derived in Section 5.4.1 and Section 5.4.2, respec-

tively.

In (5.24), letQ andR be defined as in Section 5.3.3 and sampling periodT = 0.1 s. From

Theorem 5.4.1, it can be computed that the optimal (nonsymmetric) Laplacian matrix is give by


1.2173 −0.498 −0.5484 −0.1709

−0.249 0.8007 −0.3963 −0.1554

−0.1828 −0.2642 0.7734 −0.3264

−0.0427 −0.0777 −0.2448 0.3653




. Note that this matrix corresponds to a complete

directed graph.

In (5.46), letL and initial stateX[0] be defined as in Section 5.3.3. Figure 5.2 shows how cost

functionJr evolves as scaling factorβ increases. From Theorem 5.4.5, it can be computed that the

optimal scaling factorβ satisfies0.45 ≤ β ≤ 0.95, which is consistent with the result shown in

Fig. 5.2.
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Fig. 5.2: Evolution of cost functionJr as a function ofβ.
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Chapter 6

Decentralized Coordination Algorithms of Networked

Fractional-order Systems

In the previous several chapters, we focus on the study of decentralized coordination algorithms

for integer-order systems. In practice, the vehicle dynamics are sometimes better to be represented

in a fractional-order form instead of a integer-order form,especially when the vehicles are working

in complicated environments. Motivated by the broad application of coordination algorithms in

multi-vehicle systems and the fact that many practical vehicles demonstrate fractional dynamics, we

study coordination algorithms for networked fractional-order systems in this chapter. We study both

fixed and switching network topology cases. Some backgroundinformation is given in Appendix

B.

6.1 Fractional Calculus

Fractional calculus can be dated back to the17th century [111]. Fractional calculus studies

fractional derivatives, fractional integrals, and their properties. Different from the integer orders

of derivatives and integrals in conventional calculus, theorders of derivatives and integrals in frac-

tional calculus are real numbers. The foundations of fractional calculus were laid on some pioneer

work [112–114]. With the development of fractional calculus, its applications were also studied

by researchers from different disciplines [115, 116]. Examples include study of formation of par-

ticulate aggregates [117] and study of motion of objects in viscoelastic materials [118–120]. In

particular, fractional calculus was also introduced into the engineering community to design the

CRONE controller [121] and synthesize control systems [122], to name a few.

In addition, fractional dynamics were also presented and studied from different perspectives.

The dynamics of self-similar protein was modeled in a fractional-order sense because the relax-

ation processes and reaction kinematics of proteins deviated from exponential behavior [123]. The
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fractional-order dynamics of international commodity prices were demonstrated from the com-

modity price series [124]. The fractional-order PID controllers were shown to demonstrate bet-

ter performance when used for the control of fractional-order systems than the classical PID con-

trollers [125, 126]. Fractional equations have become a complementary tool in the description of

anomalous transport processes in complex systems [127].

6.2 Mathematical Model

In this section, we introduce a general mathematical model of coordination for fractional-order

systems by summarizing the following three different cases:

Case 1: Fractional-order agent dynamics with an integer-order coordination algorithm

Assume that the agent dynamics are

r
(α)
i (t) = ui(t), (6.1)

whereri(t) andui(t) represent, respectively, the state and control input for the ith agent, andr(α)
i (t)

is theαth derivative ofri(t) with α ∈ R
+.1 An integer-order coordination algorithm is given by

ui(t) =
∑

j∈Ni

aij{[rj(t) − δj ] − [ri(t) − δi]}, (6.2)

whereaij is the(i, j)th entry of the adjacency matrixA,Ni denotes the neighbor set of agenti, and

δi is constant.

Case 2: Integer-order agent dynamics with a fractional-order coordination algorithm

Assume that the agent dynamics are given byṙi(t) = ui(t), whereri(t) andui(t) are defined as

in (6.1). A fractional-order coordination algorithm is given by

ui(t) =
∑

j∈Ni

aij{[rj(t) − δj ]
(β) − [ri(t) − δi]

(β)}, (6.3)

whereβ ∈ R
+, andaij ,Ni, andδi are defined as in (6.2).

Case 3: Fractional-order agent dynamics with a fractional-order coordination algorithm

1For a given system,α is fixed.
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Assume that the agent dynamics are given by (6.1). A fractional-order coordination algorithm is

given by (6.3).

Defineδij
△
= δi − δj . The objective of the algorithm in each case is to guarantee coordination,

i.e.,ri(t)− rj(t) → δij ast→ ∞ for any initial ri(0) andrj(0). Note that integer-order dynamics,

i.e.,α is an integer in (6.1), is a special case of fractional-orderdynamics. The existing consensus

algorithm for single-integrator dynamics (e.g., [36, 37, 39]) corresponds to a special case of Case1

whenα = 1 in (6.1) andδij = 0 in (6.2).

When applying Caputo derivative to (6.1) and (6.3), it follows that Cases2 and3 can be written

as Case1 by applying the fractional operatorCa D
−β
t on both sides of the corresponding system.

Therefore, the model in Case1 can be considered a general model. In the following, we focuson

Case1. For ann-agent system, using (6.2), (6.1) can be written in matrix form as

X̃(α)(t) = −LX̃(t), (6.4)

whereX̃(t) = [r̃1(t), r̃2(t), . . . , r̃n(t)]T ∈ R
n with r̃i(t) = ri(t) − δi andL is the (nonsymmetric)

Laplacian matrix. Although the dynamics for a given system are fixed,α in the general model (6.4)

can be changed by choosing coordination algorithms with different fractional orders.

6.3 Coordination Algorithms for Fractional-order SystemsWithout Damping Terms

In this section, we study the coordination algorithms in theabsence of damping terms, that is,

the control algorithms only depends on the states.

6.3.1 Convergence Analysis

We first investigate the conditions on the network topology and the fractional order such that

convergence can be achieved. In particular, we study both fixed network topology and switching

network topology cases.

Fixed Network Topology

We first study the case when the network topology is fixed, i.e., L is fixed in (6.4). We focus
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on deriving the conditions on the network topology and the fractional order such that coordination

can be achieved.

Note thatL can be written in Jordan canonical form asL = P




Λ1 0 · · · 0

0 Λ2 · · · 0

· · · · · ·

0 0 · · · Λk




︸ ︷︷ ︸
Λ

P−1,

whereΛm, m = 1, 2, . . . , k, are standard Jordan blocks. Without loss of generality, letthe initial

timea = 0. By definingY (t)
△
= P−1X̃(t), (6.4) can be written as

Y (α)(t) = −ΛY (t). (6.5)

Suppose that the diagonal entry ofΛi is λi, i.e., an eigenvalue ofL. Noting that the standard

Jordan blockΛi =




λi 1 · · · 0

0 λi · · · 0

· · · · · ·

0 0 · · · λi




, it follows that (6.25) can be decoupled inton one-

dimensional equations represented by either

y
(α)
i (t) = −λiyi(t) (6.6)

for the equation corresponding toΛi which has dimension equal to one or the last equation corre-

sponding toΛi which has dimension larger than one, or

y
(α)
i (t) = −λiyi(t) − yi+1(t), (6.7)

otherwise, whereyi(t) is theith component ofY (t).

Before deriving the main result, we need the following two lemmas.

Lemma 6.3.1 WhenRe(λi) ≥ 0, whereRe(·) denotes the real part of a complex number, the

solution of (6.26)has the following properties:

1) Whenα ∈ (0, 2θi
π ) andRe(λi) > 0, lim

t→∞
yi(t) → 0 as t → ∞, whereθi = π − arg{λi} with
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arg{λi} denoting the phase ofλi.2

2) Whenα ∈ (0, 1] andλi = 0, yi(t) ≡ yi(0), ∀t.

