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Abstract

Decentralized Coordination of Multiple Autonomous Vebgl

by

Yongcan Cao, Doctor of Philosophy

Utah State University, 2010

Major Professor: Dr. Wei Ren
Department: Electrical and Computer Engineering

This dissertation focuses on the study of decentralizeddowation algorithms of multiple au-
tonomous vehicles. Here, the tedacentralized coordinatiors used to refer to the behavior that
a group of vehicles reaches the desired group behavior @@ iioteraction. Research is conducted
towards designing and analyzing distributed coordinaéifgorithms to achieve desired group be-
havior in the presence of none, one, and multiple group eafer states.

Decentralized coordination in the absence of any grouperée state is a very active research
topic in the systems and controls society. We first focus adyshg decentralized coordination
problems for both single-integrator kinematics and doufilegrator dynamics in a sampled-data
setting because real systems are more appropriate to bdedddea sampled-data setting rather
than a continuous setting. Two sampled-data consensusthigs are proposed and the conditions
to guarantee consensus are presented for both fixed andisgitaetwork topologies. Because
a number of coordination algorithms can be employed to gueeacoordination, it is important
to study the optimal coordination problems. We further gttlte optimal consensus problems in
both continuous-time and discrete-time settings via agalirguadratic regulator (LQR)-based ap-
proach. Noting that fractional-order dynamics can betpresent the dynamics of certain systems,
especially when the systems evolve under complicated @mvient, the existing integer-order co-

ordination algorithms are extended to the fractional-oaiese.
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Decentralized coordination in the presence of one growgreate state is also calledordi-
nated trackingincluding both consensus tracking and swarm tracking.s€osus tracking refers to
the behavior that the followers track the group referenasSwarm tracking refers to the behavior
that the followers move cohesively with the external leadkile avoiding inter-vehicle collisions.
In this part, consensus tracking is studied in both disdigte setting and continuous-time settings
while swarm tracking is studied in a continuous-time sgttin

Decentralized coordination in the presence of multipleigneference states is also caltamh-
tainment contraglwhere the followers will converge to the convex hull, itae minimal geometric
space, formed by the group references states via locahciten. In this part, the containment
control problem is studied for both single-integrator kirsgics and double-integrator dynamics. In

addition, experimental results are provided to validateetheoretical results.

(208 pages)
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Chapter 1
Introduction

Agent-based system has received more and more reseanctioatieecause many real-world
systems, such as flocks of birds, honey bee swarms, and eweanhgpciety, can be considered
examples of agent-based systems. Agent-based systendigdsaxtensively in biology science,
where the behavior of animals is shown to be closely relat¢ide group in which they are involved.

A prominent phenomenon in agent-based system is that eacttsagehavior is based on its
local (time-varying) neighbors. For example, in Fig. 1.bcK of birds fly in a regular formation.
Here each bird can be considered an agent. For a large poputdtbirds, it is impossible for
them to have a leader which has the capability to control tnmdtion of the whole group by
determining the movement of each individual bird. Instezath bird determines its movement via

a local mechanism. That is, each individual bird has to asetan its local neighbors.

N ~ ¥
b t ¥ o L L
X = w T sn u
-~ \“ . i
w® ._xt %
e %

Fig. 1.1: Flock of birds. A large population of birds fly in agtdar formation. Photo courtesy of
Prof. A. Menges, A. Ziliken.
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Recently, the collective motions of a group of autonomousicles have been investigated by
researchers and engineers from various perspectivesgeinerautonomous vehicles can be con-
sidered agents. An emerging topic in the study of colleatiions is decentralized coordination,
which can be roughly categorized as formation control, ezadus, flocking, and sensor networks
based on the applications. In addition, numerous expetsneere also conducted to either validate
the proposed coordination schemes or apply the coordmatibemes into different scenarios.

In this dissertation, we mainly focus on the mathematicatlgtof coordination algorithms
under none, one, and multiple group reference states. \Wermisstigate the optimization problem
and extend the study of integer-order dynamics to frackiorder dynamics. The main framework
of this dissertation is to first propose the coordinatioroethm, then analyze the stability condition,

at last present simulation and/or experimental validation

1.1 Problem Statement

Decentralized coordination among multiple autonomousclety including unmanned aerial
vehicles (UAVs), unmanned ground vehicles (UGVs), and ummad underwater vehicles (UUVS)
has received significant research attention in the systach€@ntrols community. Although indi-
vidual vehicles can be employed to finish various tasks,tdreaefits, including high adaptability,
easy maintenance, and low complexity, can be achieved hndiavgroup of vehicles work co-
operatively. The cooperative behavior of a group of automasnvehicles is calledoordination
Coordination of multiple autonomous vehicles has numepmisntial applications. Examples in-
clude rendezvous [1-3], flocking [4—6], formation contrp]§], and sensor networks [9-11].

There are mainly two approaches used to achieve coordmafionultiple autonomous ve-
hicles: centralized and decentralized approaches. Indh&alized approach, it is assumed that
there exists a central vehicle which can send and receivanfbiemation from all other vehicles.
Therefore, the coordination of all vehicles can be achieéte central vehicle has the capability
to process the information and inform each individual vihibe desired localization or command
frequently enough. Although the complexity of the cengedi approach is essentially the same

as the traditional leader-follower approach, the stringequirement of the stable communication
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among the vehicles is vulnerable because of inevitableliahces, limited bandwidth, and unre-
liable communication channels. In addition, the centealiapproach is not scalable since a more
powerful central station is required with the increasingnber of vehicles in the group.

Considering the aforementioned disadvantages of theatzeil approach, decentralized ap-
proach has been proposed and studied in the past decadesipAriant problem in decentralized
coordination is to study the effect of communication paiteon the system stability. Recently,
decentralized coordination of multi-vehicle systems hesnbinvestigated under different commu-
nication patterns, including undirected/directed fixasitching, and stochastic networks. Along
this direction, we try to solve the following several decalited coordination problems.

First, we study the decentralized coordination algoritivhen there exists no group reference
state. We mainly focus on the study of sampled-data codidmalgorithms where a group of
vehicles with double-integrator dynamics reach a desisshgetric formation via local interaction.
The main problem involved is to find the conditions on the meknopology as well as the control
gains such that coordination can be achieved.

Second, we study the decentralized coordination algostiuinen there exists one group ref-
erence state. We consider two different scenarios: consdrscking and swarm tracking. In the
continuous-time setting, the objective of consensus ingcls to propose control algorithms and
study the corresponding conditions such that all followatisnately track the leaders accurately. In
the discrete-time setting, the objective of consensuskitrtgds to propose control algorithms, show
the boundedness of the tracking errors between the folkesed the leader using the proposed al-
gorithms, and quantitatively characterize the bound. R@rs tracking problem, the objective is
to propose control algorithms and study the correspondamglitions such that the followers move
cohesively with the leaders while avoiding collision.

Third, we study decentralized coordination algorithms mwiteere exist multiple group refer-
ence states. In this case, the control objective is to gteeadhat the vehicles stay within the convex
hull, i.e., the minimum geometric space, formed by the lead@&ote that this problem is much
more challenging because the desired state is not a uniqguoe ipgt a set.

Lastly, two other important problems are considered, whighthe optimal linear consensus



4

problem in the presence of global cost functions and thensida from the study of integer-order
dynamics to that of fractional-order dynamics. The objectf the optimal linear consensus prob-
lem is to either find the optimal Laplacian matrix or the oglrooupling factor under certain global
cost functions. The objective of fractional-order cooation algorithms is to guarantee coordina-

tion for multiple fractional-order systems.

1.2 Overview of Related Work

Due to the abundance of existing literature on decentidlzmordination, we provide here
an overview that is incomplete. We summarize the relatekaocording to the following logic.
As the first step, we briefly introduce the general approacises to achieve coordination. Then
we focus on introducing those papers which are closelyaél&h the dissertation: coordination
without any group reference state, coordination with ormugrreference state, and coordination

with multiple group reference states.

1.2.1 General Coordination Approaches

The main objective of group coordination is to guaranteg¢ drgroup of autonomous vehicles
maintain a geometric configuration. The main applicatiogrofip coordination is formation control
(see [12,13] and references therein). The objective of&bion control is to guarantee that a group
of autonomous vehicles can form certain desired (possiphanhic) geometric behavior. In the
absence of any external reference state, the objectivermfation control is to design controllers
such that certain desired geometric formation can be agetiiear a group of autonomous vehicles.
Differently, when there exists an external reference sthte objective of formation control is to
design controllers for the vehicles such that they can foentatn geometric formation and track
the external reference state as a group. The approachegaisetie formation control can be
roughly categorized as leader-follower [14—18], behaliot9, 20], potential function [4,5,21-23],
virtual leader/virtual structure [12, 24—-30], graph rigid31—-35], and consensus [36—41]. In the
leader-follower approach, the vehicles who are designaseléaders can be designed to track the
desired trajectory while the vehicles who are designatdtie$ollowers can be designed to track

certain state determined by their local neighbors. Note tthe leader-follower approach can be
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considered a two-level control approach where the top isuglsponsible for the leaders while the
low level is responsible for the followers. In the behaviapproach, the behavior of the vehicles
can be categorized into several types, such as obstaclieaea, formation maintenance, and target
tracking. Accordingly, the control input for each vehictecartain time is determined by the desired
behavior of the vehicle at this time. In the potential fuantapproach, the different behaviors used
in behavioral approach are implemented via some potentiation. In particular, the potential
function for each vehicle is defined based on its state andtetes of its local neighbors. The
virtual leader/virtual structure approach is quite simitathe leader-follower approach except that
the leader in the virtual leader/virtual structure apphoadich is used to represent the desired
trajectory does not exist. In the rigidity approach, thaxfation (or shape) of a group of vehicles
is determined by the edges. By changing the edges propeeyjdsired geometric formation can
be guaranteed. In the consensus approach, the group geofoetration is achieved by properly
choosing the information states on which consensus is eglach

In addition to the aforementioned approaches, consenqueagh was also applied in for-
mation control problems from different perspectives [4t85,29, 42—49]. We will overview the

approach in detail in the following several subsection.

1.2.2 Coordination Without any Group Reference State

When there exists no group reference state, the controtilgels to guarantee that the ve-
hicles reach desired inter-vehicle deviation, i.e., farorastabilization. A fundamental approach
used in formation stabilization is consensus (also cakedlezvous or synchronization in different
settings), which means that the vehicles will reach agre¢me their final states. Accordingly,
group coordination can be easily obtained by introducirg dtate deviations into the consensus
algorithms. Consensus has been investigated extensioslydifferent perspectives. In the follow-
ing, we will review the existing consensus algorithms.

Consensus has an old history [50-52]. In the literatureseosus means agreement of a group
faced with decision making situations. As for a group betiawsharing information with each

other, or consulting more than one expert makes the deamsakers more confident [50]. Inspired
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by Vicsek et al. [52], it is shown that consensus can be aehiévthe undirected communication
graph is jointly connected [36]. Consensus is further gtdidivhen the communication graph may
be unidirectional/directed [37-39, 53]. In particulareeage consensus is shown to be achieved if
the communication graph is strongly connected and balaatedch time [37], while consensus
can be achieved if the communication graph has a directathsmatree jointly by using the prop-
erties of infinity products of stochastic matrices [39]. Bying the set-valued Lyapunov function,
Moreau [38] provided a similar condition on the communigatjraph as that in Ren and Beard [39]
to guarantee consensus.

Given the aforementioned literature on the study of consepsoblem, several directions have
also been discussed recently. The first direction is theystfidonsensus problems over stochastic
networks. The motivation here is the unstable communicaimong the vehicles. Consensus over
stochastic networks was first studied where the communitédpology is assumed to be undirected
and modeled in a probabilistic setting and consensus isrstiowe achieved in probability [54].
Consensus was further studied over directed stochastiwnret [55-57]. In particular, necessary
and sufficient conditions on the stochastic network topplagre presented such that consensus
can be achieved in probability [57].

The second direction is the study of asynchronous conseahgoisthms, which is motivated by
the fact that the agents may update their states asynctsigrimecause the embedded clocks are not
necessarily synchronized. Asynchronous consensus wdigdtirom different perspectives using
different approaches [41,58,59]. In particular, Cao edl] used the properties of “compaositions”
of directed graphs and the concept of “analytic synchraimmd Xiao and Wang [58] used the
properties of infinite products of stochastic matrices f@éntly, Fang and Antsaklis [59] used the
paracontracting theorem. Note that the approaches usedareCal. [41] and Xiao and Wang [58]
are generally used for linear systems while the approact msEang and Antsaklis [59] can be
used for nonlinear systems.

The third direction is to study consensus for general systémeluding systems with double-
integrator dynamics, fractional-order dynamics, etc. $y@tems with double-integrator dynamics,

two consensus algorithms were proposed which can guardr@eenvergence of the states with, re-
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spectively, (generally) nonzero final velocity and zerolfirdocity [60,61]. Then the sampled-data
case of the consensus algorithms was also studied [62-®4farticular, Hayakawa et al. [62] fo-
cused on the undirected network topology case while Cao and&3,64] focused on, respectively,
the fixed and switching directed network topology case. Neaey and sufficient conditions on the
network topology and the control gains were presented tcagiiee consensus [63]. However, only
sufficient conditions on the network topology and the cdnfjains were presented to guarantee
consensus because the switching topology case is much moygicated than the fixed topology
case [64]. Considering the fact that the system dynamiocsdlity may be fractional (nonintegral),
the existing study of integer-order consensus algorithms extended to fractional-order consensus

algorithms [65]. Two survey papers provide more detaildédrmation [46, 66].

1.2.3 Coordination With a Group Reference State

Coordination with a group reference state is also catleordinated tracking Here, coordi-
nated tracking refers to both consensus tracking and swaicking. The objective of consensus
tracking is that a group of followers tracks the group rafeeestate with local interaction. The
unique group reference state is also called “leader.” A ensss tracking algorithm was pro-
posed and analyzed under a variable undirected networkomp@67, 68]. In particular, the al-
gorithm requires the availability of the leader’s accdierainput to all followers and/or the design
of distributed observers. A proportional-and-derivaiitke consensus tracking algorithm under a
directed network topology was proposed and studied in battimuous-time and discrete-time set-
tings [69—71]. In particular, the algorithm requires eittiee availability of the leader’s velocity and
the followers’ velocities or their estimates, or a small piny period. A leader-follower consen-
sus tracking problem was further studied in the presencenefvarying delays [72]. In particular,
the algorithm requires the velocity measurements of tHevi@rs and an estimator to estimate the
leader’s velocity.

In addition to the consensus tracking algorithms, variooskihg and swarm tracking algo-
rithms were also studied when there exists a leader. Thetdgeof flocking or swarm tracking

with a leader is that a group of followers tracks the leadeitenthe followers and the leader main-



8

tain a desired geometrical configuration. A flocking aldoritwas proposed and studied under the
assumption that the leader’s velocity is constant and idadola to all followers [4]. Su et al. [73]
extended the results in two aspects. When the leader hastanbrelocity, accurate position and
velocity measurements of the leader are required [73]. Wheheader has a varying velocity, the
leader’s position, velocity, and acceleration should kaglable to all followers [73]. Flocking of a
group of autonomous vehicles with a dynamic leader was ddiyausing a set of switching control
laws [74]. In particular, the algorithm requires the aMailiy of the acceleration of the leader. A
swarm tracking algorithm was proposed and studied via abkristructure approach using artifi-
cial potentials and the sliding mode control technique [23]particular, the algorithm requires the
availability of the leader’s position to all followers and all-to-all communication pattern among
all followers. Both consensus tracking and swarm trackiregysalved via a variable structure ap-
proach under the following three assumptions [75]: 1) Theusal leader is a neighbor of only a
subset of a group of followers; 2) There exists only loca¢iattion among all followers; 3) The
velocity measurements of the virtual leader and all follmnia the case of first-order kinematics or
the accelerations of the virtual leader and all followerthecase of second-order dynamics are not

required.