3) Whenα ∈ (1, 2) andλi = 0, yi(t) = yi(0) + ẏi(0)t.

4) Whenα ∈ (2,∞), the system is not stable.

Proof: (Proof of Property 1) By taking the Laplace transform of (6.26), it can be computed from the

Laplace transform ofL{f (α)(t)} in Appendix B that

L{yi(t)} =
yi(0

−)sα−1

sα + λi
, α ∈ (0, 1] (6.8)

and

L{yi(t)} =
yi(0

−)sα−1 + ẏi(0
−)sα−2

sα + λi
, α ∈ (1, 2). (6.9)

From (6.8) and (6.9), it can be seen that the denominator ofL{yi(t)} is sα + λi whenα ∈ (0, 2).

To ensure that all poles ofL{yi(t)} are in the open left half plane (LHP), it follows thatα ∈

(0, 2(π−arg{λi})
π ) [128], that is,α ∈ (0, 2θi

π ), where2θi
π > 1 becauseRe(λi) > 0, i.e.,arg{λi} ∈

(−π
2 ,

π
2 ). In particular, whenλi ∈ R

+, α ∈ (0, 2) becausearg{λi} = 0.

(Proof of Properties 2 and 3) The proofs of Properties 2 and 3 follow from Podlubny [116].

(Proof of Property 4) See Gorenflo and Mainardi [129].

Lemma 6.3.2 Assume that continuous functionyi+1(t) satisfieslim
t→∞

yi+1(t) = 0. WhenRe(λi) >

0, i.e., arg{λi} ∈ (−π
2 ,

π
2 ), andα ∈ (0, 2θi

π ), whereθi = π − arg{λi}, the solution of(6.27)

satisfieslim
t→∞

yi(t) = 0.

Proof: Whenα ∈ (0, 1], by taking the Laplace transform of (6.27), it can be computed from the

Laplace transform ofL{f (α)(t)} that

L{yi(t)} =
sα−1yi(0

−) − L{yi+1(t)}
sα + λi

. (6.10)

2We follow the convention thatarg{x} ∈ (−π, π] for x ∈ C.
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It follows from the proof of Property1 in Lemma 6.3.1 that the poles of (6.10) are in the open LHP

whenα ∈ (0, 1]. By applying the final value theorem of the Laplace transform,

lim
t→∞

yi(t) = lim
s→0

sL{yi(t)} = lim
s→0

sαyi(0
−) − sL{yi+1(t)}
sα + λi

= 0,

where we have used the factsL{yi+1(t)} = 0 to derive the last equality becauselim
t→∞

yi+1(t) = 0.

Whenα ∈ (1, 2θi
π ), it follows from the proof of Property1 in Lemma 6.3.1 that the poles

of (6.10) are also in the open LHP. By taking the Laplace transform of (6.27), it can be computed

from the Laplace transform ofL{f (α)(t)} that

L{yi(t)} =
sα−1yi(0

−) + sα−2ẏi(0
−) − L{yi+1(t)}

sα + λi
. (6.11)

Following a similar discussion forα ∈ (0, 1] giveslimt→∞ yi(t) = 0.

Combining the above arguments proves the lemma.

Based on Lemmas 6.3.1 and 6.3.2, we next study the conditionson the fractional orderα and

the interaction graph such that coordination can be achieved.

Theorem 6.3.1 Let λi be theith eigenvalue ofL and θ = min
λi 6=0,i=1,2,··· ,n

θi, whereθi = π −

arg{λi}. For fractional-order system(6.4), coordination is achieved if the fixed interaction graph

has a directed spanning tree andα ∈ (0, 2θ
π ). Whenα ∈ (0, 1], the solution of(6.4) satisfies

r̃i(t) → r̃j(t) → pT X̃(0), i.e., ri(t) − rj(t) → δij as t → ∞, wherep is the left eigenvector

of L associated with the zero eigenvalue satisfyingpT1 = 1. Whenα ∈ (1, 2θ
π ), the solution

of (6.4) satisfiesr̃i(t) → r̃j(t) → pT X̃(0) + pT ˙̃X(0)t and ˙̃ri(t) → ˙̃rj(t) → pT ˙̃X(0), i.e.,

ri(t) − rj(t) → δij , ast→ ∞.

Proof: Noting that the interaction graph has a directed spanning tree, it follows thatL has a simple

zero eigenvalue and all other eigenvalues have positive real parts [39]. Without loss of generality,

let λ1 = 0 andRe(λi) > 0, i 6= 1. Whenα ∈ (0, 1], becauseλ1 = 0 is a simple zero eigenvalue,

λ1 satisfies (6.26). It follows from Property2 in Lemma 6.3.1 thaty1(t) ≡ y1(0). Whenλi, i 6= 1,

satisfies (6.26), it follows from Property1 in Lemma 6.3.1 thatlim
t→∞

yi(t) = 0, i 6= 1. When

λi, i 6= 1, satisfies (6.27), it follows from Lemma 6.3.2 thatlim
t→∞

yi(t) = 0, i 6= 1, as well because
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yi+1(t) also satisfies either (6.26) or (6.27), which implieslim
t→∞

yi+1(t) = 0. Combining the above

arguments giveslim
t→∞

Y (t) = [y1(0), 0, · · · , 0]T , i 6= 1, which implies lim
t→∞

X̃(t) = lim
t→∞

PY (t) =

PSY (0) = PSP−1X̃(0), whereS = [sij ] ∈ R
n×n has only one nonzero entrys11 = 1. Note that

the first column ofP can be chosen as1 while the first row ofP−1 can be chosen asp by noting

that1 andp are, respectively, a right and left eigenvector ofL associated withλ1 = 0 andpT1 = 1.

Therefore, lim
t→∞

X̃(t) = PSP−1X̃(0) = 1pT X̃(0), that is, lim
t→∞

r̃i(t) = pT X̃(0). This implies

thatri(t) − rj(t) → δij ast→ ∞.

Whenα ∈ (1, 2θ
π ), similar to the previous discussion forα ∈ (0, 1], λ1 satisfies (6.26). It

follows from Property3 in Lemma 6.3.1 thaty1(t) = y1(0) + ẏ1(0)t. BecauseRe(λi) > 0, i 6=

1, similar to the previous discussion forα ∈ (0, 1], it follows from Property1 in Lemma 6.3.1

and Lemma 6.3.2 thatlim
t→∞

yi(t) = 0, i 6= 1. Therefore, it follows thatlim
t→∞

Y (t) = [y1(0) +

ẏ1(0)t, 0, · · · , 0]T , which implies that lim
t→∞

Ẏ (t) = [ẏ1(0), 0, · · · , 0]T . Similar to the proof for

α ∈ (0, 1], it follows directly that lim
t→∞

r̃i(t) = pT X̃(0) + pT ˙̃X(0)t and lim
t→∞

˙̃ri(t) = pT ˙̃X(0).

This implies thatri(t) − rj(t) → δij ast→ ∞.

Combining the previous arguments forα ∈ (0, 1] andα ∈ (1, 2θ
π ) proves the theorem.

As a special case, when the fixed interaction graph is undirected, we can obtain the following

result.

Corollary 6.3.2 Assume that the fixed interaction graph is undirected. For fractional-order sys-

tem (6.4), coordination is achieved if the interaction graph is connected andα ∈ (0, 2). The

coordination equilibria whenα ∈ (0, 1] andα ∈ (1, 2θ
π ) are the same as those in Theorem 6.3.1.

Proof: When the undirected interaction graph is connected, it follows that there is a simple zero

eigenvalue and all other eigenvalues are positive, which implies thatθ = π. The statements then

follow from the proof in Theorem 6.3.1.