1.2.4 Coordination With Multiple Group Reference States
Coordination with multiple group reference states is allted containment control The ob-

jective of containment control is to guarantee that theofedirs move into the convex hull, i.e.,
the minimal geometric space, formed by the group referestaes. Sometimes, the group ref-
erence states are also called “leaders.” Multiple leadenr® witroduced to solve the containment
control problem [76], where a team of followers is guided byltiple leaders. In particular, a
stop-and-go strategy was proposed to drive a collection alfile agents to the convex polytope
spanned by multiple stationary/moving leaders [76]. Nbtg )i et al. [76] focused on the fixed
undirected interaction case. Note that the interactionrendifferent agents in physical systems
may be directed and/or switching due to heterogeneity, mféoum communication/sensing pow-

ers, unreliable communication/sensing, limited commainc/sensing range, and/or sensing with
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a limited field of view. Further study was conducted to soleeahtralized containment control of
a group of mobile autonomous agents with multiple statipmmardynamic leaders under fixed and

switching directed network topologies [77].

1.3 Contributions of Dissertation

In this dissertation, we focus on the study of decentralesatdination of multiple autonomous
vehicles in the presence of none, one, and multiple groperte states. Some materials from this
dissertation have been previously published or acceptegublication in international journals
and/or conferences [63-65, 70, 75, 77—82]. Some resulesinatwet appeared elsewhere.

Decentralized coordination in the absence of any groupeete state is a very active research
topic in the systems and controls society. This dissendtiouses on studied coordination problems
for double-integrator dynamics in a sampled-data settewpbse the control inputs are generally
sampled instead of being continuous. Two sampled-datadsw@iion algorithms are proposed and
the conditions to guarantee coordination are presenteardiogly. Note that a number of coor-
dination algorithms can be employed to guarantee cooidmatWithout loss of generality, the
optimal linear consensus problems are studied in both ruoodis-time and discrete-time settings
via an linear-quadratic regulator (LQR) based approachinydhat fractional-order dynamics can
better represent the dynamics of certain systems, tharexisteger-order coordination algorithms
are extended to the fractional-order case.

Decentralized coordination in the presence of one grougreate state is also calledordi-
nated trackingincluding consensus tracking and swarm tracking. Consetnacking refers to the
behavior that the followers track the external leader wdtety. Swarm tracking refers to the behav-
ior that the followers move cohesively with the externatlieawhile avoiding collisions. Consensus
tracking is studied in both discrete-time setting and camius-time settings. In continuous-time
setting, the followers can track the group reference staterately. In discrete-time setting, the
followers can track the group reference state with boundexte Swarm tracking is studied in a
continuous-time setting.

Decentralized coordination in the presence of multipleugroeference states is also called
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containment contrglwhere the followers will converge to the convex hull formeg the group
reference states via local interaction. Containment obigistudied for both single-integrator kine-
matics and double-integrator dynamics. In addition, expental results are provided to validate

some theoretical results.

1.4 Dissertation Outline

The remainder of the dissertation is organized as follows.

In Chapter 2, we investigate coordination problems foreaystwith double-integrator dynam-
ics in a sampled-data setting without any group refererat.stTwo sampled-data coordination
algorithms are proposed and the conditions to guaranteelioation are presented accordingly. In
addition, the final equilibria are also presented if apfiealn particular, when the network topol-
ogy is fixed, we present the necessary and sufficient conditio guarantee coordination. When
the network topology is switching, we present sufficientdibans to guarantee coordination.

In Chapter 3, we investigate coordinated tracking probleboith continuous-time and discrete-
time setting. In the continuous-time setting, the coori@matracking problem is solved via a
variable structure approach. Compared with related wauk,approach requires much less state
information and the availability of the leader’s states ltdalowers is not required. Then, we in-
vestigate consensus tracking in a discrete-time settidgshow the boundedness of the proposed
algorithm. In particular, the requirement on the sampliegiqed and the bounds of the tracking
errors are provided.

In Chapter 4, we investigate containment control problementiixed/switching directed net-
work topologies. We present the necessary and/or sufficiemditions to guarantee containment
control. In addition, the equilibria are given if applicablSome experimental results are also pre-
sented to show the effectiveness of some results.

In Chapter 5, we investigate optimal linear consensus proslunder fixed undirected network
topologies. We propose two global cost functions, namaltgraction-free and interaction-related
cost functions. With the interaction-free cost functiorg derive the optimal Laplacian matrix by

using a LQR-based method in both continuous-time and destiree settings and shown that the
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optimal Laplacian matrix corresponds to a complete dickcpaph. With the interaction-related
cost function, we derive the optimal scaling factor for agpecified symmetric Laplacian ma-
trix associated with the interaction graph. Both problemesstudied in both continuous-time and
discrete-time settings.

In Chapter 6, we investigate coordination problems foreayst with fractional-order dynam-
ics. We first introduce a general fractional-order coortiommodel. Then we show sufficient
conditions on the interaction graph and the fractional ostdeeh that coordination can be achieved
using the general model. The coordination equilibrium oadxplicitly given when applicable.
In addition, we characterize the relationship between tmaber of agents and the fractional or-
der to ensure coordination. Furthermore, we compare theecgence speed of coordination for
fractional-order systems with that for integer-order eyss. It is shown that the convergence speed
of the fractional-order coordination algorithms can beroved by varying the fractional orders
with time. Lastly, we study coordination algorithms fordtnal-order dynamics in the presence
of damping terms.

In Chapter 7, we conclude the dissertation and discuss theeftesearch directions.

Appendices include two parts: graph theory notions (seesAgdix A) and Caputo fractional
operator (see Appendix B). Graph theory notions serve abdhes of the dissertation which will

be used throughout the dissertation. Caputo fractionalabqeis used in Chapter 6.
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Chapter 2
Decentralized Coordination Algorithms Without a Group Reference

State

Decentralized coordination algorithms have been invatdi) extensively for single-integrator
kinematics in both continuous-time and discrete-timersgdtwhen there exists no group reference
state [46, 66]. Taking into account the fact that equatiodhsation of a broad class of vehicles
require a double-integrator dynamic model, the decemgdlicoordination algorithms for double-
integrator dynamics have been studied recently [60, 61{e M@t decentralized coordination algo-
rithms for double-integrator dynamics are mainly studied icontinuous-time setting. However,
the control inputs in really are generally sampled rathantbeing continuous. In this chapter,
we focus on the study of decentralized coordination algor# for double-integrator dynamics in
a sampled-data setting. We first review the existing contisttime coordination algorithms for
double-integrator dynamics and propose two sampled-daiadmation algorithms, namely, coor-
dination algorithm with, respectively, absolute dampimngl aelative damping. The main part is to
investigate the convergence condition of the two cooréinaalgorithms in both fixed and switch-
ing network topologies. Finally, we present several sitotaresults to validate the theoretical

results.

2.1 Continuous-time Coordination Algorithms for Double-integrator Dynamics

Consider vehicles with double-integrator dynamics given b
T"Z' = vy, ’[)Z' = Uyj, izl,...,n, (21)

wherer; € R™ andv; € R™ are, respectively, the position and velocity of ttle vehicle, and

u; € R™ is the control input.
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A coordination algorithm for (3.14) is studied as [61, 71]

n
uz-:—Zaij(ri—éi—rj—i—éj)—avi, 1=1,...,n, (2.2)
j=1
whered;, i = 1,--- ,n, are real constants,;; is the (i, j)th entry of weighted adjacency matrix

A associated with grap, anda is a positive gain introducing absolute damping. Defig =
d;—¢;. Coordination is reached for (2.2) if for all(0) andwv;(0), r;(t) —7;(t) — A;; andv;(t) — 0
ast — oo.

A coordination algorithm for (3.14) is studied as [60]
u,-:—Zaij[(ri—5i—7“j+5j)+oz(v,-—’uj)]7 izl,...,n, (23)
j=1

where d; and a;; are defined as in (2.2) and is a positive gain introducing relative damping.
Coordination is reached for (2.3) if for al}(0) andv; (0), ;(t) — r;(t) — A;; andw;(t) — v;(t)

ast — oo.

2.2 Sampled-data Coordination Algorithms for Double-integrator Dynamics

We consider a sampled-data setting where the vehicles lwatgmgous-time dynamics while
the measurements are made at discrete sampling times atwhtin@l inputs are based on zero-order
hold as

ui(t) = wlk], KT <t< (k+ 1T, (2.4)

wherek denotes the discrete-time indek,denotes the sampling period, angk] is the control
input att = k7. By using direct discretization [83], the continuous-timgstem (3.14) can be

discretized as

2

— Ui (k]

vilk + 1] = v [k] + Tu;[K], (2.5)

rilk +1) = ri[k] + Twi[k] +

wherer;[k] andv;[k] denote, respectively, the position and velocity of ttievehicle att = k7.
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Note that (2.5) is the exact discrete-time dynamics for4Bhased on zero-order hold in a sampled-
data setting.

We study the following two coordination algorithms
wilk] = — Zn: a;j(rilk] — 0; — r;[k] + 6;) — av;lk], (2.6)
j=1
which corresponds to continuous-time algorithm (2.2) and
uilk] = — Zn; aij[(ri[k] = 6 — rj[k] + 6;) + a(wilk] — v [R])]; (2.7)
j=

which corresponds to continuous-time algorithm (2.3)s i$sumed in (2.7) that the topologies for
both relative position and relative velocity are identiaatl the following analysis also focuses on
the case when the topologies for both relative position afative velocity are identical. Note that
Hayakawa et al. [62] shows conditions for (2.7) under an ngutied interaction topology through
average-energy-like Lyapunov functions. Relying on atgebgraph theory and matrix theory, we
will show necessary and sufficient conditions for conveogeaf both (2.6) and (2.7) under fixed
undirected/directed interaction.
In the remainder of the chapter, for simplicity, we suppdsg t; € R, v; € R, andu; € R.

However, all results still hold for; € R™, v; € R™, andu; € R™ by use of the properties of the

Kronecker product.

2.3 Fixed Interaction Case
In this section, we assume that the network topology is fiked,a;; is constant. We usg

and.A to represent, respectively, the communication graph amddhresponding adjacency matrix.

2.3.1 Convergence Analysis of Sampled-data Coordinationlgorithm with Absolute Damp-
ing
In this section, we analyze algorithm (2.6) under, respelsti an undirected and a directed

interaction topology. Before moving on, we need the follogviemmas:
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A B
Lemma 2.3.1 (Schur's formula) [84] Let A,B,C,D € R™ "™, LetM = . Then
C D

det(M) = det(AD — BC), wheredet(-) denotes the determinant of a matrix,Af B, C, and

D commute pairwise.

Lemma 2.3.2 Let £ be the nonsymmetric Laplacian matrix (respectively, Lajala matrix) associ-
ated with directed graply (respectively, undirected gragh). ThenZ has a simple zero eigenvalue
and all other eigenvalues have positive real parts (respelyt, are positive) if and only i/ has a
directed spanning tree (respectively, is connected). biitamh, there existl,, satisfying£1,, = 0
andp € R" satisfyingp > 0, p’ £ = 0, andp”’'1,, = 1, wherel,, € R" isn x 1 column vector of

all zeros?

Proof: See Merris [85] for the case of undirected graphs and Ren a&addg39] for the case of

directed graphs. [ |

Lemma 2.3.3 [86, Lemma 8.2.7 part(i), p. 498Jet A € R™*"™ be given, let\ € C be given,
and suppose: and y are vectors such that (ilz = Az, (i) ATy = Ay, and (ii) 27y = 1. If
|A| = p(A) > 0, wherep(A) denotes the spectral radius df, and X is the only eigenvalue ol

with modulusp(A), thenlim,, oo (A7 A)™ — ayT.

Using (2.6), (2.5) can be written in matrix form as

Flk+1 L —Zr (T-°L)1,| |7k
k)| e Be @ || .
v[k + 1] -TL (1—aoT)L, | |v[K]
F
wherei = [Fy,..., 77, 7t = 7 — &, v = [v1,...,v,])T, and I,, denote then x n identity

matrix. Therefore, coordination is achieved if for anj0] andv;[0], 7 [k] — 7;[k] andv;[k] — 0

That is,1,, andp are, respectively, the right and left eigenvector£afssociated with the zero eigenvalue.
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ask — oo. To analyze (2.34), we first study the propertiestaf Note that the characteristic

polynomial of I, is given by

det(sla, — F)

sl, — (I, — 2£) —(T — L)1,
= et ( 5 L) ( 5)
TC sl, — (1 —aT)l,

T2
=det ([sI,, — (I, — 75)][31} — (1 —ao)I,]
ad?
- @Ll-(r - C)L)

2

T
=det <(32 —2s+als+1—al)l, + 7(1 + s)ﬁ)

where we have used Lemma 2.3.1 to obtain the second to theglaslity.
Letting 1; be theith eigenvalue of-£, we getdet(sl,, + £) =[]}, (s — ;). It thus follows

thatdet(slo, — F) = [[i-, (32 —2s+als+1—-aT — %2(1 + s),u,-). Therefore, the roots of

det(sla, — F) = 0, i.e., the eigenvalues df, satisfy

17 T2
82+(aT—2—7ui)s+1—aT—7pi:0. (2.9)

Note that each eigenvalue ofL, 1;, corresponds to two eigenvalues Bf denoted by\,; 1 and
A2

Without loss of generality, let; = 0. It follows from (2.9) that\; = 1 and X, = 1 — oT.
Therefore,F has at least one eigenvalue equal to one.[ketq” |7, wherep, ¢ € R, be the right
eigenvector off” associated with eigenvalug = 1. It follows that

L —ZL (T-TH1,| |p| |p

-TL (I1—aT)I, | |q q

After some manipulation, it follows from Lemma 2.3.2 that @an choose = 1,, andg = 0,41,

where0,,«1 is then x 1 column vector of all zeros. For simplicity, we sometimes @séo replace

0,1 without ambiguity. Similarly, it can be shown tht?, (1 — 2)pT|7 is a left eigenvector of

a
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I associated with eigenvalug = 1.

Lemma 2.3.4 Using (2.6) for (2.5), 7;[k] — pT#[0] + (£ — L)pTv[0] andv;[k] — 0 ask — oo
if and only if one is the unique eigenvalue Bfwith maximum modulus, whege is defined in

Lemma 2.3.2.

Proof: (Sufficiency.) Note thai: = [12, 0117 andy = [p”, (2 — L)p”|T are, respectively, a right

n»-n a 2

and left eigenvector of” associated with eigenvalue one. Also note thhy = 1. If one is the

unique eigenvalue with maximum modulus, then it followsrirbemma 2.3.3 thalfimy . FF —

7k 70
pT, (2 — L)p?]. Therefore, it follows thatimy_.. i = limy_ o F* ) =

0, v|k] v[0]

(Necessity.) Note thak’ can be written in Jordan canonical form&s= P.JP~!, where.J is

the Jordan block matrix. i;[k] — p”#[0] + (£ — Z)pTv[0] andv;[k] — 0 ask — oo, it follows

1
thatlimy_c F* — | pT, (

0,
has rank one, which implies that all but one eigenvalue ati@nvihe unit circle. Noting that' has

— 2)pT], which has rank one. It thus follows thiiny, . J*

Q=

at least one eigenvalue equal to one, it follows that onesisitiique eigenvalue df with maximum

modulus. [ |

Undirected Interaction
In this subsection, we show necessary and sufficient conditbna and7” such that coordi-
nation is reached using (2.6) under an undirected interadtipology. Note that all eigenvalues of

L are real for undirected graphs.

Lemma 2.3.5 The polynomial

s?+as+b=0, (2.10)

wherea, b € C, has all roots within the unit circle if and only if all roots o

(I+a+b)t* +201-bt+b—a+1=0 (2.11)
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are in the open left half plane (LHP).

Proof: By applying bilinear transformation = % [87], polynomial (2.10) can be rewritten as
(t+1)2+alt+1)(t—1)+bt—1)>=0,

which implies (2.11). Note that the bilinear transformatimaps the open LHP one-to-one onto the

interior of the unit circle. The lemma follows directly. [ |

Lemma 2.3.6 Suppose that the undirected graghs connected. All eigenvalues Bf whereF' is
defined in(2.34), are within the unit circle except one eigenvalue equal te ibrand only ifa: and

T are chosen from the set

2

T
Sy = {(a,T)|—7 jn,ui<ozT<2}.2 (2.12)

Proof: When undirected grapfiis connected, it follows from Lemma 2.3.2 that = 0 andy; < 0,
i=2,...,n. Becausgu; = 0, it follows thatA\; = 1 andXs = 1 — oT. To ensurgd)s| < 1, itis
required thad < oT' < 2.

Leta = oT — 2 — TTQM andb = 1 — oT — %2;”. It follows from Lemma 2.3.5 that for

wi < 0,2 =2,--- n,the roots of (2.9) are within the unit circle if and only if edots of
—T?pit? 4+ (T?p; + 20Tt +4 — 20T =0 (2.13)

are in the open LHP. Becausel?y; > 0, the roots of (2.13) are always in the open LHP if and
only if T2; + 2aT > 0 and4 — 2aT > 0, which implies that-LZ*j;; < oT < 2,i = 2,...,n,

Combining the above arguments proves the lemma. [ |

Theorem 2.3.1 Suppose that undirected grapghis connected. Leb be defined in Lemma 2.3.2.
Using (2.6)for (2.5), #;[k] — pT7[0] + (£ — Z)pTv[0] andv;[k] — 0 ask — oc if and only ifa
andT" are chosen frond,., whereS, is defined by2.12)

“Note thatS,. is nonempty.
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Proof: The statement follows directly from Lemmas 2.3.4 and 2.3.6. [ |

2

Remark 2.3.2 From Lemma 2.3.6, we can gét < From the Gershgorin circle theorem,

Ve
we know thatly;| < 2max; ;. Therefore, if7’ < /2., then we havel’ < \/%_u Note

that max; £;; represents the maximal in-degree of a graph. Thereforesttigcient bound of the

sampling period is related to the maximal in-degree of a brap

Directed Interaction

In this subsection, we first show necessary and sufficientlitons ona and 7" such that
coordination is reached using (2.6) under a directed iotera topology. Because it is not easy to
find the explicit bounds forx andT" such that the necessary and sufficient conditions are sedljsfi
we present sufficient conditions that can be used to competexplicit bounds forv and7’. Note
that the eigenvalues of may be complex for directed graphs, which makes the anatysie

challenging.

Lemma 2.3.7 Suppose that the directed graghhas a directed spanning tree. LRe(-) andIm(-)
denote, respectively, the real and imaginary part of a numbéere existoc and T’ such that the
following three conditions are satisfied:

10< ol <2

2) WhenRe(u;) < 0 andIm(u;) =0, (o, T') € S,, whereS,. is defined in(2.12)

3) WhenRe(;) < 0 andIm(p;) # 0, o and7 satisfy & > —21%'(52,) and

)T < Ty if Al < < Il \yhere
) L VR = %= VRe(m)

—2a[Re(w;)]* — 2\/ Re (i) [Im(p;)]2[?Re(p;) + ‘Mi‘z],

T = ; (2.14)
Re(p z)\m!z
i) T < Ty if a < 2wl \where
—Re(us)
_ 2 ) AP
7. _ —20[Re(1)] ]2 + 2¢/—Re (i) [Im (1) [0?Re (i) + | I (2.15)

e T ITE
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In addition, all eigenvalues aof’', whereF' is defined in2.34), are within the unit circle except one

eigenvalue equal to one if and only if the previous three ttmms$ are satisfied.

Proof: For the first statement, whéhis sufficiently small, there always existssuch that conditions
1), 2), and 3) are satisfied.

For the second statement, when= 0, it follows that\; = 1 andA, = 1 — aT". Therefore,
condition 1) guarantees that is within the unit circle. WherRe(p;) < 0 andIm(p;) = 0, it
follows from Lemma 2.3.6 that all roots df corresponding tq; are within the unit circle if and
only if condition 2) is satisfied.

We next consider the case whBr(yx;) < 0 andIm(u;) # 0. Lettingt; andt, be the two
1

Re(p)

roots of (2.13), it follows thaRe(t1) + Re(t2) = 1 + 2% P Therefore, both; andt, are in

the open LHP only ifl + Q%R‘Z(_"‘;) <0,ie,g > —%. To find the bound o, we assume

that one root of (2.13) is on the imaginary axis. Without loggenerality, lett; = xj, wherey
is a real constant angis the imaginary unit. Substituting = xj into (2.13) and separating the

corresponding real and imaginary parts give that

T?Re (i) x? — T Im(ps)x + 4 — 207 = 0 (2.16)

T2Im(ps) X% 4 [T?Re(p;) + 20Ty = 0. (2.17)

It follows from (2.17) that
_ TRe(pi) + 2a

Thm(p) (2.18)

X =
By substituting (2.18) into (2.16) gives that

Re () [TRe () + 20

[Tm ()2 + T[TRe(pi) + 2a] +4 — 2aT = 0.

After some simplifications, we get that

Re (i) | *T? + 4a[Re (1) T + 40”Re(u;) + 4[Tm(p;)]? = 0. (2.19)
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Whena > % it can be computed that
—Re (i)
{4afRe(u)]?}” — 4Re(uy) s 2 (40> Re(p;) + AlIm (117)]?)
= — 16 {a®[Re(u:)]*[Tm (1)]” + Re () il [l (12:))* }
= — 16Re(u;) [T ()] *[0*Re(pi) + |pi]]

<0.

Therefore, there does not exists positivesuch that; (respectivelyis) is on the imaginary axis,
which implies that; (respectivelyi,) is always on the left or right hand side. Wh méﬂz") <
—he(p

a < \/% it follows that4a?Re(u;) + 4[Im(p;)]? > 0. Noting thatRe(u;)|u]® < 0, it
follows that there exists a unique positi#&; such that (2.19) holds whefi = T;;, whereT;;
is given by (2.14). Similarly, when < &% it follows that4a?Re(u;) + 4[Im(u;)]? < 0.
Noting also thafRe(u;)|u;|? < 0, it follows that there are two positive solutions with theaster
one given byT';». This completes the proof.

Combining the previous arguments completes the proof. [ |

Theorem 2.3.3 Suppose that directed gragh has a directed spanning tree. Lptbe defined in
Lemma 2.3.2. UsingR.6) for (2.5), 7;[k] — pT7[0] + (£ — £)pTv[0] andv;[k] — 0 ask — oc if

and only ifa andT" are chosen satisfying the conditions in Lemma 2.3.7.

Proof: The statement follows directly from Lemma 2.3.4 and Lemn3ar72. [ |
From Lemma 2.3.7, it is not easy to find and 1" explicitly such that the conditions in
Lemma 2.3.7 are satisfied. We next present a sufficient dondit which o andT can be eas-

ily determined. Before moving on, we need the following leasn

Lemma 2.3.8 [88, 89]All the zeros of the complex polynomial

P(z)=2"+ a2 VL ap_1z+ ap
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satisfy|z| < rg, wherer is the unique nonnegative solution of the equation
" — o[t — = |ap_1|r — |am| = 0.

The boundr is attained ifa;; = —|ay].

Corollary 2.3.4 All roots of polynomial2.10)are within the unit circle ifia| + |b| < 1. Moreover,

if |a 4+ b| + |a — b] < 1, all roots of (2.10)are still within the unit circle.

Proof: According to Lemma 2.3.8, the roots of (2.10) are within tiné gircle if the unique non-
negative solutionsy of s> — |a|s — |b| = 0 satisfiessy < 1. It is straightforward to show that

so = VI Therefore, the roots of (2.10) are within the unit circle if

la| + +/|a|> + 4]b| < 2. (2.20)

We next discuss the condition under which (2.20) holdsb K 0, then the statements of the

corollary hold trivially. If |b| # 0, we have

(lal + /IaP AT~ lal + VP + D) _
~lal + /e + 4]0

After some computation, it follows that condition (2.20ipuivalent tda|+ |b| < 1. Therefore, the

first statement of the corollary holds. For the second statgnbecause:| + |b| < |a+b|+]a—b

if |a+ 0|+ |a — 0| < 1, then|a| + |b] < 1, which implies that the second statement of the corollary

also holds. [ |

Lemma 2.3.9 Suppose that directed graghhas a directed spanning tree. There exist positive

andT such thatS. N S, is nonempty, where

S, = N {(a, 7)1 4 T?ps) + |3 — 2aT) < 1}, (2.21)
VRe(u;)<0 and Im(p; ) 7#0

and S, is defined by2.12) If « andT are chosen frony.N S,., then all eigenvalues df are within

the unit circle except one eigenvalue equal to one.
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Proof: For the first statement, we lefl’ = 3. WhenRe(y;) < 0 andIm(p;) # 0, |1+ T?p;] +

|3 — 2aT| < 1 implies |1 + T?u;| < 1 becausenT = 3. It thus follows that0 < T <

|

7_|22T(“i)' YRe(u;) < 0 andIm(y;) # 0. Wheny; < 0, —Z'y; < oT < 2 can be simpli-

fied as—T%; < 3 becausenT = 3. It thus follows that0 < 7' < ,/_iw, Vi < 0. Let

—2Re(p:)
T. = ﬂVRe(Mz‘KO andIm(u;)#0 {T|0 <T< T} and7, = ﬂVMSO {T|O <T< —iuz}g

It is straightforward to see thdt. N7, is nonempty. Recalling that7 = % it follows thatS. N S,
is nonempty as well.

For the second statement, note that if directed gi@ptas a directed spanning tree, then it
follows from Lemma 2.3.2 that; = 0 andRe(y;) < 0, ¢ = 2,...,n. Note thatu; = 0 implies
that\; = 1 and\s = 1 — oT'. To ensure that\s| < 1, it is required thab < o7 < 2. When
Re(p;) < 0 andIm(p;) # 0, it follows from Corollary 2.3.4 that the roots of (2.9) ardtlin the
unit circle if [1+72u;|+|3—2aT| < 1, where we have used the second statement of Corollary 2.3.4
by lettinga = o7 — 2 — %2;” andb =1 — %2;” —aT. Wheny; < 0, it follows from the proof of
Lemma 2.3.6 that the roots of (2.9) are within the unit cilitIeT;M < oT < 2. Combining the

above arguments proves the second statement. [ |

Remark 2.3.5 According to Lemmas 2.3.4 and 2.3.9ifand T' are chosen front. (.S, and
directed graphG has a directed spanning tree, coordination can be achieVtihately. An easy
way to chooser and 7" is to letaT = % It then follows thatl” can be chosen satisfyinf <

; | i : 3
min . . —2i_ and7 < min ) N -,
VRe(ui)<0 and Im(p;)7#0 /—Re()) VRe(pi)<0 and Im(u;)=0 \/ —p;

2.3.2 Convergence Analysis of Sampled-data Coordinationlgorithm with Relative Damp-
ing
In this section, we analyze algorithm (2.7) under, respelsti an undirected and an directed

interaction topology.

SWhenyu; = 0, T > 0 can be chosen arbitrarily.
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Using (2.7), (2.5) can be written in matrix form as
7k + 1] L -Zr 11, - ZC| |7k

_ . (2.22)
v[k + 1] -TLC I, —aTL | |v]k]

G

Coordination is achieved if for any[0] andw;[0], 7;[k] — 7;[k] andv;[k] — v;[k] ask — oc.
A similar analysis to that for (2.34) shows that the rootsdef(sls, — G) = 0, i.e., the

eigenvalues of7, satisfy
2 1 2 1 2
s — (24 aTu; + §T wi)s + 1+ aTp; — §T i = 0. (2.23)

Similarly, each eigenvalue 6f L, ;, corresponds to two eigenvalues@f denoted by, ; and
p2;. Without loss of generality, let; = 0, which implies thatp; = p» = 1. Therefore,GG has at

least two eigenvalues equal to one.

Lemma 2.3.10 Using (2.7) for (2.5), 7;[k] — p? #[0] + kT'p’v[0] andv;[k] — pTv|[0] for large k
if and only if G has exactly two eigenvalues equal to one and all other eajaes have modulus

smaller than one.

Proof: (Sufficiency.) Note from (2.23) that iz has exactly two eigenvalues equal to one, i.e.,
p1 = p2 = 1, then—L has exactly one eigenvalue equal to zero. [pét ¢” ", wherep, ¢ € R",
be the right eigenvector @ associated with eigenvalue one. It follows that

2 2
n_TTﬁ T[n_TTE p p

-TL I,—alLl q q

After some computation, it follows that eigenvalue one hasngetric multiplicity equal to one
even if it has algebraic multiplicity equal to two. It alsdlfas from Lemma 2.3.2 that we can
choosep = 1,, andg = 0,,. In addition, a generalized right eigenvector associatithl @genvalue
one can be chosen &, #1717, Similarly, it can be shown thdo!, TpZ]" and[p”,0%]" are,

respectively, a left eigenvector and generalized left migetor associated with eigenvalue one.
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Note thatG can be written in Jordan canonical form @= P.JP~!, where the columns oP,
denoted byp,, &k = 1,...,2n, can be chosen to be the right eigenvectors or generaliggd ri
eigenvectors of7, the rows of P!, denoted b)q,{, k =1,...,2n, can be chosen to be the left
eigenvectors or generalized left eigenvector&:aduch thaipl ¢, = 1 andpl ¢, = 0, k # ¢, and
J is the Jordan block diagonal matrix with the eigenvalue&/dieing the diagonal entries. Note
thatp; = py = 1 andRe(py) < 0, k = 3,...,2n. Also note that we can choogg = [11, 0177,

n»=n

pe = [0F, L1177, ¢; = [pT,01]7, andgs = [0, TpX]". It follows thatG* — PJ*P~1 —

nyT+n
1, O 1 k| [p" 0} 1,p" kT1,p”
A = | "7 . Therefore, it follows that;[k] —
0, #1,| [0 1| |0l Tp” 0, 1,p”
T

p ' 7[0] + kTpTv[0] andv;[k] — pTv[0] for largek.

(Necessity.) Note thaf’ has at least two eigenvalues equal to one7;f] — p”#[0] +
kTpv[0] andv;[k] — pTv[0] for largek, it follows that 7% has rank two for large, which in turn
implies thatJ* has rank two for largé. It follows thatG has exactly two eigenvalues equal to one

and all other eigenvalues have modulus smaller than one. [ |

Undirected Interaction
In this subsection, we show necessary and sufficient conditbna and7” such that coordi-

nation is reached using (2.7) under an undirected interattipology.

Lemma 2.3.11 Suppose that undirected graghis connected. All eigenvalues Gfare within the

unit circle except two eigenvalues equal to one if and ondyahdI” are chosen from the set

17 2 4
Qr ={(a,T)| 5 <ol < —— : (2.24)
2 min; fu;
Proof: Because undirected graghis connected, it follows that; = 0 andy; < 0, i =2,--- | n.

Note thatp; = p» = 1 becausey = 0. Leta = —(2+aT'y; + 5T%u;) andb = 1+aTp; — 3T ;.

It follows from Lemma 2.3.5 that for; < 0,7 = 2,...,n, the roots of (2.23) are within the unit

“Note thatQ,. is nonempty.
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circle if and only if all roots of
—T?pit? 4+ (T% i — 20T i)t + 4 + 20T p; = 0, (2.25)

are in the open LHP. Becausel?y; > 0, the roots of (2.25) are always in the open LHP if and
only if 4 4+ 2aTp; > 0 andT?u; — 2o ; > 0, which implies tha‘f%2 <ol < —“l 1=2,...,n.