From Theorem 6.3.1, it can be seen that the range of the fractional orderα is determined by

θ. Note thatθ is closely related to the eigenvalues ofL, which are also related to the number of

agents. In the following, we characterize the relationshipbetweenα and the number of agents to

ensure coordination.
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Theorem 6.3.3 Assume that there aren agents withn ≥ 2. For fractional-order system(6.4),

coordination can be achieved if the fixed interaction graph has a directed spanning tree andα ∈

(0, 1 + 2
n).

Proof: Letting λi be theith eigenvalue ofL, it follows that arg{λi} ∈ [−π
2 + π

n ,
π
2 − π

n ] for

all λi 6= 0 [130], which implies 2θ
π ≥ 1 + 2

n . Therefore, the statement holds apparently from

Theorem 6.3.1.

Remark 6.3.4 From Theorem 6.3.1, it can be seen that the final coordinationequilibrium of (6.4)

for α ∈ (0, 1] is the same as that of

˙̃X(t) = −LX̃(t), (6.12)

under the sameL.

Remark 6.3.5 From Theorem 6.3.3, when there exist more agents in a team, i.e.,n becomes larger,

α has to be chosen smaller to ensure coordination. Asn → ∞, 2θ
π → 1, i.e.,α ∈ (0, 1], which

implies that the coordination property for systems with single-integrator dynamics does not depend

onn.

Switching Network Topology

In this section, we derive the conditions on the network topology and the fractional orders such

that coordination will be achieved for fractional-order system (6.4) under a directed dynamic net-

work topology. We assume that the interaction is constant over time interval[
∑k

j=1 ∆j,
∑k+1

j=1 ∆j)

and switches at timet =
∑k

j=1 ∆j with k = 0, 1, · · · ,3 where∆j > 0, j = 1, · · · . Let Gk andAk

denote, respectively, the directed graph and the adjacencymatrix for t ∈ [
∑k

j=1 ∆j,
∑k+1

j=1 ∆j). We

also assume that each nonzero entry ofAk has a lower bounda and an upper bounda, wherea and

a are positive constants witha ≥ a. Then (6.4) becomes

X̃(α)[k + 1] = −LkX̃ [k], (6.13)

whereLk ∈ R
n×n represents the Laplacian matrix associated withAk.

3We define
∑k

j=1 ∆j
△
= 0 whenk = 0.
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We first focus on the case where0 < α < 1. We have the following result.

Theorem 6.3.6 Assume thatα ∈ (0, 1). Using(6.2) for (6.1), a necessary condition to guarantee

coordination is that there exists a finite constantN such that the union ofGj, j = k, k+ 1, · · · , k+

N , has a directed spanning tree for any finitek. Furthermore, ifGj , j = 0, 1, · · · , has a directed

spanning tree at each time interval, there exists positive∆i such that coordination will be achieved

globally when∆i > ∆i.4

Proof: For the first statement, when there does not exist a finite constantN such that the union of

Gj , j = k, · · · , k + N , has a directed spanning tree for somek, it follows that at least one system,

labeled asi, is separated from the other systems fort ∈ [
∑k

j=1 ∆j,∞). It follows that the state of

systemi is independent of the states of the other systems fort ≥ ∑k
j=1 ∆j, which implies that all

systems cannot always achieve coordination for arbitrary initial conditions.

For the second statement, it follows from Theorem3.9 [131] that

X̃(t) = Eα(−Ltα)X̃(0).

Therefore, the solution to (6.13) is given by

X̃(

k∑

j=1

∆j) =

k∏

i=1

Eα(−Lk(

k+1∑

j=1

∆j)
α)[Eα(−Lk(

k∑

j=1

∆j)
α)]−1Eα(−L0∆1)

α)X̃(0). (6.14)

Definex
△
= maxi x̃i, x

△
= mini x̃i, andV

△
= maxi x̃i −mini x̃i. It follows from Theorem3.1 [132]

that x̃i converges tõxj as t → ∞ if the network topology has a directed spanning tree. That

is, there exists positive∆1 such thatV (t) < V (0) for any t ≥ ∆1. Similarly, by considering

[Eα(−L1(∆1)
α)]−1Eα(−L0∆1)

α)X̃(0) as the new initial state, it follows that there exists∆2

such thatV (t + ∆1) < V (∆1) for any t > ∆2. By following a similar analysis, there also exist

∆3, · · · . When∆i ≥ ∆i, V (
∑i+1

j=1 ∆k) < V (
∑i

j=1 ∆k). Therefore,V (
∑i

j=1 ∆k) → 0 asi→ ∞.

Therefore,̃xi[k] → x̃j [k], i.e.,xi[k] − xj[k] → δij ask → ∞ under the condition of the theorem.

4Here the values of∆i, i = 1, · · · , depend on the initial states, the fractional-orderα, andGk.
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Remark 6.3.7 For systemẋi(t) = ui(t), xi(t) will decrease ifui(t) < 0 andxi(t) will increase if

ui(t) > 0. However, for systemx(α)
i (t) = ui(t) with α ∈ (0, 1), due to the long memory process

of fractional calculus, the aforementioned properties do not necessarily hold. Therefore, even if the

switching network topology has a directed spanning tree at each time interval, coordination might

not be achieved ultimately because the switching sequence also plays an important role.

We next study the case where1 < α < 1 + 2
n , wheren ≥ 2. When the directed network

topology is fixed, we have the following lemma regarding the solution of (6.4).

Lemma 6.3.3 Whenα ∈ (1, 2), the solution of(6.4) is

X̃(t) = Eα(−Ltα)X̃(0) + tEα,2(−Ltα) ˙̃X(0). (6.15)

Proof: Consider the fractional-order system given by (6.4). By applying the Laplace transform to

both sides of (6.4), it follows that

s−(2−α)[L{ ¨̃X(t)}] = −LX̃(s). (6.16)

Eq. (6.16) can be written as

s−(2−α)[s2X̃(s) − sX̃(0) − ˙̃X(0)] = −LX̃(s). (6.17)

After some manipulation, (6.17) can be written as

X̃(s) = (sαIn + L)−1sα−1X̃(0) + (sαIn + L)−1sα−2 ˙̃X(0). (6.18)

By applying the inverse Laplace transform to (6.18), it follows from Theorem3.2 [131] that (6.15)

is a solution of (6.4). Noting also thatL is a constant matrix, it follows from the uniqueness and

existence theorem of fractional equations [116] that (6.15) is the unique solution of (6.4).

Taking derivative of (6.15) with respect tot gives that

˙̃X(t) =
1

t
Eα,0(−Ltα)X̃(0) + Eα(−Ltα) ˙̃X(0). (6.19)
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Combining (6.15) and (6.19) leads to the following matrix form



X̃(t)

˙̃X(t)


 =




Eα(−Ltα) tEα,2(−Ltα)

1
tEα,0(−Ltα) Eα(−Ltα)






X̃(0)

˙̃X(0)


 . (6.20)

Therefore, we can get that



X̃(∆1)

˙̃X(∆1)


 =




Eα(−L0∆
α
1 ) ∆1Eα,2(−L0∆

α
1 )

1
∆1
Eα,0(−L0∆

α
1 ) Eα(−L0∆

α
1 )






X̃(0)

˙̃X(0)


 .

Similarly, we can also get that



X̃(∆k)

˙̃X(∆k)


 =

k∏

i=1

Ck−iB0,0



X̃(0)

˙̃X(0)


 , (6.21)

whereCk = Bk+1,k+1B
−1
k+1,k with

Bm,n =




Eα(−Lm(
n+1∑
i=1

∆i)
α)

∑n+1
i=1 ∆iEα,2(−Lm(

n+1∑
i=1

∆i)
α)

Eα,0(−Lm(
n+1∑
i=1

∆i)α)

∑n+1
i=1 ∆i

Eα(−Lm(
n+1∑
i=1

∆i)
α)


 ,

whereC0
△
= I2n is the2n by 2n identity matrix. Note that unlike the integer-order systems, there

does not exist a transition matrix for fractional-order systems. Therefore, the analysis for fractional-

order systems is more challenging than that for integer-order systems. Next we show the sufficient

conditions on the directed dynamic network topology such that coordination will be achieved.

Theorem 6.3.8 Assume thatα ∈ (1, 1 + 2
n) andGk has a directed spanning tree. DefineV (t)

△
=

maxj x̃j(t) − minj x̃j(t). For (6.21), there exists positivē∆i such thatV (t) < V (
∑i−1

j=1 ∆j) for

any ∆i ≥ ∆̄i whent ≥ ∑i
j=1 ∆j, i = 1, · · · .5 In addition, if ∆i ≥ ∆̄i, coordination will be

achieved globally.

5Here the values of̄∆i, i = 1, · · · , depend on the initial states, the fractional-orderα, andGk.
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Proof: For the first statement, when the directed fixed network topology has a directed spanning

tree, it follows from Theorem3.3 [132] that coordination will be achieved forα ∈ (1, 1 + 2
n). It

then follows that there exists a positivē∆1 such thatV (t) < V (0) for any t > ∆̄1. Similarly, by

consideringB−1
1,0B0,0



X(0)

Ẋ(0)


 the new initial state, it follows that there exists a positive ∆̄2 such

that V (∆1 + t) < V (∆1) for any t > ∆̄2 + ∆1. Similarly, we can also show the existence of

∆i, i = 3, · · · .

For the second statement, becauseV (
∑i+1

j=1 ∆k) < V (
∑i

j=1 ∆j), it follows thatV (
∑i

j=1 ∆j) →

0 asi → ∞. Therefore, we can get thatx̃i[k] → x̃j[k], i.e.,xi[k] − xj[k] → δij ask → ∞ under

the condition of the theorem.

Remark 6.3.9 Theorems 6.3.6 and 6.3.8 can be extended to the case when the fractional order

α ∈ (1, 1 + 2
n) is constant fort ∈ [

∑k
j=1 ∆j,

∑k+1
j=1 ∆j) and switches att =

∑k
j=1 ∆j.

6.3.2 Comparison Between Coordination for Fractional-order Systems and Integer-order

Systems

In this section, we compare coordination for fractional-order systems with that for integer-

order systems. Based on the comparison, we propose a varying-order fractional-order coordination

strategy to achieve higher convergence speed. Before moving on, we first derive the solutions

of (6.26) and (6.27).

Forα ∈ (0, 1], the Laplace transform of (6.26) is (6.8). Taking the inverse Laplace transform

of (6.8) gives

yi(t) = yi(0
−)Eα(−λit

α),

whereEα(·) is the Mittag-Leffler function defined in (B.3). Similarly, for α ∈ (1, 2), the Laplace

transform of (6.26) is (6.9). Taking the inverse Laplace transform of (6.9) gives

yi(t) = yi(0
−)Eα(−λit

α) + ẏi(0
−)tEα,2(−λit

α),

whereEα,2(·) is the Mittag-Leffler function defined in (B.2).
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Forα ∈ (0, 1], the Laplace transform of (6.27) is (6.10). Taking the inverse Laplace transform

of (6.10) gives

yi(t) = yi(0
−)Eα(−λit

α) − yi+1(t) ∗ [tα−1Eα,α(−λit
α)],

where∗ denotes the convolution operation. Similarly, forα ∈ (1, 2), the Laplace transform of (6.27)

is (6.11). Taking the inverse Laplace transform of (6.11) gives

yi(t) = yi(0
−)Eα(−λit

α) + ẏi(0
−)tEα,2(−λit

α) − yi+1(t) ∗ [tα−1Eα,α(−λit
α)].

It can be observed from these solutions that the decaying speeds of Mittag-Leffler functions

determine the speed at whichyi(t), whereRe(λi) < 0, approaches zero. As a result, it follows that

the convergence speed of (6.4) is also determined by the decaying speeds of Mittag-Leffler functions

due to the fact shown in the proof of Theorem 6.3.1 that coordination is achieved ifyi(t) = 0 for

all λi 6= 0. As a special case, for single integer-order systems, i.e.,α = 1, (6.4) becomes (6.12)

and the corresponding solution is̃X(t) = e−LtX̃(0). Similarly, the solution for high integer-order

systems, i.e.,α = 2, 3, · · · , can also be written in the form of exponential functions. Therefore, it

is worthwhile to study the difference between Mittag-Leffler functions and exponential functions in

order to compare coordination for fractional-order dynamics and that for integer-order dynamics.

As an example, we next study the decaying speeds of the Mittag-Leffler functionEα(−λtα) and

the exponential functione−λt.

Theorem 6.3.10There exists a positive scalarT such thatEα(−λtα) decreases faster thane−λt

for t ∈ (0, T ), whereλ ∈ R
+ andα ∈ R

+.

Proof: Note that bothe−λt andEα(−λtα) equal to1 whent = 0. Taking derivatives of both func-

tions givesd
dt [e

−λt]|t=0 = −λe−λt|t=0 = −λ and d
dt [Eα(−λtα)]|t=0 = −∞. Becaused

dt [e
−λt] and

d
dt [Eα(−λtα)] are continuous with respect tot, there exists a positive scalarT such thatEα(−λtα)

decreases faster thane−λt for t ∈ (0, T ) by using the comparison principle.

To illustrate, Figs. 6.1(a) and 6.1(b) show, respectively,Mittag-Leffler functions and their

derivatives with different orders forλ = 1. Figure 6.1(a) shows Mittag-Leffler functions when
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α = 0.2i, i = 1, 2, 3, 4, 5.6 A noticeable phenomenon in Fig. 6.1(a) is that the smallerα is, the

faster the decaying speed will be when the time is close to zero. Figure 6.1(b) shows the derivatives

of Mittag-Leffler functions forα = 0.2i, i = 1, 2, 3, 4, 5. Note that Figs. 6.1(a) and 6.1(b) verified

Theorem 6.3.10. Because the decaying speeds of Mittag-Leffler functions with different fractional

orders are different as shown in Fig. 6.1, we are motivated toadopt a varying-order fractional-order

coordination strategy to increase the convergence speed.

Remark 6.3.11 In order to achieve higher convergence speed, a varying-order fractional-order

coordination strategy can be adopted. The strategy can be described as follows: Letα1 < · · · <

αm < 1 and chooseα in (6.4) asα =






α1, t < t1;

αi, ti−1 ≤ t < ti, i = 2, · · · ,m;

1, t ≥ tm.

Here t1 is chosen

such that the convergence speed with orderα1 is the highest whent < t1. Similarly, ti, i =

2, · · · ,m, is chosen such that the convergence speed with orderαi is highest fort ∈ [ti−1, ti), and

α = 1 if t ≥ tm. Given the sameL, the convergence speed of this varying-order fractional-order

coordination strategy is higher than that of the single-integrator coordination strategy because the

convergence speed of the proposed strategy is higher than that of the single-integrator coordination

strategy whent < tm and equal to that of the single-integrator coordination strategy whent ≥ tm.

Remark 6.3.12 The convergence speed for fractional-order systems can be increased by applying

a varying-order fractional-order coordination strategy.Similarly, the convergence speed can also

be increased by separating the time interval into more pieces [ti, ti+1).

Remark 6.3.13 There should exist an optimal varying-order fractional-order coordination strategy

to maximize the convergence speed and the order of the corresponding fractional-order coordination

strategy may be continuous with respect tot. This optimal strategy might be related to the sensitivity

function ofEα(−λtα) with respect toα, i.e., d
dα [Eα(−λtα)].