Combining the above arguments proves the lemma. [ |

Theorem 2.3.6 Suppose that undirected grapghis connected. Legp be defined in Lemma 2.3.2.
Using(2.7), 7;[k] — p?#[0] + kTpTv[0] andv;[k] — pTv[0] for large k if and only ifa and T are
chosen fromQ,., where(,. is defined by2.24)

Proof: The statement follows directly from Lemmas 2.3.10 and 4.3.1 [ |

Directed Interaction
In this subsection, we show necessary and sufficient conditbna and7” such that coordi-
nation is reached using (2.7) under a directed interactipology. Note again that the eigenvalues

of £ may be complex for directed graphs, which makes the anatysie challenging.

Lemma 2.3.12 Suppose thaRe(u;) < 0 andIm(p;) # 0. All roots of (2.23) are within the unit

circle if and only if¢ > 1 and B; < 0, where

4Re(p;) a a 16Im (p1)?

B, = (—Y 4+ 2)(1 - 2 . 2.26
Gupre T30 =20 T (2.26)

Proof: As in the proof of Lemma 2.3.11, all roots of (2.23) are witttie unit circle if and only if

all roots of (2.25) are in the open LHP. Letting ands» denote the roots of (2.25), it follows that

[0
s1+sy=1-— 2T (2.27)
and
4
5189 = — Y (2.28)
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Noting that (2.27) implies thdim(s;) + Im(s2) = 0, we defines; = a1 + jb andsy = as — jb,
wherej is the imaginary unit. Note that ands, have negative real parts if and onlyif + as < 0
andajaz > 0. Note from (2.27) that; + a2 < 0 is equivalent tox > % We next show conditions
on « andT such thata;as > 0 holds. Substituting the definitions ef and s, into (2.28), gives

aras +b? + jlaz — ay)b = —ﬁ — 22, which implies that

Alm (417)
(CL2 — CLl)b = W (229)
_|_b2_ie(“i)_29 (2.30)
a1a9 == |,LLZ'|2T2 T. .
It follows from (3.51) that = — (i) ;. Consider also the fact thét, —a1)? = (a2 +a1)? -

il *T*(az—a1
daray = (1 — 2%)? — 4aja,. After some manipulation, (3.52) can be written as

4(&1&2)2 + Ajar1a0 — B; = 0, (2.31)
whereA; = 4(“1575‘;2) +2%) — (1 —22)? andB; is defined in (2.26). It follows thatl? + 16B; =
AR +28) + (1 — 24)%2 + 2 > 0, which implies that (2.31) has two real roots.

Therefore, necessary and sufficient conditionsdgat, > 0 areB; < 0 andA; < 0. Because

16Im (p;)?

i > 0, if B; <0, then4(4RC(“i) +2£) < 0, which impliesA4; < 0 as well. Combining the

i [2T2

previous arguments proves the lemma. [ |

Lemma 2.3.13 Suppose that directed graghhas a directed spanning tree. There exist positive

andT such thatQ. N @, is nonempty, where
Q. — N {(a L <2 B-<O} (2.32)
c ) 2 T? (2 ) .
VRe(p;)<0 and Im(p; )#0
where B; is defined by(2.26)and Q.. is defined by{2.24) All eigenvalues of7 are within the unit

circle except two eigenvalues equal to one if and ondy@ind 7" are chosen frond),. N Q..

Proof: For the first statement, we let > 7" > 0. WhenRe(x;) < 0 andIm(y;) # 0, it follows

that% > I holds apparently. Note that > T implies (T — 2a)? > o?. Therefore, a sufficient
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condition forB; < 0 is

2 .
—SIm(fZg B 2Re(/212)' (2.33)
il |

ol <

To ensure that there are feasible> 0 andT" > 0 satisfying (2.33), we first need to ensure that

the right side of (2.33) is positive, which requires> _2tma)l 1t also follows from (2.33
¢ (2 )isp q ||/ —Re(pq) ( )
that 7 < —Sf/fl‘(fa), — Qiie'(é‘a) VRe(u;) < 0 andIm(y;) # 0. Therefore, (2.32) is ensured

to be nonempty ifv andT" are chosen from, respectively. = (Vyge(u)<0 andtm (2ol >

2[Im (p3)|
|pily/—Re(p:)

Note that (2.24) is ensured to be nonempty &ind7" are chosen from, respectively, = {a|a >

Tm ()2 Re(u;
} and7;, = mVRc(ui)<0 andIm(,ui);EO{T’T < — S 2Rels) and0 < T' < Oé}.

|pil*a® IR

0} and7; = Ny, <o{710 < T < 2a andT’ < —2-}. Itis straightforward to see that bath N a,
and7. N T, are nonempty. Combining the above arguments showgxhat@, is nonempty.

For the second statement, note that if directed g@plas a directed spanning tree, it follows
from Lemma 2.3.2 that;; = 0 andRe(u;) < 0,7 = 2,...,n. Note thaty; = 0 implies that
p1 = landpy = 1. WhenRe(y;) < 0 andIm(u;) # 0, it follows from Lemma 2.3.12 that the
roots of (2.23) are within unit circle if and only & > % and B; < 0. Wheny; < 0, it follows
from Lemma 2.3.11 that the roots of (2.23) are within unitleirif and only if%2 <ol < —ul
Combining the above arguments shows that all eigenvalués ae within the unit circle except

two eigenvalues equal to one if and onlydfandT" are chosen fron@. N Q.. |

Remark 2.3.7 From the proof of the first statement of Lemma 2.3.13, an eagytevchoosex and
T is to leta > T. Thena is chosen fromx. and T is chosen fron¥,. () 7., wherea,, T,, and T,

are defined in the proof of Lemma 2.3.13.

Theorem 2.3.8 Suppose that directed graghhas a directed spanning tree. Usi{@.7), 7;[k] —
p?7[0] + kTpTv[0] andv;[k] — p?v[0] for large k if and only ifa andT" are chosen fron®).N Q.
whereQ. andQ), are defined in2.32)and (2.24), respectively.

Proof: The proof follows directly from Lemma 2.3.11 and Theorem 233 [ |

Remark 2.3.9 Note that it is required in Theorems 2.3.3 and 2.4.3 that thmmunication graph

has a directed spanning tree in order to guarantee coorddamat The connectivity requirement in
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Theorems 2.3.3 and 2.4.3 can be interpreted as follows. Egoap of vehicles, if the communica-
tion graph does not have a directed spanning tree, then theof vehicles can be divided into at
least two disconnected subgroups. Because there is no coicatian among these subgroups, the

final states of the subgroups in general cannot reach coatin.

2.3.3 Simulation

In this section, we present simulation results to validaetheoretical results derived in Sec-
tions 2.4.1 and 2.4.2. We consider a team of four vehiclels dirfected graplyy shown by Fig. 2.1.
Note thatG has a directed spanning tree. The nonsymmetric Laplacianxnagsociated witl§ is

chosen as

It can be computed that fof, p = [0.4615,0.3077,0.2308,0]7. Here for simplicity, we have
chosemy; =0, i=1,---,4.

For coordination algorithm (2.6), let{0] = [0.5,1,1.5,2]7 andv[0] = [-0.1,0,0.1,0]".
Fig. 2.2(a) shows the convergence result using (2.6) wite- 4 andT = 0.4 sec. Note that
the conditions in Theorem 2.3.3 are satisfied. It can be de®rcoordination is reached with the
final equilibrium forr;[k] being0.8835, which is equal tp”#[0] + (£ — Z)pTv[0] as argued in
Theorem 2.3.3. Figure 2.2(b) shows the convergence resinlg ((2.6) witha, = 1.2 andT = 0.5
sec. Note that coordination is not reached in this case.

For coordination algorithm (2.7), lef0] = [0,1,2,3]" andv[0] = [0,0.2,0.4,0.6]”. Fig-
ure 2.2(c) shows the convergence result using (2.7) witk 0.6 and7T = 0.02 sec. Note that
the conditions in Theorem 2.4.3 are satisfied. It can be de®rcoordination is reached with the
final equilibrium foruv; [k] being0.1538, which is equal tg” v[0] as argued in Theorem 2.4.3. Fig-

ure 2.2(d) shows the convergence result using (2.7) wits 0.6 and7" = 0.5 sec. Note that

coordination is not reached in this case.
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Fig. 2.1: Directed grapl for four vehicles. An arrow fronj to i denotes that vehiclecan receive

information from vehiclej.
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Fig. 2.2: Convergence results using (2.6) and (2.7) witfedéht o and T values. Note that co-
ordination is reached in (a) and (c) but not in (b) and (d) delpey on different choices at and

T.

2.4 Dynamic Interaction Case

In this section, we assume that the network topology switciteeach sampling point and

remains constant at each sampling period. Let directechgfamlenote the interaction graph for

the n vehicles fort € [kT;(k + 1)T),k

0,1,---. We useA, to represent the corresponding
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adjacency matrix associated with.

2.4.1 Convergence Analysis of Sampled-data Algorithm witlibsolute Damping under Dy-
namic Directed Interaction
In this section, we show sulfficient conditions @', and directed grap§; such that coordi-
nation is achieved using (2.6) under dynamic directed aat&on.

Using (2.6), (2.5) can be written in matrix form as

ik +1 I,—Z2r, (T—-°TH1,| |7k
| B R S NEC 030
v[k +1] —TLy, (1—aoD)I, | |v[k]
Fy,
where7 = [F1,..., 7|7 with 7 = r; — &, v = [vy,...,v,]7, and Ly is the (nonsymmetric)

Laplacian matrix associated withy, for ¢ € [kT', (k + 1)T"). Note that the solution of (2.34) can be

written as
rlk+1 B, C 70
F+1| | Be Gl |il0| .39
v[k + 1] Dy Ex| |v[0]
By Ck| A .
where = F.F}_1--- Fy. Therefore,By, Cy, Dy, and . satisfy
D, E.
; _ ) T
By, _ I,—L-cp (T -2, |Bea | (2.36)
Dy, —TL; (1—-aD)I, D4
and _ ~ o
C I,— 2. (T-°CHr1,| |Cn
Mo zbe (T=57) = (2.37)
Ek —Tﬁk (1 — aT)In Ek—l

Lemma 2.4.1 Assume thatv" # 2. Using(2.6)for (2.5), r;[k] — 7;[k] — A;; andv;[k] — 0 as
k — oo if limy,_ ., By exists and all rows ofim,,_. ., By, are the same for any initial matrice8,

and Dy.
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Proof: Whenlimy,_. ., Bj, exists and all rows ofimy,_. ., By, are the same for any initial matrices
By and Dy, it follows thatlimy_.., C). exists and all rows ofim;_.., C}. are the same for any
initial matricesCy and Fy as well because (2.36) and (2.37) have the same structanenlfollows
from (2.36) that

2 T2

T «
By =By_1— 7£k3k—1 + (T — T)Dk—l-

Because’,.1,, = 0,1 and all rows ofimy,_, . Bj._; are the same, it follows théin_, .. L. Bj_1 =

0,,xn. It thus follows that

: oT? :
lim (T'— ——)Dy—1 = lim (Bg — Bi—1) = Onxn.
k—o0 2 k—o0

BecausenT # 2,i.e.,T — QTTQ = 0, it follows thatlimy .., D = 0,,x, for any initial matrices
By and Dy. Similarly, it follows thatlim,_.., Ex = 0,x, for any initial matricesCy and Ey
because (2.36) and (2.37) have the same structure. Comlirprevious arguments with (2.35)
shows that’;[k] — 7;[k] andv;[k] — 0 ask — oo, which implies that-;[k] — r;[k] — A;; and
v;[k] — 0 ask — oo. [ |
We next study the conditions @n 7', and the directed gragh, such that all rows dfimy,_. ., B
are the same for any initial matricé% andD,. Before moving on, we need the following lemmas

and corollary.

Lemma 2.4.2 [36] Letm > 2 be a positive integer and |&®,, P, - - - , P, be nonnegative. x n
matrices with positive diagonal entries, thénPs --- P,,, > (P, + P, + - - - + By, wherey > 0

can be specified from matricé%,i = 1,--- ,m.

Lemma 2.4.3 Assume that the directed graph of a row stochastic matrixk R™”*" has a directed

A A
spanning tree. Then the directed graph |of also has a directed spanning tree.
A A
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. A A _
Proof: Note that§ can be written as

® A,

N —
NI— N
NI— N

11
where® denotes the Kronecker product. It can be computed that denealues of 2 21 are
11
2 2
0 and 1. Assume that the eigenvalues dfare \{,--- , \,,. It follows that the eigenvalues of
1A A _ _
5 are0,\,---,0,\, by using the properties of the Kronecker product. Because th
A A

directed graph ofd has a directed spanning tree, it follows from Corollary [39] that A has one

A A
simple eigenvalue equal to one, which implies tb t also has one simple eigenvalue equal
A A

A A
to one. Becausé is a row stochastic matrix, it then follows from Corolladyb [39] that
A A
_ A A _ _ - _ _
the directed graph 0} has a directed spanning tree, which in turn implies that iteetbd
A A

A A
graph of also has a directed spanning tree. [ |
A A

Corollary 2.4.1 Assume that every row of a nonnegative mattixx R™*" has the same sum. If
_ _ _ _ A A
the directed graph ofd has a directed spanning tree, the directed graph| of also has a

A A
directed spanning tree.

Lemma 2.4.4 Suppose thatl € R™"*" is a row stochastic matrix with positive diagonal entriess. |

the directed graph ofi has a directed spanning tree, thenis SIA.

Proof: See Corollang.5 and Lemmes.7 [39]. |
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Lemma 2.4.5 [90] Let S1, 59, , S, € R™™ be a finite set of SIA matrices with the property

that for each sequencs;,, S;,,--- ,S;; of positive length, the matrix produc; S;,_, ---S;, is
SIA. Then, for each infinite sequengg, S;,, - - -, there exists a column vectgrsuch that

lim SijSij,1 e Si1 = 1nyT.

Jj—00

Based on the previous lemmas and corollary, we have thenfoliplemma regarding the con-

ditions onc, T" and the directed graply. such that all rows ofim,_. ., By, are the same.

Lemma 2.4.6 Let &y, = (2 — aT)I, — L2L; and®yy = (aT — 1)1, — L2 L4y, whereLy, k =
0,1,---, are the (nonsymmetric) Laplacian matrices associated withfor ¢ € [kT, (k + 1)T).
There exist positivee and 7" such that bothd,; and ¢, are nonnegative matrices with positive
diagonal entries. If positivec andT" are chosen such that both,,; and ®,, are nonnegative with
positive diagonal entries, and there exists a positivegate such that for any nonnegative integer

ko, the union ofGy, acrossk € [ko, ko + ] has a directed spanning tree, the iteration
By = @31 Bip—1 + ProBi—2 (2.38)

is stable for any initial matrice®3; and B; and all rows oflim;,_. ., B;, are the same.