6Whenα = 1, the corresponding Mittag-Leffler function becomes the exponential function.
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Fig. 6.1: Mittag-Leffler functions and the derivatives.
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6.3.3 Simulation Illustrations and Discussions

In this section, several simulation results are presented to illustrate the fractional-order co-

ordination algorithm proposed in Section 6.2 and the varying-order coordination strategy in Sec-

tion 6.3.2. We consider a group of twelve agents with an interaction graph given by Fig. 6.2. Note

that the interaction graph in Fig. 6.2 has a directed spanning tree with node1 being the root. Al-

though we only consider twelve agents in our simulation, similar results can be obtained for a large

number of agents if the conditions in Theorem 6.3.1 are satisfied. Here for simplicity we have

chosenδi = 0, i = 1, · · · , 12, i.e., X̃(t) = X(t), whereX(t) = [r1(t), · · · , r12(t)]T . The corre-

sponding (nonsymmetric) Laplacian matrix is chosen such thataij = 1 if (vj , vi) ∈ W andaij = 0

otherwise. It can be computed thatp = [ 1
11 ,

1
11 ,

1
11 ,

1
11 , 0,

1
11 ,

1
11 ,

1
11 ,

1
11 ,

1
11 ,

1
11 ,

1
11 ]T and the eigen-

values ofL are0, 1, 1.9595 ± 0.2817j, 1.6549 ± 0.7557j, 1.1423 ± 0.9898j, 0.5846 ± 0.9096j, and

0.1587 ± 0.5406j, wherej is the imaginary unit.

Forα ∈ (0, 1], let the initial states beX(0) = [6, 3, 1,−3, 4, 2, 0,−5,−2,−5, 2, 7]T . When

the fractional order isα = 0.8, the states using (6.4) are shown in Fig. 6.3(a). It can be seen that

coordination is achieved with the final coordination equilibrium for ri(t) being0.5455, which is

equal topTX(0). Whenα = 1, i.e., the system takes in the form of single-integrator dynamics, the

states using (6.4) are shown in Fig. 6.3(b). From these two figures, it can be seen that the equilibrium

states for both cases are the same. In addition, it can also beobserved that the convergence speed

of the fractional-order case is higher than that of the single-integrator case whent is close to the

origin.

Forα ∈ (1, 2θ
π ), we let the initial states beX(0) = [6, 3, 1,−3, 4, 2, 0,−5,−2,−5, 2, 7]T and

1

�� ��@
@@

@@
@@

@ 2oo 3oo 4oo

5 6 // 7

vvnnnnnnnnnnnnnnn 8

OO

9 // 10 // 11 // 12

OO

Fig. 6.2: Interaction graph for twelve agents. An arrow fromj to i denotes that agenti can receive
information from agentj.
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(b) α = 1. (|ri(t) − rj(t)| < 0.1 for anyt > 22.22 s.)
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(c) α = 1.15.
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(d) α = 1.5.

Fig. 6.3: Simulation results using (6.4) with different orders.
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Ẋ(0) = [1, 2, 3, 4, 0, 0, 0, 0, 1, 1, 1, 1]T . It follows from the definition ofθ in Theorem 6.3.1 that

θ = 1.8563, which impliesα ∈ (0, 1.182). Figures. 6.3(c) and 6.3(d) show the states using (6.4)

for α = 1.15 andα = 1.5, respectively. From Fig. 6.3(c), it can be observed that coordination can

be achieved. From Fig. 6.3(d), it can be observed that coordination cannot be achieved. The four

subfigures in Fig. 6.3 validate Theorem 6.3.1.

We next present the simulation results using the varying-order coordination strategy described

in Remark 6.3.11 and compare the simulation results with those using the integer-order coordination

strategy in Fig. 6.3(b). Let the initial states beX(0) = [6, 3, 1,−3, 4, 2, 0,−5,−2,−5, 2, 7]T .

Figure 6.4 shows the states using the varying-order coordination strategy when the parameters in

Remark 6.3.11 are arbitrarily chosen asαi = 0.4 + 0.1i and ti = 0.1 + 0.04i for i = 1, 2, 3, 4.

Note that|ri(t) − rj(t)| < 0.1 for all t > 21.73 s in Fig. 6.4 while|ri(t) − rj(t)| < 0.1 for all

t > 22.22 s in Fig. 6.3(b). Therefore, we can see that the convergence speed using the varying-

order coordination strategy is higher than that using the single integer-order coordination strategy.

The comparison shows the effectiveness of the proposed varying-order coordination strategy. Of

course, when we choose different parameters (αi, ti) carefully as described in Remark 6.3.11, the

convergence speed can be further improved.

6.4 Convergence Analysis of Fractional-order Coordination Algorithms with Absolute/

Relative Damping

In this section, we propose fractional-order coordinationalgorithms with absolute/relative

damping and then study the conditions on the network topology and the fractional orders such

that coordination will be achieved when using these algorithms for fractional-order systems under a

directed fixed network topology.
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Fig. 6.4: Simulation result using (6.4) with varying orders. (|ri(t)− rj(t)| < 0.1 for anyt > 21.73
s.).

6.4.1 Absolute Damping

Forn (n ≥ 2) systems with dynamics given by (6.1), we propose the following fractional-order

coordination algorithm with absolute damping as

ui(t) = −
n∑

j=1

aij [xi(t) − xj(t) − (δi − δj)] − βx
(α/2)
i (t), (6.22)

whereβ ∈ R
+ andδi ∈ R is constant. Using (6.22), (6.1) can be written in matrix form as

X̃(α)(t) + βX̃(α/2)(t) + LX̃(t) = 0, (6.23)

whereX̃(t) andL are defined in (6.4). It then follows that (6.23) can be written as




X̃(t)

X̃(α/2)(t)




(α/2)

=




0n×n In

−L −βIn




︸ ︷︷ ︸
F




X̃(t)

X̃(α/2)(t)


 , (6.24)

where0n×n is then by n all-zero matrix. Note that each eigenvalue ofL, λi, corresponds to two

eigenvalues ofF , denoted byµ2i−1 =
−β+

√
β2−4λi

2 andµ2i =
−β−

√
β2−4λi

2 [71].
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Note thatF can be written in Jordan canonical form as

F = P




Λ1 0 · · · 0

0 Λ2 · · · 0

· · · · · ·

0 0 · · · Λk




︸ ︷︷ ︸
Λ

P−1,

whereΛm, m = 1, 2, . . . , k, are standard Jordan blocks. By definingZ(t) = [z1(t), · · · , zn(t)]T
△
=

P−1




X̃(t)

X̃(α/2)(t)


, (6.24) can be written as

Z(α/2)(t) = ΛZ(t). (6.25)

Suppose that each diagonal entry ofΛi is µi, i.e., an eigenvalue ofF . Similarly, (6.25) can be

decoupled inton one-dimensional equations represented by either

z
(α/2)
i (t) = µizi(t), (6.26)

or

z
(α/2)
i (t) = µizi(t) + zi+1(t). (6.27)

Lemma 6.4.1 [133] Letλi be theith eigenvalue ofL, µ2i−1 andµ2i are the two eigenvalues ofF

corresponding toλi, andIm(·) denotes the imaginary part of a complex number. WhenRe(λi) > 0,

Re(µ2i−1) < 0 andRe(µ2i) < 0 if and only ifβ >
√

[Im(λi)]2

Re(λi)
.

Theorem 6.4.1 Let λi be theith eigenvalue ofL, andµ2i−1 andµ2i be the two eigenvalues ofF

corresponding toλi. Defineθ
△
= min

µi 6=0,i=1,2,··· ,2n
θi, whereθi = π − | arg{−µi}|. Using (6.22)

for (6.1), coordination will be achieved if the directed fixed networktopology has a directed span-

ning tree andα ∈ (0, 4θ
π ). In particular, the following properties hold.