Proof: For the first statement, considef” = 3. It follows that if 7 < min; %[k], k=0,1,---,
where/;;[k] is theith diagonal entry of,, then both®,,; and®;, are nonnegative matrices with
positive diagonal entries.
For the second statement, rewrite (2.38) as
By, _ Qp1 Pp2 | | Br-1 . (2.39)
Bi_4 I, Onxn| | Bi-2

Hy,

When positivex andT” are chosen such that both,; and®;, are nonnegative matrices with posi-

tive diagonal entries, it follows thdi, is a row stochastic matrix. It then follows th&fl, . H, =
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P11 Pr1 + Py Prrn)1Pr2

Dy Do
stochastic matrices is also a row stochastic matrix. Intamtdithe diagonal entries df ., Hj, are

is also a row stochastic matrix because the product of row

positive because both;; and®, are nonnegative matrices with positive diagonal entriesi-S
larly, for any positive integem and nonnegative integég, matrix productt,,, g, - - - Hy, is also a

row stochastic matrix with positive diagonal entries. Frioemma 2.4.2, we have that

Hy1Hy,

Y@y + Pr1) + Preyz 2(Pgrys + Pr2)
Py Do

Qo) T Pr1r + Pag2 Py + Preo
(I)kl (I)k2

for some positivey that is determined byj1, v2, ®x1, Pr2, g1y, and Py 1)2, Wherery, is
determined by® ;. 1); and @, and~, is determined by® 1), and ®;2. Note also that the
directed graph of®;; is the same as that @b, ),. We can thus replac@;; with @,
without changing the directed graph £f; and vice versa. Therefore, it follows thal, . H; >
o + P @ + P
(k+1)1 TR (k=101 for some positivey that is determined b$.1, P2, @ (1)1,

P P(r—1)1
D (k+1)2, @andy. Similarly, H, 1, - - - Hy, can also be written as

Lo+m . lo+m .
Zi:zo iy zi:go+1 @, + (I)(Zo—l)l

Lo+m—1 . lo+m—1 .
Yoo P D5 Pa+ ein

Hyyym - Hyy > 75

Lo+m—1 5 lo+m—1 5
zi:éo—i-l Lo Zz’zéoﬂ Dy

Lo+m—1 5 lo+m—1 5
zi:éo—i-l Dy Zz’zéoﬂ Py

vV
N

(2.40)

for some positivey.
Because there exists a positive integesuch that for any nonnegative integey, the union

of Gy acrossk € [ko, ko + x| has a directed spanning tree, it follows that the directeglyrof
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Zfijg: ®;; also has a directed spanning tree. It thus follows from (2a4d Corollary 2.4.1 that the
directed graph offj,, 1 ,.+1 - - - Hy,—1 also has a directed spanning tree becdlige .1 - - - Hpy—1 >
Zfﬁ;;f iy Zfﬁ;;f iy

Zfﬁ;;f i Zfﬁ;;f iy
diagonal entries and the directed graph/hf .11 - - - Hx,—1 has a directed spanning tree, it fol-

. Becaused 4 .+1 - - - Hy,—1 IS @ row stochastic matrix with positive

lows from Lemma 2.4.4 thatly,, 4.1 --- Hy,—1 is SIA. It then follows from Lemma 2.4.5 that
limy,_,oo Hy, - - Hy = 19,y" for some column vectoy € R?". Therefore, it follows from (2.39)

thatlimy_,., B exists and all rows dfim_,., Bj. are the same. [ |

Theorem 2.4.2 Assume that there exists a positive integesuch that for any nonnegative integer
ko, the union oiG, acrossk € [ko, ko + | has a directed spanning tree. L&}; = (2 — a1)I,, —
T;ck and®yy = (a1 — 1)1, — TTQEk_l, wherely, k = 0,1,--- , are (nonsymmetric) Laplacian
matrices associated witl,, for ¢t € [kT, (k + 1)T'). If positivec and T are chosen such that both
®;; and ®, are nonnegative with positive diagonal entriegk] — r;[k] — A;; andv;[k] — 0 as

k — oo.

Proof: It follows from (2.36) that

T2 aT?
By, = (I, — 7£k)Bk—1 + (T — T)Dk—h (2.41)
T2 aT?
By = (In — 7£k—1)3k—2 + (T - T)Dk—% (2.42)
and
Dy_1=-TLp_1Br_o+ (1 — OéT)Dk_Q. (2.43)
Therefore, it follows from (2.41) and (2.42) that
By, — (1 —aT)Bg
T2 T2
= (I, — TEk)Bk—l -1 =aT)(Iy — 7£k—1)Bk—2
aT?
+ (T — —)[Dk—l — (1 — OéT)Dk_Q]. (244)

2
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By substituting (2.43) into (2.44), (2.44) can be simplifeex{5.26). It then follows from Lemma 2.4.6
thatlimy_, ., By, exists and all rows dfim,_,., B, are the same under the condition of the theorem.
Becauseb;, is nonnegative with positive diagonal entries, it follosata7” < 2. It then follows
from Lemma 2.4.1 that;[k] — r;[k] — A;; andv;[k] — 0 ask — oo under the condition of the

theorem. [ |

2.4.2 Convergence Analysis of Sampled-data Algorithm witlRelative Damping under Dy-
namic Directed Interaction
In this section, we show sulfficient conditions @', and directed grap$; such that coordi-
nation is achieved using (2.7) under dynamic directed awatson.

Using (2.7), (2.5) can be written in matrix form as

Fe+1]| | L— 5Ly ThL— 5Lk |7[k] .49
v[k + 1] —TLx I, —aTLy | |v[k]
Gy,
wherer, v, andL;, are defined as in (2.34). Note th@j, can be written as
Gh (1 -1)1, - Tz, TI, — Lz
VTI, —TLy (1—T)I, — aTLy,
Ry,
+ . .
—VTI, VTI,
s
In the following, we study the property of matrix produe}, - - - G defined as
G G
GpGo 2 | TR (2.47)
Grs Gra

whereGy,; € R i =1,2,3,4.
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Lemma 2.4.7 Assume that directed gragh,,k = 0,1,--- , has a directed spanning tree. There
exist positivex and T such that the following two conditions are satisfied:

1)(1-T)1,— T;Ek and(1—vT)I,,—aTLy, k =0,1,--- , are nonnegative matrices with positive
diagonal entries, and’[,, — TTQER andv/TI, — TLy, k=0,1,---, are nonnegative matrices.

2) |||, < 1, wheresS is defined in(2.46)

In addition, if « and 7" are chosen such that conditiorl$ and 2) are satisfied, matrix product
Gy, - - Gy has the property that all rows of ead,;, i = 1,2, 3,4, are the same a8 — oo, where

Griyi = 1,2,3,4 are defined ir(2.47).

Proof: For the first statement, it can be noted that wfers sufficiently small, conditiornl) is
satisfied. Similarly, whefl’ < 1, it follows that||S|| < 1. Therefore, there exist positiveand 7’
such that condition$) and2) are satisfied.

For the second statement, it is assumed ¢hamhd7" are chosen such that conditiohsand2)
are satisfied. It can be computed thigt, £ = 0,1, --- , are row stochastic matrices with positive

diagonal entries when conditidr) is satisfied. Note that produ€y, - - - Gy can be written as

G- Go=(Rr+S)---(Ry+S). (2.48)

It follows from the binomial expansion th&ty - -- Go = Z?’: é; whereé} is the product of

k + 1 matrices by choosing eithét; or S'in (R; + S) fori =0,--- ,k. Ask — o0, é\j takes the
form of the following three cases:
Case I:@» is constructed from an infinite number 8fand a finite number of?; ask — oo. In

this case, it follows that a8 — oo,

Gi| = I1Rkalloe I Bis -+ 111 = 1SS = 0, where
we have used the fact thaR?,, || = 1 becauseR;, is a row stochastic matrix anf|| < 1 as
shown in conditior2). Therefore@ approache®,,, w2, ask — oo.

Case II:(/E is constructed from an infinite number ®fand an infinite number ak; ask — oco. A
similar analysis to that in Case | shows t@tapproache%nxzn ask — oo.

Case lIl: CTJ is constructed from a finite number Sfand an infinite number ok; ask — oo. In
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this case, ag — oo, CTJ can be written as

G, :MHRkj N,

J
N——
J

where bothAM and N are the product of a finite number of matrices by choosingeeitty, i #
kj,j = 0,1,---, or S from (R; + S) and J is the product of an infinite number dt;, 5 Note

. . (1= = Ly (1 =T), — 5Ly
that the directed graph aR, is the same as that g ; ;
(1 - T)In - TTﬁk (1 - T)In - TTﬁk
because the directed graphs of all four matrices in conditjoare the same. It then follows from
(=T, - 5Ly (1-T), - 5Ly | | |
Corollary 2.4.1 that , , has a directed spanning tree if the
(1 - T)In - TTEIC (1 - T)In - %ﬁk

directed graph ofl —7)1,, — T;ck, i.e., directed graply, has a directed spanning tree. Therefore,
the directed graph oRj, also has a directed spanning tree. Also note fthatk = 0,1,--- , are
row stochastic matrices with positive diagonal entrieshén follows from Lemma 2.4.4 thadt;,, is

SIA. Therefore, it follows from Lemma 2.4.5 that all rows.bhre the same ds— oco. By writing

T
J=1"" 7, (2.49)

Js Jy

whereJ; € R™*" i = 1,2, 3,4, it follows from the fact that all rows of are the same that all rows

of J;,1 = 1,2, 3,4, are also the same. It then follows that

1-1)I, - Lr; TI, —Zr;
RiJ = ( ) 2 2 J
VTI, -TL; (1—VT)I, —aoTL;

1-1)I, TI,
_|a-7) ,

where we have used the fact that/; = 0,,«,,i = 1,2,3,4. By separatingR;J into fourn x n

submatrices as that ofin (2.49), all rows of every one of the fourx n submatrices are the same.

SHere M andN arels, if neither R; nor S is chosen.
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The same property also applies to matrix produths, S.J, andJS. A similar analysis shows that
the same property also holds for matrix product formed byrpudtiplying or post-multiplying.J
by a finite number of?; and/orS. Therefore, by separatir@; into fourn x n submatrices as that
of J in (2.49), it follows that all rows of every one of the fourx n submatrices are the same.
Combining the previous arguments shows thak as oo, all rows of G;,i = 1,2, 3,4, are the

same. |

Theorem 2.4.3 Suppose that directed graggh.,k = 0,1,--- , has a directed spanning tree. Us-
ing (2.7)for (2.5), r;[k] — rj[k] — Ay;[k] andwv;[k] — v;[k] ask — oo when positivex and T are

chosen such that conditiorig and2) in Lemma 2.4.7 are satisfied.

Proof: Note that the solution of (2.45) can be written as

7k + 1] 7[0]
=G Go . (2.50)

v[k + 1] v][0]
When directed grapl,, &k = 0,1,--- , has a directed spanning tree, and conditibpand?2) in
Lemma 2.4.7 are satisfied, it follows that all rows®@f;,i = 1,2, 3,4, are the same as — oo,
whereG),;, i = 1,2, 3,4, are defined in (2.47). Combining with (2.50) shows thét] — 7j[k] and

v;[k] — v;[k] ask — oo, which implies that-; (k| — r;[k] — A;; andv;[k] — v;[k] ask — co. W

Remark 2.4.4 Note that Theorem 2.4.2 requires that the communicatioplyreas a directed span-
ning tree jointly to guarantee coordination while Theorem.2 requires that the communication
graph has a directed spanning tree at each time interval targntee coordination. The different
connectivity requirement for Theorems 2.4.2 and 2.4.3used by different damping terms. For the
coordination algorithm with an absolute damping term, wilee damping gain and the sampling
period are chosen properly, all vehicles always have a zea fielocity disregard of the commu-
nication graph. However, for the coordination algorithmthva relative damping term, the vehicles
in general do not have a zero final velocity. From this pointiefv, it is not surprising to see that
the connectivity requirement in Theorem 2.4.3 correspumdo the relative damping case is more

stringent than that in Theorem 2.4.2 corresponding to theollie damping case.
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Remark 2.4.5 In Theorem 2.4.2 (respectively, Theorem 2.4.3), it is assutiat the sampling pe-
riod is uniform. When the sampling periods are nonuniforre, aan always find corresponding
damping gains such that the conditions in Theorem 2.4.péesvely, Theorem 2.4.3) are satisfied.
Therefore, similar results can be obtained in the preserfaceoauniform sampling periods if the

conditions in Theorem 2.4.2 (respectively, Theorem 2at83¥atisfied.

2.4.3 Simulation

In this section, we present simulation results to illugtitiie theoretical results derived in Sec-
tions 2.4.1 and 2.4.2. For both coordination algorithms&)(and (2.7), we consider a team of four
vehicles. Here for simplicity, we have chosgn=0,i =1,--- ,4.

For coordination algorithm (2.6), lef0] = [0.5,1,1.5,2]7 andv[0] = [-1,0,1,0]7. The
interaction graph switches from a g&l1), G2y, G(3)} as shown in Fig. 2.3 with the corresponding

(nonsymmetric) Laplacian matrices chosen as

1 100

0 0 00

Ly = ;

0 0 00

0 0 00

00 0 0

01 -1 0

L) = ;

00 0 0

00 0 0

and ) )

0 00 0

0 00 0
L) =

0 0 1 —1

100 1

From subfigure (d) in Fig 2.3, it can be noted that the uniog f, G2, andg s has a directed
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spanning tree. We choose sampling period= 0.2 sec andx = 6. It can be computed that the
condition in Theorem 2.4.2 is satisfied. Figs. 2.4(a) an¢b2.ghow, respectively, the positions and
velocities of the four vehicles using (2.6) when the intécacgraph switches frorg ;) to G5) and
then toG 3 everyT' sec. The same process then repeats. It can be seen thahetiordis achieved
on positions with a zero final velocity as urged in Theorem2.Klote that the velocities of the four
vehicles demonstrate large oscillation as shown in Figb2 decause the interaction graph does not
have a directed spanning tree at each time interval andrssgiteery fast.

For coordination algorithm (2.7), lef0] = [0.5,1,1.5,2]" andv[0] = [~1,0,1,0]". The
interaction graph switches from a &4, G5y, G) } as shown in Fig. 2.5 with the corresponding

(nonsymmetric) Laplacian matrices chosen as

1 -1 0 0
0 1 -1 0
Ly = )
0 -1 1 0
-1 0 0 1
2 -1 -1 0
-1 1 0 O
L) = )
-1 0 2 -1
-1 -1 0 2
1=—-2 1 2 1 2 1=—2
4 3 4 3 4=—3 4<=—3
(a) Directed (b) Directed (c) Directed (d) The
graphG ). graphgs). graphgs). union of

91),92),93)-

Fig. 2.3: Interaction graphs for four vehicles. An arrownfrg to : denotes that vehiclecan receive
information from vehiclej.
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20 40 60 80 100 0 20 40 60 80 100
Time (s) Time (s)

(a) Positions. (b) Velocities.

Fig. 2.4: Convergence results using (2.6) with a switchirigraction.

and

L) =

Note that directed graph&;),i = 4,5, 6, all have a directed spanning tree. We choose sampling
periodT = 0.1 sec andx = 1. It can be computed that the condition in Theorem 2.4.3 isfead.
Figs. 2.6(a) and 2.6(b) show, respectively, the positiomaswelocities of the four vehicles using (2.7)
when the interaction graph switches fréin) to G5) and then t@j ) everyT sec. The same process
then repeats. It can be seen that coordination is achievedsitions with a constant final velocity
as urged in Theorem 2.4.3.

We also show an example to illustrate that using (2.7) f@)(Z.0ordination is not necessarily

achieved even if the interaction graph has a directed spgrinée jointly, andx andT' satisfy

1

4

(@) Directed (b) Directed (c) Directed
graphgy). graphgs). graphge).

X
N

Fig. 2.5: Interaction graphs for four vehicles. An arrownfrg to ¢ denotes that vehiclecan receive
information from vehiclej.
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T
@

0 5 10 15 [ 5 10 15
Time (s) Time (s)

(a) Positions. (b) Velocities.

Fig. 2.6: Convergence results using (2.7) with= 1, 7" = 0.1 sec, and the interaction graph
switches from a sefG ), G(5), G(6) }-

conditionsl) and2) in Lemma 2.4.7. The initial positions and velocities,and7” are chosen to be
the same as those for Figs. 2.6(a) and 2.6(b). Figs. 2.7¢8.db) show, respectively, the positions
and velocities of the four vehicles using (2.7) when therat@on graph switches froif ;) to Gy,
then toG3) everyT sec. The same process then repeats. It can be seen thanetiordis not
achieved even when the interaction graph has a directedhispatree jointly andy and7” satisfy

conditionsl) and2) in Lemma 2.4.7.

—i=1
-—i=2
=3
[

5 10 15 20 25 30 [ 5 10

15 20 25 30
Time (s) Time (s)

(a) Positions. (b) Velocities.