Case1: β > maxλi 6=0

√
[Im(λi)]2

Re(λi)
. Whenα ∈ (0, 2], x̃i(t) and x̃j(t) converge topT X̃(0) +

1
βpT X̃(α/2)(0) ast → ∞, wherep is the left eigenvector ofL associated with the zero eigenvalue
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satisfyingpT1 = 1. Whenα ∈ (2, 4θ
π ),7 x̃i(t) and x̃j(t) converge topT X̃(0) + 1

βpT X̃(α/2)(0) +

[pT ˙̃X(0) + 1
βpT X̃(1+α/2)(0)]t, and ˙̃xi(t) and ˙̃xj(t) converge topT ˙̃X(0) + 1

βpT X̃(1+α/2)(0) as

t→ ∞.

Case2: 0 < β ≤ maxλi 6=0

√
[Im(λi)]2

Re(λi)
. Then we have that̃xi(t) and x̃j(t) and pT X̃(0) +

1
βpT X̃(α/2)(0) ast→ ∞.

Proof: (Proof of Case1) When the directed fixed network topology has a directed spanning tree,L

has a simple zero eigenvalue and all other eigenvalues have positive real parts [39,101]. Without loss

of generality, letλ1 = 0 andRe(λi) > 0, i 6= 1. Forλ1 = 0, it follows thatµ1 = 0 andµ2 = −β.

Because−β < 0, it follows from Property1 of Lemma 6.3.1 thatz2(t) → 0 ast→ ∞. Whenα ∈

(0, 2], becauseµ1 = 0 is a simple zero eigenvalue,µ1 satisfies (6.26). It follows from Property2 in

Lemma 6.3.1 thatz1(t) ≡ z1(0). Whenβ > maxλi 6=0

√
[Im(λi)]2

Re(λi)
, it follows from Lemma 6.4.1 that

Re(µ2i−1) < 0 andRe(µ2i) < 0, i 6= 1. Whenµ2i−1 andµ2i satisfy (6.26), it then follows from

Property1 of Lemma 6.3.1 thatz2i−1(t) → 0 andz2i(t) → 0 ast→ ∞. Whenµ2i−1 satisfies (6.26)

andµ2i satisfies (6.27), it then follows from Lemma 6.3.1 and Lemma 6.3.2 thatz2i−1(t) → 0

and z2i(t) → 0 as t → ∞ as well. Recalling the structure of the standard Jordan block, by

following the previous analysis, it can be shown thatz2i−1(t) → 0 andz2i(t) → 0 ast→ ∞ when

µ2i−1 andµ2i satisfy (6.27). Combining the above arguments giveslim
t→∞

Z(t) = [z1(0), 0, · · · , 0]T ,

which implies lim
t→∞




X̃(t)

X̃(α/2)(t)


 = lim

t→∞
PZ(t) = PSZ(0) = PSP−1




X̃(0)

X̃(α/2)(0)


, where

S = [sij ] ∈ R
n×n has only one nonzero entrys11 = 1. Note that the first column ofP can be chosen

as [1T ,0T ]T while the first row ofP−1 can be chosen as[pT , 1
βpT ]T by noting that[1T ,0T ]T

and [pT , 1
βpT ]T are, respectively, a right and left eigenvector ofF associated withµ1 = 0 and

[pT , 1
βpT ][1T ,0T ]T = 1, where0 is an all-zero column vector with a compatible size. Therefore,

lim
t→∞




X̃(t)

X̃(α/2)(t)


 = PSP−1




X̃(0)

X̃(α/2)(0)


 = [1T ,0T ][pT , 1

βpT ]T




X̃(0)

X̃(α/2)(0)


, that is,

lim
t→∞

x̃i(t) = pT X̃(0) + 1
βpT X̃(α/2)(0).

7Note that4θ
π

> 2 becauseθ > π
2

according to Lemma 6.3.1.
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Whenα ∈ (2, 4θ
π ), it follows from Property3 of Lemma 6.3.1 thatz1(t) = z1(0) + ż1(0)t.

A similar discussion to that forα ∈ (0, 2] shows thatzi(t) → 0 as t → ∞ for i = 3, · · · , 2n.

Therefore, it follows thatlim
t→∞

Z(t) = [z1(0) + ż1(0)t, 0, · · · , 0]T , which implies thatlim
t→∞

Ż(t) =

[ż1(0), 0, · · · , 0]T . Similar to the proof forα ∈ (0, 2], we can get thatlim
t→∞

x̃i(t) = pT X̃(0) +

1
βpT X̃(α/2)(0) + [pT ˙̃X(0) + 1

βpT X̃(1+α/2)(0)]t and lim
t→∞

˙̃xi(t) = pT ˙̃X(0) + 1
βpT X̃(1+α/2)(0).

(Proof of Case2) When0 < β ≤ maxλi 6=0

√
[Im(λi)]2

Re(λi)
, it follows from Lemma (6.4.1) that

Re(µ2i−1) ≥ 0 for somei, which implies that4θ
π ≤ 2. Therefore, we can get thatα ∈ (0, 2). The

proof then follows a similar analysis to that of Case1 whenα ∈ (0, 2].

Remark 6.4.2 From Theorem 6.4.1, it can be noted that the control gainβ can be chosen as any

positive number. In particular, the possible range ofα to ensure coordination will be different

depending onβ. In addition, when there exists absolute damping, the final velocity may not be

zero as shown in Theorem 6.3.6, which is different from some existing results[61, 71]. The existing

coordination algorithms for double-integrator dynamics with absolute damping[61, 71] can be

viewed as a special case of Theorem 6.4.1 whenα = 2.

6.4.2 Relative Damping

Forn (n ≥ 2) systems with dynamics given by (6.1), we propose the following fractional-order

coordination algorithm with relative damping as

ui(t) = −
n∑

j=1

aij{xi(t) − xj(t) − (δi − δj) + γ[x
(α/2)
i (t) − x

(α/2)
j (t)]}, (6.28)

whereγ ∈ R
+ andδi ∈ R is constant. Using (6.28), (6.1) can be written in matrix form as

X̃(α)(t) + γLX̃(α/2)(t) + LX̃(t) = 0, (6.29)
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whereX̃(t) andL are defined in (6.4). It follows that (6.29) can be written as




X̃(t)

X̃(α/2)(t)




(α/2)

=




0n×n In

−L −γL




︸ ︷︷ ︸
G




X̃(t)

X̃(α/2)(t)


 . (6.30)

Note that each eigenvalue ofL, λi, also corresponds to two eigenvalues ofG, denoted byµ2i−1 =

−γλi+
√

γ2λ2
i −4λi

2 andµ2i =
−γλi−

√
γ2λ2

i −4λi

2 [60].

Note thatG can also be written in Jordan canonical form as

G = Q




Σ1 0 · · · 0

0 Σ2 · · · 0

· · · · · ·

0 0 · · · Σk




︸ ︷︷ ︸
Σ

Q−1,

whereΣm, m = 1, 2, . . . , k, are standard Jordan blocks. By definingZ(t) = [z1(t), · · · , zn(t)]T
△
=

Q−1




X̃(t)

X̃(α/2)(t)


, (6.30) can be written as

Z(α/2)(t) = ΣZ(t). (6.31)

Suppose that each diagonal entry ofΣi is µi, i.e., an eigenvalue ofG. Similar to the analysis

of (6.25), (6.31) can be decoupled inton one-dimensional equations represented by either (6.26)

or (6.27). Before moving on, we need the following lemma.