Fig. 2.7: Convergence results using (2.7) with= 1, T = 0.1 sec, and the interaction graph
switches from a sefG 1y, G2), G3) }-
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Chapter 3
Decentralized Coordination Algorithms with a Group Reference State

In Chapter 2, we studied decentralized coordination algms without a group reference state.
Although the study of decentralized coordination in theeamlog of any group reference state is in-
teresting, it is of great importance to study decentralizeordination algorithms in the presence of
a group reference which usually represents the interesteogtoup. In this chapter, we focus on
the study of decentralized coordination algorithms withr@ug reference state. The unique group
reference state is also called “leader.” Decentralizeddination with a group reference state is
also called “coordinated tracking.” When the leader’sesiatconstant, the leader can be considered
one agent which has no local neighbors. Therefore, the tiatiead coordination problem is a
special case of decentralized coordination without a grefgrence state. In the following, we as-
sume that the group references is time-varying for gengrdlhe existing literature [67—69,72,73]
focuses on the study of coordinated tracking algorithmsémtinuous-time systems requiring the
availability of the velocity and/or acceleration measueeis or the design of distributed observers.
In this following, we will study three problems in this chapt decentralized consensus tracking,
decentralized swarm tracking, and PD-like (proportionad derivative like) consensus tracking.
In particular, the first two problems are studied in a cordimsitime setting. Compared with the
aforementioned references, the proposed approacheseeaqilder condition on the information
transmission between the leader and the followers andhéssriation from the leader and/or the
followers. The last is investigated in a discrete-timeiggtand the proposed algorithms can be

easily implemented in real systems.

3.1 Continuous-time Setting

In this section, we will study decentralized coordinatedtking, including consensus tracking
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and swarm tracking, in a continuous-time setting. Both Ishiigtegrator kinematics and double-

integrator dynamics will be considered accordingly.

3.1.1 Decentralized Coordinated Tracking for Single-intgrator Kinematics

In this section, we study decentralized coordinated tragkor first-order kinematics. Suppose
that in addition to the: vehicles, labeled as vehiclégo n, calledfollowershereafter, there exists
a virtual leader, labeled as vehicle 0, with a (time-varyipgsitionry and velocityr,. We assume
that|7o| < ~¢, wherey, is a positive constant.

Consider followers with first-order kinematics given by

f‘i:ui, izl,...,n, (31)

wherer; € R is the position and.; € R is the control input associated with thi# vehicle. Here
we have assumed that all vehicles are in a one-dimensioaaégpr the simplicity of presentation.
However, all results hereafter are still valid for any hidimensional case by introduction of the

Kronecker product.

Decentralized Consensus Tracking under Fixed and SwitchigpnNetwork Topologies
In this subsection, we design for (3.1) such that all followers track the virtual leadelthwi
local interaction in the absence of velocity measuremaftspropose the decentralized consensus

tracking algorithm for (3.1) as

wi=—a Y ay(ri—r;) = Bsgn>_ aij(ri — )], 3.2)
j=0 j=0
wherea;;, i,j = 1,...,n, is the(¢, j)th entry of the adjacency matrid, a;o, i = 1,...,n,is a

positive constant if the virtual leader’s position is amble to follower: anda;y = 0, otherwise,
a is a nonnegative constant,is a positive constant, and gghis the signum function. We first

consider the case of a fixed network topology.



47
Theorem 3.1.1 Suppose that the fixed undirected graphs connected and at least ong is
nonzero (and hence positive). Usi(®2) for (3.1), if 5 > ~,, thenr;(t) — ro(¢) in finite time. In

particular, r;(t) = ro(t) for anyt > ¢, where

~ VFTO)M7(0) /Amax(M)
= (ﬁ - 'W)Amin(M) ’ (33)

wherer is the column stack vector 6f, i = 1,--- ,n,with7; = r;—ro, M = L+diag(aig, -+ , ano)
with £ being the Laplacian matrix, andl,i, () and Ay,ax () denote, respectively, the smallest and

the largest eigenvalue of a symmetric matrix.

Proof: Noting thatr; = r; — o, we can rewrite the closed-loop system of (3.1) using (352) a
T‘LZ' = —OZZ aij(fz- — fj) — ﬁsgr{z aij(fi — ’r’})] — ’f’o. (34)
j=0 j=0
Equation (3.4) can be written in matrix form as
= —aM7 — Bsgn M7) — 17,

wherer and M are defined in (3.3), and sgnis defined componentwise. Because the fixed undi-
rected graply is connected and at least oag is nonzero (and hence positive)] is symmetric
positive definite.

Consider the Lyapunov function candidate= %fTMf. The derivative ofV is

V =T M[—aM7 — Bsgn(M7) — 17
< —af " MPF — B || M7, + [iol || M7,

< —af T M7 — (B — ) | M7 (3.5)

where we have used the Holder’s inequality to obtain the ifiesquality and|ry| < ~, to obtain
the second inequality. Note that? is symmetric positive definitey is nonnegative, ang > ;.

Therefore, it follows that” is negative definite.
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We next show thal” will decrease to zero in finite time, i.e%;(¢t) — 0 in finite time. Note

thatV < FAmax(M) ||f||§. It then follows from (3.5) that the derivative &f satisfies

V < ~(8 -0 | Ml
= ~(8 — VT
< ~(8 = 90\ X (M) 1713

= —(B = 7)) Amin (M) [|7]|

\/§>\m1n(M)
< (- ) A VY
< —(B =) (D)
After some manipulation, we can get that
\/iAmin M
2V £ 2/710) - (3 -0

Therefore, we hav# (t) = 0 whent > ¢, wheret is given by (3.3). This completes the proof.l
Let N; C {0,1,...,n} denote the neighbor set of followeérin the team consisting of the
n followers and the virtual leader. We next consider the cdiseswitching network topology by
assuming thaj € N;(t),i = 1,--- ,n,j = 0,--- ,n,if [r; —r;| < Rattimet andj ¢ N;(t)
otherwise, wherekR denotes the communication/sensing radius of the vehidieghis case, we

consider the decentralized consensus tracking algorithr{8f1) as

wi=—a Yy bi(ri—ry) = Bsg Y by(ri =), (3.6)
JEN (1) JeEN(t)
whereb;;, i = 1,...,n,j = 0,...,n, are positive constants, and 3, and sgi-) are defined as

in (3.2).

Theorem 3.1.2 Suppose that the undirected gragiit) is connected and the virtual leader is a
neighbor of at least one follower, i.€), € A;(t) for somei, at each time instant. Usin(g.2)

for (3.1), if B > 4, thenr;(t) — ro(t) ast — oo.

Proof: Let V;; = 1b;(r; — ;)% 4,5 = 1,...,n, when|r; — r;| < RandV;; = 1b;;R* when
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Iri — ;| > R. Also letVyy = $bo(r; —r9)%, i = 1,...,n, when|r; — ro| < RandV;y = 1b;R>
when|r; —ro| > R. Consider the Lyapunov function candidafe= 5 >, >0, Vij+ Y11 Vio.
Note thatV” is not smooth but is regular. We use differential inclusif®s, 92] and nonsmooth
analysis [5, 93] to analyze the stability of (3.1) using §3.6 herefore, the closed-loop system

of (3.1) using (3.6) can be written as

iy €7 — K [a Y bi(ri— )+ Bsgl Y bi(ri - Tj)]]a (3.7)

JEN(t) JEN (1)

whereK -] is the differential inclusion [92] and a.e. stands for “abheverywhere.”

The generalized derivative &f is given by

‘/ZJ a‘/m - 8‘/2] a‘/zg .
Zzbz]|: ors T 67‘3 ]"‘sz0|: O T+8’I‘0TO

)

=1 j=1
= %Z Yo billri =)+ (r + Y bl + (ro = 74)7o]
=1 jeN;(t),j#0 0eN(t)
2
:_az LZ bij(rs j] —ﬁz Z bij(r Z bio(ro — r:)T0
i=1 | jen i=1 |jeN;(t) 0eN;(t)
= —Osz[M(t)]z’F—ﬁHM H —|—7‘0 Z sz T‘Q—T‘Z +T‘QZ Z bij(T‘i—T‘j)
0EN; (1) i=1 jeN;(t),j#0
(3.8)
= —af TIE)PF - 8|17 +TOZ S by
i=1 jeN;(t)
< —arf T [M ()% — 8 HM(t)le + 7 HM(t)r ‘1
< —ai [V — (8 — ) || M) | (3.9)

where we have used the fagt;" Zjem(t) j0bij(ri — ;) = 0 to derive (3.8) andro| <

to derive (3.9),7 is the column stack vector af,i = 1,--- ,n, with 7; = r; — rq, andM(t) =
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[mi;(t)] € R™*™ is defined as

mij(t) = 4 0, jENi1), j#i, (3.10)

D keN () Viks I =0

Note that) (¢) is symmetric positive definite at each time instant undectmalition of the theorem.
Becauses > vy, it then follows that the generalized derivative16fis negative definite under the
condition of the theorem, which implies th&t(t) — 0 ast — oo. Therefore, we can get that

ri(t) — 1o(t) ast — oo. [ |

Remark 3.1.3 Under the condition of Theorem 3.1.2, decentralized casiserracking can be
achieved in finite time under a switching network topologywidver, in contrast to the result in
Theorem 3.1.1, it is not easy to explicitly compute the bafritie time, i.e.f in Theorem 3.1.1,
because the switching pattern of the network topology alggspan important role in determining

the bound of the time.

Decentralized Swarm Tracking under a Switching Network Topology

In this subsection, we extend the decentralized conseratidrig algorithm in Section 3.1.1
to achieve decentralized swarm tracking. The objective eto design:; for (3.1) such that all
followers move cohesively with the virtual leader while mmg inter-vehicle collision with local
interaction in the absence of velocity measurements. Befmving on, we need to define potential

functions which will be used in the decentralized swarmlirag algorithms.

Definition 3.1.4 The potential functiorV;; is a differentiable, nonnegative function |of; — r;|*
satisfying the following conditions:

1) V;; achieves its unique minimum whgn, — r;|| is equal to its desired valug;;.

2) Vij — oo'if [|r; — 4] — 0.

3) a(nf#frjm = 0if ||r; — ;|| > R, whereR > max; ; d;; is a positive constant.

NV, =c,i=1,--- n,wherecis a positive constant.

LIn this definition,r; can bem-dimensional.



Lemma 3.1.1 LetV;; be defined in Definition 3.1.4. The following equality holds

I (A

i=1 j=1

Proof: Note that

oV,
20 (G
=1 j=1

SIDI S

=1 j=1

I

=1 j=1

=523 G+

=1 j=1

SR

i=1 j=1

where we have used the fact tf%ﬁi = -

) =35 G

=1 j=1

avw
Ty

J

) placs

lel

XY G

7j=11:=1

Dy My,

jlll

51

% from Definition 3.1.4. Therefore, the lemma holds.

We propose the decentralized swarm tracking algorithm3dr)(as

i =—a Z av” Bsgn< > %‘:’J), (3.11)

JEN; (t) JEN (1)
wherea, 3, and;(t) are defined as in Section 3.1.1, anglis defined in Definition 3.1.4.

Theorem 3.1.5 Suppose that the undirected graglit) is connected and the virtual leader is a
neighbor of at least one follower, i.€), € N;(t) for somei, at each time instant. Usin(B.11)
for (3.1), if 5 > ~,, the relative distances of all followers and the virtual dea will move closely

with the virtual leader and the inter-vehicle collision ig@aded.
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Proof: Consider the Lyapunov function candidate

ZZVWZVEO

zl]l

Taking derivative oft” gives that

oV OVZ oV; Vi .
P33 (5 f) z<a£n+am°m>

=1 j=1

6
£rn < e,

Ea )]

- av, i ~ Vi .
+ > 0 ! Z: (jzo amf)] +; arooro

__azzz; j=0 arij _BZJZ::Oa—T; +z’=1 OTOTO
2
T QZ : 87“: - ﬁz Z 87’; " 07"00 ot Z Z 87“: o (313
i=1 \j=0 =1 |j=0 i=1 i=1 j=1
2
n n Vi n n oV ) n n OV
<—a; — 87‘; _ﬂZ — 87"; +TOZ Z_: 87‘; ’
= 7=0 i=1 |j=0 i=1 |j=0

where we have used Lemma 3.1.1 to derive (3.12) and the facdift, > 7, %;f = 0 to de-

rive (3.13). Becausg > v,, we get thall’ < 0, which in turn proves the theorem. |

3.1.2 Decentralized Coordinated Tracking for Second-ordeDynamics
In this section, we study decentralized coordinated tragkdr second-order dynamics. Sup-
pose that there exists a virtual leader, labeled as vehjckdth a (time-varying) position, and

velocity vyg. We consider four different cases.
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Decentralized Consensus Tracking with a Varying Virtual Leader’s Velocity

Consider followers with second-order dynamics given by
7 = Ui, V; = Uy, izl,...,n, (314)

wherer; € R andv; € R are, respectively, the position and velocity of followeandu; € R is the
control input. We assume thaty| < ¢;, wherey, is a positive constant. Again we only consider
the case when all vehicles are in a one-dimensional spatessits hereafter are still valid for the
m-dimensional » > 1) case by introduction of the Kronecker product.

In this subsection, we assume that the virtual leader hasyengavelocity, i.e.,vg is time-
varying. The objective here is to designfor (3.14) such that all followers track the virtual leader
with local interaction in the absence of acceleration mesamsents. We propose the decentralized

consensus tracking algorithm for (3.14) as

Z aijl(ri —rj) + a(v; — vj)]

- ﬁsgﬂ{z aij[y(ri = j) + (vi —v;)]}, (3.15)
j=0
wherea;;, i,j = 1,...,n, is the(¢, j)th entry of the adjacency matrid, a;o, i = 1,...,n,is a

positive constant if the virtual leader’s position and eélp are available to followet anda;y = 0
otherwise, andy, 3, and~ are positive constants. We first consider the case of a fixegonle

topology. Before moving on, we need the following lemma.

Lemma 3.1.2 Suppose that the fixed undirected grapis connected and at least ong is nonzero

» sM? IM yM? M3
(and hence positive). Ldt = and@ = , wherevy and «
IM M DM? aM? —yM
are positive constants antl = £ + diag(a1o, - - . , ano). If v satisfies
Ao min (M)
0< v < mln{\/ mm Tn(m}7 (316)

then bothP and () are symmetric positive definite.
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Proof: When the fixed undirected graghis connected and at least oag is nonzero (and hence
positive), M is symmetric positive definite. It follows that’ can be diagonalized ag = I' "' AT,

whereA = diag{\1, - -+ , A\, } with \; being theith eigenvalue of\/. It then follows thatP can be

written as
O A AT Onxn | (3.17)
Onxn T70| [ A 3A| |Opn T
N————

F

where0,,«, is then x n zero matrix. Lefu be an eigenvalue of. Because\ is a diagonal matrix,

it follows from (3.17) thatu satisfies(r — $22) (1 — $\;) — V;A? = 0, which can be simplified as
2 1o L 22
pe = 5(/\1 + Ai)p + Z(Az —7°A7) = 0. (3.18)

BecauseF' is symmetric, the roots of (3.18) are real. Therefore, aksof (3.18) are positive if
and only if (A7 + A;) > 0 and1 (A3 —42\?) > 0. Because\; > 0, it follows that (A? + \;) > 0.
Wheny? <, it follows that $(A? — 42A?) > 0. It thus follows that when? < );, the roots
of (3.18) are positive. Noting tha® has the same eigenvaluesidswe can get thaP is positive

definite if0 < v < \/Amin(M).