Lemma 6.4.2 Let λi be theith eigenvalue ofL, andµ2i−1 andµ2i be the two eigenvalues ofG

corresponding toλi. Suppose thatRe(λi) > 0. ThenRe(µ2i−1) < 0 andRe(µ2i) < 0 if and only

if γ > γ̄i, whereγ̄i
△
=
√

Im(λi)2

Re(λi)|λi|2 .

Proof: The characteristic polynomial ofG is given by

s(s+ γλi) + λi = 0. (6.32)
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Letting s1 ands2 be the two roots of (6.32), it follows from (6.32) thats1 + s2 = −γλi. Because

Re(λi) > 0, at least one of the two roots are in the open left half plane ifγ > 0. Note that the

bound ofγ, γ̄i, can be obtained when one of the two roots are on the imaginaryaxis. Without loss of

generality, we lets1 = zj, wherez is a real constant andj is the imaginary unit. Substitutings1 = zj

into (6.32) gives that−z2 + γ̄iλizj + λi = 0. After some manipulation, we can get thatγ̄i satisfies

−Im(λi)
2 + γ̄2

i Im(λi)
2Re(λi) + γ̄2

i Re(λi)
3 = 0, which can be simplified as̄γi =

√
Im(λi)2

Re(λi)|λi|2 .

Theorem 6.4.3 Let λi be theith eigenvalue ofL, andµ2i−1 and µ2i be the two eigenvalues of

G corresponding toλi. Defineγ̄
△
= maxλi 6=0 γ̄i with γ̄i being defined in Lemma 6.4.2, andθ =

min
µi 6=0,i=1,2,··· ,2n

θi, whereθi = π−| arg{−µi}|. Using(6.29)for (6.1), coordination will be achieved

if the directed fixed network topology has a directed spanning tree andα ∈ (0, 4θ
π ). In addition, the

following properties hold.

Case1: γ > γ̄. Whenα ∈ (0, 2], x̃i(t) and x̃j(t) converge topT X̃(0) + tα/2

Γ(1+α/2)p
T X̃(α/2)(0)

as t → ∞, wherep is defined in Theorem 6.4.1. Whenα ∈ (2, 4θ
π ),8 x̃i(t) and x̃j(t) converge to

pT X̃(0) + tα/2

Γ(1+α/2)p
T X̃(α/2)(0) + t1+α/2

Γ(α/2+2) X̃
(α/2+1)(0) ast→ ∞.

Case2: γ ≤ γ̄. Then we have that̃xi(t) and x̃j(t) converge topT X̃(0) + tα/2

Γ(1+α/2)p
T X̃(α/2)(0)

ast→ ∞.

Proof: (Proof of Case1) When the directed fixed network topology has a directed spanning tree,L

has a simple zero eigenvalue and all other eigenvalues have positive real parts [39, 101]. Without

loss of generality, letλ1 = 0 andRe(λi) > 0, i 6= 1. Forλ1 = 0, it follows from (6.32) thatµ1 = 0

andµ2 = 0. BecauseG has two zero eigenvalues whose geometric multiplicity is1, it follows that

µ2 = 0 satisfies (6.26) andµ1 = 0 satisfies (6.27). Whenα ∈ (0, 2], it follows from Property2 in

Lemma 6.3.1 thatz2(t) ≡ z2(0). By substitutingz2(t) = z2(0) into (6.27), it follows that

z1(t) = z2(0)
tα/2

Γ(1 + α/2)
+ z1(0). (6.33)

We next study the case ofλi, i 6= 1. BecauseRe(λi) > 0, i 6= 1, it follows from Lemma 6.4.1

thatRe(µ2i−1) < 0 andRe(µ2i) < 0 whenγ > γ̄. By following a similar analysis to that in the

8Note that4θ
π

> 2 becauseθ > π
2

according to Lemma 6.4.2.
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proof of Theorem 6.4.1, it can be shown thatz2i−1(t) → 0 andz2i(t) → 0 as t → ∞ as well.

Similar to the analysis in the proof of Theorem 6.4.1, it can also be computed thatw1 = [1T ,0T ]T

and v1 = [0T ,pT ]T are the right and left eigenvectors corresponding toµ1 = 0. Meanwhile,

w2 = [0T ,1T ]T andv2 = [pT ,0T ]T are the generalized right and left eigenvectors correspond-

ing to µ2 = 0, wherevT
1 w2 = 1 andvT

2 w1 = 1. Therefore, the first and second columns ofQ

can be chosen as[1T ,0T ]T and [0T ,1T ]T while the first and second rows ofQ−1 can be chosen

as [pT ,0T ]T and [0T ,pT ]T . Therefore, lim
t→∞




X̃(t)

X̃(α/2)(t)


 = lim

t→∞
QZ(t) = lim

t→∞
QSZ(0) =

lim
t→∞

QSQ−1




X̃(0)

X̃(α/2)(0)


, whereS = [sij] ∈ R

n×n has three entries which are not equal to

zero,s11 = 1, s12 = tα/2

Γ(1+α/2) ands22 = 1, wheres12 is derived from (6.33). After some manip-

ulation, we can get thatlim
t→∞




X̃(t)

X̃(α/2)(t)


 =




1pT X̃(0) + tα/2

Γ(1+α/2)1p
T X̃(α/2)(0)

1pT X̃(α/2)(0)


, that is,

lim
t→∞

x̃i(t) = pT X̃(0) + tα/2

Γ(1+α/2)p
T X̃(α/2)(0).

Whenα ∈ (2, 4θ
π ), it follows from Property3 of Lemma 6.3.1 thatz2(t) = z2(0) + ż2(0)t.

Becausez1(t) satisfies (6.27), we can get thatz1(t) = z1(0) + z2(0)
tα/2

Γ(α/2+1) + ż2(0)
t1+α/2

Γ(α/2+2) . A

similar discussion to that forα ∈ (0, 2] shows thatzi(t) → 0 ast → ∞ for i = 3, · · · , 2n. There-

fore, it follows that lim
t→∞

Z(t) = [z1(0)+z2(0)
tα/2

Γ(α/2+1) +ż2(0)
t1+α/2

Γ(α/2+2) , z2(0)+ż2(0)t, 0, · · · , 0]T .

Similar to the proof forα ∈ (0, 2], we can get thatlim
t→∞

x̃i(t) = pT X̃(0)+ tα/2

Γ(1+α/2)p
T X̃(α/2)(0)+

t1+α/2

Γ(α/2+2) X̃
(α/2+1)(0).

(Proof of Case2) Whenγ ≤ γ̄, it follows from Lemma 6.4.2 thatRe(µ2i−1) ≥ 0 for somei,

which implies that4θ
π ≤ 2. Therefore, we can get thatα ∈ (0, 2). The proof then follows a similar

analysis to that of Case1 whenα ∈ (0, 2].

Remark 6.4.4 From Theorem 6.4.3, it can be noted that the control gainγ can also be chosen

as any positive number. In particular, the range ofα will be different depending onγ. In addition,

when there exists relative damping, the final velocity may not be constant as shown in Theorem 6.4.3,

which is different from some existing results[60]. The existing coordination algorithms for double-

integrator dynamics with relative damping[60] can be viewed as a special case of Theorem 6.4.3
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whenα = 2.

6.4.3 Simulation

In this section, we present several simulation results to illustrate the theoretical results in Sec-

tion 6.4. We consider a network of four systems.

To illustrate the results in Section 6.4, we consider the case of a directed fixed network topology

shown by Fig. 6.5 which has a directed spanning tree. The simulation result using (6.22) is shown

in Fig. 6.6 whenα = 1.6 andβ = 1. The simulation result using (6.28) is shown in Fig. 6.7 when

α = 1.2 andγ = 1. Here for simplicity we have again chosenδi = 0. It can be noted from

Figs. 6.6 and 6.7 that coordination is achieved. In particular, it can be seen from the bottom subplot

of Fig. 6.7 that using (6.28) the final velocityẋi(t) is no longer constant whenα = 1.2 andγ = 1.