By following a similar analysis, we can get th@tis positive definite i) < v < 40 Mnin (M)

4—‘1-0(2 )‘min (J\/[) ’

Combining the above arguments proves the lemma. [ |

Theorem 3.1.6 Suppose that the fixed undirected graghs connected and at least ong is
nonzero (and hence positive). Usi(®15)for (3.14) if 5 > ¢, and~ satisfieq3.16) thenr;(t) —

ro(t) andwv;(t) — vo(t) globally exponentially ag — co. In particular, it follows that

T
‘ {fT(t) ﬁT(t)] < ke ", (3.19)
2
wherer andv are, respectively, the column stack vectorg;@ndv;,i = 1,...,n, with7; = r;—rg
T
#1(0) o7(0)|P|#(0) o7(0)
ando; = v;—vg, P and( are defined inLemma 3.1.2, = Do (P) ,

and Ko = )‘min(Q) i

max (P)
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Proof: Noting thatr; = r;, — ro andv; = v; — vy, we rewrite the closed-loop system of (3.14)

using (3.15) as

U ==Y ayl(Fi = 75) + (@ — )]
j=0
— B5gnS Y " ai;ly(Fs — 7)) + (8 — §)] p — o, (3.20)
j=0
Equation (3.20) can be written in matrix form as

v

=i
Il

= —M7 — aMv — BsgiM (y7 + 7)] — 1,

where7 and are defined in (3.19) andl/ = £ + diag(a1o, - - . , ano).

Consider the Lyapunov function candidate

f
v

1 1
= 7T M?F + §®TM17 + i M. (3.21)

2

Note that according to Lemma 3.1.2,is symmetric positive definite whepnsatisfies (3.16). The

derivative ofV is
V =T M?6 + 07 Mo + 407 Mo 4 v M

= | ||| - e mEsaring o7 + ]+ i)

(3.22)

<— |77 7| Q — (B =) IM(7T+0),,
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where the last inequality follows from the fact thag| < ¢,. Note that according to Lemma 3.1.2,
Q is symmetric positive definite whensatisfies (3.16). Also note that> ¢,. It follows thatV is
negative definite. Therefore, it follows thatt) — 0,, ando(t) — 0,, ast — oo, where0,, is the
n x 1 zero vector. Equivalently, it follows that(t) — ro(t) andv;(t) — wvo(t) ast — oo.

We next show that decentralized consensus tracking is\ahig least globally exponentially.

T 2

Note thatV < Apax(P) . It then follows from (3.22) that

2

2
Amin (Q)
Therefore, we can get that(t) < V(0)e *m®". Note also thal/ > Apin(P)

o

Remark 3.1.7 In the proof of Theorem 3.1.6, the Lyapunov function is ah@ss3.21) Here P

After some manipulation, we can get (3.19). 2l

1 ol
Iy 2
can also be chosen @8 = |? 2" | and the derivative o’ also satisfie3.22) with Q =
ol 1
2M 2M
2 2, M2—~yM
~M a2 MM

. By following a similar analysis to that of Lemma 3.1.2,
Q24 MM N2 M

we can show that there always exist positivand~y such that both? and @) are symmetric positive
definite and derive proper conditions farand~. In particular, one special choice far and~ is

B 4>\min(M)
ay =landy < e

We next consider the case of a switching network topology. a&&ume that the network

topology switches according to the same model as descrigbht before (3.6). In this case, we
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propose the decentralized consensus tracking algorithii3fb4) as

Z bij[(ri — 7j) + a(vi — vy)]

JEN(t)
—B8 > by <sgn Z bir[y(ri — ) + (vi — )]
JEN (1) keEN;(t
—sgnd > byl — k) + (v — Ulc)]} >7 (3.23)
keN;(t)
whereN;(t) is defined as in Section 3.1.4,j,i = 1,--- ,n,j = 0,--- ,n, are positive constants,

anda, 3, andy are positive constanfsBefore moving on, we need the following lemma.

Lemma 3.1.3 Suppose that the undirected gra@fy) is connected and the virtual leader is a neigh-

bor of at least one follower, i.e(, € NV;(t) for somei, at each time instant. Le¥/(t) be defined

M(t) 2I, . M(t M (t
() andO(t) = | | A( ) E () , Wherey anda
I, FM(t) aM(t) =yl

]|

1
asin(3.10) LetP(t) = |?
i,

are positive constants. 1f satisfies

D=

A min (M (1))
T4 4 a2 Apin (M (1))

0 < < min{ Amin(M (1)) b (3.24)

then bothP(t) and Q(t) are symmetric positive definite at each time instant.

Proof: The proof is similar to that of Lemma 3.1.2 and is thereforettaa here. [ |

Theorem 3.1.8 Suppose that the undirected graglit) is connected and the virtual leader is a
neighbor of at least one follower, i.€), € N;(t) for somei, at each time instant. Usin(B.23)

for (3.14) if 3 > ¢, and (3.24)is satisfied, them;(t) — ro(t) andv;(t) — vo(t) ast — oc.

Proof: Let V;; = 3b;j(r; — ;)% 4,5 = 1,...,n, when|r; — r;| < R andV;; = 3b;; R* when
| — T‘J| > R. Also |et‘/20 = —blo(’r'l 7'0)2, 1=1,...,n, When|7"i — T‘0| <R andVio = %bioRz

when|r;—ro| > R. Consider the Lyapunov function candidate= 3 >~7", >, Vij+>_i_, Vio+

2Because the virtual leader has no neighbor, we |e‘{@lem(t) bok[v(ro — k) + (vo — Uk)]} =0.
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$0T 0+ ~7T5, wheref = [F, -+, 7,7 With 7 = r; —rg andd = [0y, - -+ , )7 With ; = v; — vy.
Note thatl” can be written as
7

Y Ry Y R (329

B i=1 jgNi(1),5#0 0EN(%)

Note also that according to Lemma 3.1?3@) is symmetric positive definite when (3.24) is sat-
isfied. By following a similar line to the proof of Theorem Fland using honsmooth analysis,
we can obtain that the generalized derivativel’ofs negative definite under the condition of the

theorem. Therefore, we have thatt) — ro(¢) andv;(t) — vo(t) ast — oo. [ |

Remark 3.1.9 It can be noted thaf3.23)requires the availability of the information from both the
neighbors, i.e., one-hop neighbors, and the neighborgjimw®ors, i.e., two-hop neighbors. However,
accuratemeasurements of the two-hop neighbors’ information arenecessary because only the
signs, i.e., '+ or ‘-’, are required in(3.23). In fact, (3.23) can be easily implemented in real
systems in the sense that followei = 1,--- ,n, shares both its own state, i.e., position and
velocity, and the sign oF ;.. ;) bi;[7(ri — ;) + (v; — v;)] with its neighbors. Note that follower
i also has to computgjjem(t) byj(r; —r;) and Zjem(t) bij(v; — vj) in (3.23)(correspondingly,
Z?:o a;j(r; — r;) and Z;‘:O a;j(v; — v;) in (3.15) in order to derive the corresponding control

input for itself.

Remark 3.1.10 Under the condition of Theorem 3.1.8, the decentralizedgensus tracking algo-
rithm (3.23) guarantees at least global exponential tracking under aahving network topology.
However, in contrast to the result in Theorem 3.1.6, it mightt be easy to explicitly compute the
decay rate, i.e.xo in Theorem 3.1.8, because the switching pattern of the mkttopology will

play an important role in determining the decay rate.

Remark 3.1.11 Similar to the analysis in Remark 3.1.7, in Lyapunov fumc{®25), we can choose

sy |2 2 : NI(t & 7 (8) 4 MO
Piy=|"" 2| tthenfollows tha(t) = | (J;(t) o (A) >
3 3l M (t) + —51= aM(t) —~I,

We can show that there always exist positivandy such that bothP(¢) and Q(t) are symmetric



59

positive definite and derive proper conditions feland~y. In particular, one special choice fax

A nin[M(1)]

andvyisavy =1 andy < min; Do MOLLT"

Remark 3.1.12 In Theorems 3.1.2 and 3.1.8, it is assumed that the unddegaphd(¢) is con-
nected and the virtual leader is a neighbor of at least onkvetr at each time instant. However,
this poses an obvious constraint in real applications bseathe connectivity requirement is not
necessarily always satisfied. Next, we propose an adapbiveectivity maintenance mechanism in
which the adjacency matrix with entriés in (3.6) and (3.23)is redefined as follows:

1) When||r;(0) — 7;(0)|| > R, b;(t) = 1if ||r5(t) — r;(t)|| < Randb;;(t) = 0, otherwise.

2) Whenl||r;(0) — r;(0)|| < R, b;;(t) is defined such that: 1);;(0) > 0; 2) b;;(t) is nonde-
creasing; 3)b;;(t) is differentiable (or differentiable almost everywher&)p;;(t) goes to infinity if
||ri(t) — r;(t)|| goes toR.

The motivation here is to maintain the initially existingnoectivity patterns. That is, if two
followers are neighbors of each other (correspondinglg Wrtual leader is a neighbor of a fol-
lower) att = 0, the two followers are guaranteed to be neighbors of eackragtorrespondingly,
the virtual leader is guaranteed to be a neighbor of thisdair) atz > 0. However, if two fol-
lowers are not neighbors of each other (correspondinglg, \itual leader is not a neighbor of a
follower) att = 0, the two followers are not necessarily guaranteed to behi®igs of each other
(correspondingly, the virtual leader is not necessarihaanteed to be a neighbor of this follower)
att > 0.

Using the proposed adaptive adjacency matrix, the consetmaoking algorithm for(3.1) can

be chosen as

JEN(t) JEN(t)
{sgr{ > b — )] —sgr D b(t)(rs — Tk)]} (3.26)
kEN (1) keEN;(t)

with the Lyapunov function chosen Es= %FTf while the consensus tracking algorithm 1&.14)
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=

can be chosen &8.23)with the Lyapunov function chosen Es= [fT T } P(t) with P(t)
v

chosen as in Remark 3.1.11. Note that there always ex&std v satisfying the conditions in Re-
mark 3.1.11 becausk,,;, [ (t)] is nondecreasing under the connectivity maintenance nmésina
When the control gains are chosen properly, i®.> 0 and 3 > -, for single-integrator kine-
matics andn and~y satisfies Remark 3.1.11 and> ¢, for double-integrator dynamics, it can be
shown that decentralized consensus tracking can be gusedrfor both first-order kinematics and
second-order dynamics if the undirected grap(t) is initially connected and the virtual leader is
initially a neighbor of at least one follower, i.e., &t= 0. The proof follows a similar analysis to
that of the corresponding algorithm in the absence of cotivigc maintenance mechanism except
that the initially existing connectivity patterns can beintained because otherwigé — —oo as

||7i(t) — r;(t)|]| — R by noting thatV = —a7M (t)7 — (3 — ) HJ\Z/(t)fH for single-integrator

. . T .
kinematics and” = — |:fT @T} Q(t) for double-integrator dynamics, whe€g(t) is defined

[SH

in Remark 3.1.11.

Decentralized Consensus Tracking with a Constant Virtual leader’s Velocity
In this subsection, we assume that the virtual leader hasstanat velocity, i.e.y is constant.

We propose the decentralized consensus tracking algofiih(B8.14) as

Uj = — Z%’(Ti — 1) — Bsgn Zaij(vi —vj)| (3.27)
j=0 Jj=0

whereaq;; is defined as in (3.15) and is a positive constant. We first consider a fixed network

topology.

Theorem 3.1.13 Suppose that the fixed undirected graphs connected and at least ong, is

nonzero (and hence positive). Usi(®27)for (3.14) r;(t) — ro(t) andv;(t) — vy ast — oc.
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Proof: Letting 7; = r; — ro and?; = v; — vo, we can rewrite the closed-loop system of (3.14)

using (3.27) as

QL}Z‘ = — Zaw(ﬁ — fj) — ﬂsgn ZCL”(QN)Z — QN}]) . (328)
§=0 j=0
Equation (3.28) can be written in matrix form as
F=17, ©=—MF—psgnMi), (3.29)

wherer and v are, respectively, the column stack vectors'otindv;, i = 1,...,n, andM =
L+ diag(alo, R ,ano).
Consider the Lyapunov function candiddte= 77 M?7 + 167 M©. The derivative ofV is

given by

V =i M6+ 0T Mo
= 7L M%p + o7 M [~ M7 — fsgn Md)]

= =B |Mol, .

Because) is symmetric positive definite, it follows thaf is negative semidefinite. Note that
V = 0 implies thatv = 0,,, which in turn implies thaf = 0,, from (3.29). By using the LaSalle’s
invariance principle for nonsmooth systems [94], it folthat7(t) — 0, ando(t) — 0,, as

t — oo. Equivalently, it follows that;(t) — 7o (t) andv;(t) — wvo(t) ast — oc. [ |
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Remark 3.1.14 When the network topology is switching according to the rhddscribed right

before(3.6), we propose the decentralized consensus tracking algoritr (3.14)as

wi=— Y by(ri—r)

JEN (1)
-8 > bij{sgn > bikvi — i)
JEN(t) keN(t)
—sgn| > bik(v; —ve) } (3.30)
keN;(t)

where/;(t) is defined as in Section 3.14;, by, bj are defined as i(3.23), and 3 is a positive
constant. For any positive, the algorithm(3.30) guarantees decentralized consensus tracking
under the conditions of Theorem 3.1.8. The proof followsralar line to that of Theorem 3.1.8 by
using the Lyapunov function candidate= %FTM(t)F + %ﬁTﬁ and is omitted here. Meanwhile,
the adaptive connectivity maintenance mechanism proposBémark 3.1.12 can also be applied

here by noting that’ — oo when||r;(t) —r;(t)|| — R, which then contradicts the fact th&t < 0.

Remark 3.1.15 In contrast to(3.15)and (3.23), which require both accurate position and velocity
measurement$3.27)and(3.30)do not necessarily requir@ccuratevelocity measurements because
the velocity measurements are only used to calculate the &g, ‘+' or *-". Therefore, (3.27)

and (3.30)are more robust to measurement inaccuracy.

Decentralized Swarm Tracking with a Constant Virtual Leader’s Velocity
In this subsection, we study decentralized swarm trackimpuswitching network topologies
when the velocity of the virtual leader is constant. We agaisume that the network topology

switches according to the model described right before).(3\& propose the decentralized swarm
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tracking algorithm for (3.14) as

oV
Sy

JEN (1)
-6y bw{sgn{ > bl ,Uk]
JEN(t) kEN;(t)

sgn{ > bjlv; Uk] } (3.31)
keN;(t)

whereV;; is the potential function defined in Definition 3.1 (¢) is defined as in Section 3.1.1,

3 is a positive constant, arig;, b, andb;;, are defined as in (3.23). Note that (3.31) requires both

the one-hop and two-hop neighbors’ information.

Theorem 3.1.16 Suppose that the undirected gragii) is connected and the virtual leader is a
neighbor of at least one follower, i.€), € N;(t) for somei, at each time instant. Usin(B.31)
for (3.14) the velocity differences of all followers and the virtughdler will ultimately converge to
zero, the relative distances of all followers and the vittigader will ultimately converge to local

minima, i.e.lim;_, Zjem( t) 88‘7{” = 1,--- ,n, and the inter-vehicle collision is avoided.