1

��

2oo

4 // 3

OO

Fig. 6.5: Directed network topology for four systems. An arrow from j to i denotes that systemi
can receive information from systemj.
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Fig. 6.6: States of the four systems using (6.22) withα = 1.6 andβ = 1 with the directed fixed
network topology given by Fig. 6.5.
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(b) ẋi(t).

Fig. 6.7: States of the four systems using (6.28) withα = 1.2 andγ = 1 with the directed fixed
network topology given by Fig. 6.5.
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Chapter 7

Conclusion and Future Research

7.1 Summary of Contributions

The dissertation studied decentralized coordination algorithms under several different cases.

First, we investigated decentralized coordination algorithms when there exist none, one, multiple

group reference states. When there exists no group reference state, decentralized coordination al-

gorithms for double-integrator dynamics were proposed andstudied in the sampled-data setting. In

the presence of absolute damping, all vehicles will reach the desired configuration with a zero final

velocity. In the presence of relative damping, all vehicleswill reach the desired configuration with

a (general) nonzero final velocity.

When there exists one group reference state, we studied bothconsensus tracking and swarm

tracking scenarios. We first investigated decentralized coordinated tracking in the continuous-time

setting by using a variable structure approach. Compared with other approaches, the proposed

approach requires less state information and only local interaction. Then we studied a PD-like

discrete-time consensus algorithm and showed the upper bound of the final tracking errors.

When there exist multiple group reference states, we proposed containment control algorithms

to guarantee that all followers will move into the convex hull formed by the references. Both single-

integrator kinematics and double-integrator dynamics were studied. We also presented experimental

results on a multi-robot platform to validate the theoretical results.

Finally, we studied two other problems: optimality problemand the study of coordination

algorithms for fractional-order systems. The optimality problem is motivated by the fact that a

number of different consensus algorithms can be used to achieve consensus. In particular, the op-

timality problems, including optimal Laplacian matrix andoptimal coupling factor, are studied in

the presence of global cost functions. The study of coordination algorithms for fractional-order sys-

tems is motivated by the application of fractional calculusin real systems, especially those work-
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ing in complicated environments. We proposed and studied decentralized coordination algorithms

with/without damping terms.

7.2 Ongoing and Future Research

Currently, there are still a number of open questions which deserve further consideration. First,

the current decentralized algorithms are studied mostly under the assumption that no constraint ex-

ists. However, each vehicle may have its own constraints as well as the constraint from where

the vehicle is involved in. Therefore, it is worthwhile to investigate the decentralized coordina-

tion algorithms with constraints. Second, the optimization problems in decentralized coordination

algorithms. The current stage mainly focuses on the study ofdecentralized algorithms without op-

timization mechanism involved. In real applications, decentralized coordination is not the unique

objective. One important problem is to achieve coordination in a better way. Third, the application

in economy, social science, engineering, etc. It is worthwhile to mention that the purpose of research

is to find the applications in real world. It will be interesting to explain the phenomena in various

disciplines and even find ways to solve the problems as well. For example, it might be interesting to

study the relationship between centralization and decentralization to avoid the economic crisis. We

hope that our research can motivate further research in thisfield.
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Appendix A

Graph Theory Notions

It is natural to model interaction among vehicles by directed graphs. Suppose that a team

consists ofn vehicles. A directed graphG = (V, E) consists of a node setV = {1, . . . , n} and an

edge setE ⊆ V×V. An edge(i, j) in a directed graph denotes that vehiclej can obtain information

from vehiclei, but not necessarily vice versa. Accordingly, vehiclej is called a neighbor ofi. All

neighbors of vehiclei is denoted byNi. Adjacency matrixA of directed graphG is defined such

thataij is a positive weight if(j, i) ∈ E , while aij = 0 if (j, i) 6∈ E . In particular, we assume that

aii = 0, i = 1, · · · , n (i.e., no self edge allowed). A subgraphG1 = (V1, E1) of G is a directed

graph such thatV1 ∈ V andE1 ∈ E ⋂(V1 × V1). The union of a collection of directed graphs is

a directed graph whose node and edge sets are the unions of thenode and edge sets of the directed

graphs in the collection.

A directed path is a sequence of edges in a directed graph of the form (i1, i2), (i2, i3), . . .,

whereij ∈ V. A directed graph has a directed spanning tree if there exists at least one node having

a directed path to all other nodes. A complete graph is a graphin which each pair of distinct nodes

is connected by an edge. A complete graph in which each edge isbidirectional is called a complete

directed graph. A complete undirected graph is an undirected graph in which each pair of distinct

nodes is connected by an edge.

Let the (nonsymmetric) Laplacian matrixL = [ℓij ] ∈ R
n×n associated withA be defined

as [134]ℓii =
∑n

j=1,j 6=i aij andℓij = −aij , i 6= j. Zero is an eigenvalue ofL with an associated

eigenvector1n, where1n is then× 1 column vector of all ones.

Given a matrixS = [sij ] ∈ R
n×n, the directed graph ofS, denoted byΓ(S), is the directed

graph with node setV = {1, · · · , n} such that there is an edge inΓ(S) from j to i if and only if

sij 6= 0.
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Appendix B

Caputo Fractional Operator

There are mainly two widely used fractional operators: Caputo and Riemann-Liouville (R-L)

fractional operators [116]. In physical systems, Caputo fractional operator is more practical than

R-L fractional operator because R-L fractional operator has initial value problems. Therefore, we

will use Caputo fractional operator in this paper to model the system dynamics and analyze the

stability of the proposed fractional-order algorithms. Inthe following of the subsection, we will

review Caputo fractional operator. Generally, Caputo fractional operator includes Caputo integral

and Caputo derivative. Caputo derivative is defined based onthe following Caputo integral

C
a D

−α
t f(t) =

1

Γ(α)

∫ t

a

f(τ)

(t− τ)1−α
dτ,

whereC
a D

−α
t denotes the Caputo integral with orderα ∈ (0, 1], Γ(·) is the Gamma function, anda

is an arbitrary real number. For any real numberp, Caputo derivative is defined as

C
a D

p
t f(t) = C

a D
−α
t [

d[p]+1

dt[p]+1
f(t)], (B.1)

whereα = [p] + 1 − p ∈ (0, 1] and [p] is the integer part ofp. If p is an integer, thenα = 1

and (B.1) is equivalent to the integer-order derivative. Because only Caputo fractional operator is

used in the following of this paper, a simple notationf (α)(t) is used to replaceCa D
α
t f(t).

In the following, we will introduce the Laplace transform ofCaputo derivative and the Mittag-

Leffler function [129]. We first introduce the Laplace transform of Caputo derivative. LetL{·}

denote the Laplace transform of a function. It follows from the formal definition of the Laplace
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transformF (s) = L{f(t)} =
∞∫

0−
e−stf(t)dt that

L{f (α)(t)} =






sαF (s) + sα−1f(0−), α ∈ (0, 1]

sαF (s) + sα−1f(0−) + sα−2ḟ(0−), α ∈ (1, 2],

wheref(0−) = lim
ǫ→0−

f(ǫ) and ḟ(0−) = lim
ǫ→0−

ḟ(ǫ). Forα, β ∈ C, the Mittag-Leffler function in

two parameters is defined as

Eα,β(z) =

∞∑

k=0

zk

Γ(kα+ β)
, (B.2)

Whenβ = 1 andα > 0, (B.2) can be written in a special case as

Eα(z) =

∞∑

k=0

zk

Γ(kα+ 1)
. (B.3)
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