Proof: Letting 7; = r; — ro andv; = v; — vy, it follows that (3.31) can be written as

L Lo OF;
JEN(t)
-8 > bl-j{sgn{ > bikl(@i — o ]
FEN(t) kEN;(t)

sgn{ Z b]k vk]}
keN;(t)

Consider the Lyapunov function candidate
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wherev is a column stack vector @f. Taking derivative ofl” gives that

Vij - 8‘/7, :
ZZ<67": ‘ ‘Jrj>

i=1 j=1 J

OVip. Vi - ~T 2
+Z< 0- for0>+vTU

0

Wij e =Win:  x=- x= 0V
—ZZ 7 B, CEDIDIE -

i=1 j=1 i=1 j=0 g
- mTM(t)sgn[M(t)ﬁ} (3.32)
—— | sy . (3.33)

where]\Z/(t) is defined in (3.10), (3.32) is derived by using Lemma 3.1d the fact thaty = 0,
and (3.33) is derived by using the fact th&t(t) is symmetric. By following a similar analysis to

that in the proof of Theorem 3.1.13, it follows from the La8salinvariance principle for nonsmooth

systems [94] that; (t) — vo andzj -0 %‘:H — 0 ast — oo, which in turn proves the theoremil

Decentralized Swarm Tracking with a Varying Virtual Leader 's Velocity
In this subsection, we assume that the virtual leader'scitylas varying, i.e., the virtual
leader’s acceleration is, in general, nonzero. We propgus#tlowing decentralized swarm tracking

algorithm with a distributed estimator for (3.14) as

JEN(t)

uifysgn{ Z bij[@i0®J0]} Z 88‘7?]
-3 Z bij{sgn{ Z bik (v “k]

JEN(t) keN;(t)

sgn{ > bl vk] } (3.34)

keN;(t)
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wherey andg are positive constants;;, Ni(t), bij, bix, andby; are defined in (3.31), and

3

bip = —ySgn Z bij[Vio — Vjo] p, i =1,---,m, (3.35)

JEN (1)
with 9,9 being theith vehicle’s estimate of the virtual leader’s velocity aid = vo. Here (3.35) is

a distributed estimator motivated by the results in Secidnl.

Theorem 3.1.17 Suppose that the undirected gragii) is connected and the virtual leader is a
neighbor of at least one follower, i.€), € N;(t) for somei, at each time instant. Usin(B.34)
for (3.14) if v > ¢y, the velocity differences of all followers and the virtuaadler will ultimately
converge to zero, the relative distances of all followens, virtual leader will ultimately converge
Vij

to local minima, i.e.Jim;_. zjeﬁi(t) 5~ = 0,2 =1,---,n, and the inter-vehicle collision is

%

avoided.

Proof: For (3.35), it follows from Theorem 3.1.2 that there exisisifive¢ such thath;(t) = vo(¢)
for anyt > 7. Note thati;, in (3.35) is a switching signal, which is different fraip(t) at each time

instant. However, fot, > t; > #, we have thatf,” oi(t)dt = [, i (t)dt by noting thatio(t) =

vo(t) for anyt > t. Therefore,r; will be unchanged when replacirig, with @, for t > . For
t > %, by replacingi;o with ¢, and choosing the same Lyapunov function candidate as inrdw p

of Theorem 3.1.16, it follows from a similar analysis to thrathe proof of Theorem 3.1.16 and the

n  OVij

=0 ar; 0

LaSalle’s invariance principle for nonsmooth systems [} v;(t) — wvo(t) and_

ast — oo. This completes the proof. |

Remark 3.1.18 Note that(3.31) and (3.34) require the availability of both the one-hop and two-
hop neighbors’ information. In contrast to some flockingagithms|[4, 73], the availability of the
virtual leader’s information, i.e., the position, velogitand acceleration, to all followers is not
required in(3.34) due to the introduction of the distributed estimator. In &ida, in contrast to
the flocking algorithm$4, 5, 73] (3.31) does not requireaccuratevelocity measurements because
the velocity measurements are only used to calculate the sé&g, ‘+' or -’, in (3.31)and (3.34)

Therefore(3.31)and (3.34)are more robust to measurement inaccuracy.
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Remark 3.1.19 In Theorems 3.1.5, 3.1.16, and 3.1.17, it is assumed thatimk@ected graph
G(t) is connected and the virtual leader is a neighbor of at leas follower at each time instant.
However, this poses an obvious constraint in real applaraibecause the connectivity requirement
is not necessarily always satisfied. In the following, a naibthnectivity requirement is proposed
for decentralized swarm tracking by adopting a connegtiwiiaintenance mechanism in which the
potential function in Definition 3.1.4 is redefined as foltow
1) When||r; — ;|| > R atthe initial time, i.e.z = 0, V}; is defined as in Definition 3.1.4.
2) When||r; — r;|| < R at the initial time, i.e.;t = 0, V;; is defined satisfying conditions 1),
2), and 4) in Definition 3.1.4 and condition 3) in Definitionl3! is replaced with the condition
that V;; — oo as||r; — rj|| — R. The motivation here is also to maintain the initially exigt
connectivity patterns as in Remark 3.1.12.

Using the potential function defined above, decentralizedr tracking can be guaranteed
for both first-order kinematics (cf. Theorem 3.1.5) and seleorder dynamics (cf. Theorems 3.1.16
and 3.1.17) if the undirected grapfi(¢) is initially connected, i.e.f = 0, the virtual leader is
initially a neighbor of at least one follower, and the othesnditions for the control gains are
satisfied. The proof follows directly from those of Theor&xsb, 3.1.16, and 3.1.17 except that
a pair of followers who are neighbors of each other initiallyll always be the neighbors of each
other (correspondingly, if the virtual leader is initially neighbor of a follower, the virtual leader
will always be a neighbor of this follower) because otheenike potential function will go to

infinity. This contradicts the fact thaf < 0in Theorems 3.1.5 and 3.1.16 and the facts that

Vg—ﬂWﬂwaH7+wHWh

< (v + @)V ||oll,

< (7 + @o)vnV2v

for 0 < ¢ < ¢, which implies thal/ (¢) < (,/V(0) + %Z)Q, andV < 0 for ¢ > % in Theo-
rem 3.1.17. Note that the connectivity maintenance styategalvanos et al[95] requires that the

number of edges be always nondecreasing. That s, if a p&tlofvers are neighbors of each other
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(respectively, the virtual leader is a neighbor of a follojvat some time instarif’,® then the pair of
followers are always neighbors of each other (respectjubly virtual leader is always a neighbor
of this follower) at any time > T'. This requirement might not be applicable in reality, espc

in large-scale systems where the size of the vehicles caerighored because the group of vehicles
will become very compact with the increasing number of ediyEsanwhile, the computation bur-
den will increase significantly as well. In contrast, the geativity maintenance mechanism with
the corresponding potential function proposed in Rematk1®. takes these practical issues into
consideration. In additionhysteresids introduced to the connectivity maintenance stratgf)

to avoid the singularity of the Lyapunov function. Howetleg hysteresis is not required in the

potential function proposed in Remark 3.1.19.

To illustrate the connectivity maintenance mechanism aggsed in Remark 3.1.19, we com-

pare two different potential functioﬁg} andvlg whose derivatives satisfy, respectively,

0, ||lri =75l > R,
8‘/2; 2w (ri—r;) sin[27(||ri—rj||—dij)]
o — i Ty HT»L'—T]'HZ i i)l dz’j < ||ri —T‘j|| <R, (3.36)
20(ry—rj) ||ri—rj||—dij
el Treorll Irs = rill < dag,
and
2 ri—r; |ri—rjl|—dij - ) )
OVii _ ) m=rmm=ri—mz i <llri—mjll <R, (3.37)
or; ri—=rj |lri=rjll=dij '
O e Nl < dy,

whereR = 2.5 andd;; = 2. Figure 3.1 shows the plot of the potential functidi$ andV;2.* It
can be seen from Fig. 3.1(b) thb;t? approaches infinity as the distani¢e; — ;|| approachesg.
However,V;; does not have the property (cf. Fig. 3.1(a)). In particuld},satisfies condition 3)
in Definition 3.1.4 as shown in Fig. 3.1(a). In addition, béth and V3 satisfy conditions 1), 2),
and 4) in Definition 3.1.4. According to Remark 3.1.19, we choose the potential function &’;?

whenl||r;(0) — r;(0)|| < R andV;} otherwise.

SEquivalently, a pair of followers are within the communioatrange of each other (respectively, the virtual leader
is within the communication range of a follower).

“Note that neithel;; nor V3 is unique because for positive constantV;; + C andV;5 + C are also potential
functions satisfying, respectively, (3.36) and (3.37). &¥éy plot one possible choice for them.
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(a) Potential functioﬂ/fﬁ-. (b) Potential functioﬁ/}?.

Fig. 3.1: Potential functions;; andV;7 with R = 2.5 andd;; = 2.

Simulation

In this section, we present several simulation exampleslidate some theoretical results in
the previous sections. We consider a group of six followeth wvirtual leader. We let;; = 1 if
vehicle; is a neighbor of vehicle, wherej = 0,1,--- ;6 andi = 1,--- ,6, anda;; = 0, otherwise.

In the case of first-order kinematics, the network topolagghosen as in Fig. 3.2(a). It can
be noted that the undirected gra@Hor all followers 1 to 6 is connected and the virtual leader is a
neighbor of followerd. Using (3.2) in 2D, we choose (t) = [t — 5, =5+ 10sin(34)]", o =1, and
(£ = 1.5. The trajectories of the followers and the virtual leader glvown in Fig. 3.3. The tracking
errors of ther andy positions are shown in, respectively, Fig. 3.4(a) and Fig([3. It can be seen
from Fig. 3.4 that the tracking errors converge to zero irtditime. That is, all followers track the
virtual leader accurately after a finite period of time as alsown in Fig. 3.3.

For decentralized swarm tracking in the case of first-ordeerkatics, we choos& = 2.5,

dij =2, =1, = 3,anda;; = 1if d;; < R anda;; = 0 otherwise. The partial derivative

L Fy F; Fg L Fse<—F5<—F}
F3<~—F == F) F) =—= Fy)<~— I}
(a) Grapht. (b) Graph2.

Fig. 3.2: Network topology for a group of six followers withvatual leader. Herd. denotes the
virtual leader whilef;,7i = 1, -- - , 6, denote the followers.
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Fig. 3.3: Trajectories of the followers and the virtual leadsing (3.2) in 2D. The circle denotes the
starting position of the virtual leader while the squaresade the starting positions of the follwers.
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(a) = position. (b) y position.

Fig. 3.4: Position tracking errors using (3.2) in 2D.
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of the potential function is chosen as in (3.36). Using (Bfbt (3.1) in 2D, Fig. 3.5 shows the
consecutive snapshots of decentralized swarm trackingsféollowers with a virtual leader. The
initial states of the followers are randomly chosen fromgheare box—>5, 15]? andrq(t) is chosen

as[t,5+10 sin(%)]T. It can be seen that the relative distances of the followeddfze virtual leader
ultimately converge to local minima.

In the case of second-order dynamics, the network topoleghosen as in Fig. 3.2(b). It can
be noted that the undirected gragtfor all followers 1 to 6 is connected as well and the virtual
leader is a neighbor of followelr. Using (3.15) in 2D, we choose (t) = [t,t + sin(t)]”, a = 1,

6 =5, andy = 0.1. The trajectories of the followers and the virtual leader sttown in Fig. 3.6.
The tracking errors of the andy positions are shown in Figs. 3.7(a) and 3.7(b). The trac&mgrs
of the x andy velocities are shown in Figs. 3.7(c) and 3.7(d). It can be $e®n Fig. 3.7 that the
tracking errors ultimately converge to zero. That is, dlioiwers ultimately track the virtual leader
as also shown in Fig. 3.6.

For decentralized swarm tracking in the case of secondralgieamics,R, d,;, a, 3, a;5, and
the partial derivative of the potential function is chossrirethe case of single-integrator kinematics.
In the case of a constant virtual leader’s velocity, theahitates of the followers are randomly
chosen from the square box5, 10]? andr(t) is chosen ag, 2t + 5|7 Using (3.31) for (3.14) in
2D, Fig. 3.8 shows the consecutive snapshots of decemgadiwarm tracking fot9 followers with
a virtual leader. In the case of a dynamic virtual leaderlsaity, the initial states of the followers
are randomly chosen from the square he%, 15]% andr(t) is chosen a, 5 + t + 2sin(t)]”.
Using (3.34) for (3.14) in 2D, Fig. 3.9 shows the consecusimapshots of decentralized swarm
tracking for 50 followers with a virtual leader. Due to the random choice fué initial states,
the vehicles form separated subgroups initially. As a te$tdgmentation appears in this case.
However, for each subgroup, the relative distances of tHewiers and the virtual leader if the
virtual leader is in the subgroup reach local minima.

For decentralized consensus tracking with the connegtimidintenance mechanism in Re-
mark 3.1.12, we choos® = 3, o and § the same as those without connectivity maintenance,

100||7"i(t)—7‘j(t)H2 andb;;(0) = 1 when

and b;;(t) according to Remark 3.1.12 witfb;;(t) = o=@l
i J
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(c) t=40s.

Fig. 3.5: Decentralized swarm tracking fé8 followers using (3.11) in 2D in the presence of a
virtual leader. The circles denote the positions of theofeéirs while the square denotes the position
of the virtual leader. An undirected edge connecting twinieérs means that the two followers are

neighbors of each other while a directed edge from the \litezer to a follower means that the
virtual leader is a neighbor of the follower.
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Fig. 3.6: Trajectories of the followers and the virtual leadsing (3.15) in 2D. The circle denotes the
starting position of the virtual leader while the squaresade the starting positions of the followers.
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Fig. 3.7: Position and velocity tracking errors using (3.i062D.
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Fig. 3.8: Decentralized swarm tracking f&® followers using (3.31) in 2D in the presence of a
virtual leader. The circles denote the positions of theofeéirs while the square denotes the position
of the virtual leader. An undirected edge connecting twinieérs means that the two followers are
neighbors of each other while a directed edge from the \litezer to a follower means that the
virtual leader is a neighbor of the follower.
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Fig. 3.9: Decentralized swarm tracking fo0 followers using (3.34) in 2D in the presence of a
virtual leader. The circles denote the positions of theofeéirs while the square denotes the position
of the virtual leader. An undirected edge connecting twinieérs means that the two followers are
neighbors of each other while a directed edge from the \litezer to a follower means that the
virtual leader is a neighbor of the follower.
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[Ir:(0) = 5(0)[| < R, andby;(t) = 1if [[ri(t) — r;(1)]| < Randby;(t) = 0f [Iri(t) — r;(¢)]| > R
when||r;(0) — r;(0)|| > R. Using (3.26) for (3.1) in 2D with the connectivity maintea mech-
anism in Remark 3.1.12, Fig. 3.10 shows the trajectorieh@ffollowers and the virtual leader.
The initial positions of the followers are randomly chosemnf the square bok-2, 2]? andrg(t)
is chosen a§, BSin(’f—é)]T. The tracking errors of the andy positions are shown in Figs. 3.11(a)
and 3.11(b). It can be seen that the tracking errors ultijmatsverge to zero. That is, all followers
ultimately track the virtual leader as also shown in Fig.03.Using (3.23) for (3.14) in 2D with
the connectivity maintenance mechanism in Remark 3.1.it2,3FL2 shows the trajectories of the
followers and the virtual leader. The initial positions betfollowers are randomly chosen from
the square bo¥—2,2]? andrq(t) is chosen ag,t + sin(t)]”. The tracking errors of the andy
positions are shown in Figs. 3.13(a) and 3.13(b). It can ke $®m Fig. 3.13 that the tracking
errors ultimately converge to zero. That is, all followelsnuately track the virtual leader as also
shown in Fig. 3.12.

For decentralized swarm tracking with the connectivity memance mechanism as in Re-
mark 3.1.19,R, d;;, o, 3, anda;; are chosen the same as those for decentralized swarm gackin
without connectivity maintenance. When two followers anigially neighbors of each other or the
virtual leader is initially a neighbor of some follower(fhe partial derivative of the corresponding
potential function is chosen as (3.37). Otherwise, theigaterivative of the potential function is
chosen as (3.36). The initial positions of the followers mmedomly chosen from the square box
[—6, 4]% andry(t) is chosen the same as the corresponding simulation in te@edsf connectivity
maintenance mechanism. In the case of single-integratentatics, Fig. 3.14 shows the consecu-
tive snapshots of decentralized swarm trackingsfofollowers with a virtual leader in 2D with the
connectivity maintenance mechanism in Remark 3.1.19.drcése of double-integrator dynamics
with a constant virtual leader’s velocity, Fig. 3.15 shotws tonsecutive snapshots of decentralized
swarm tracking fob0 followers with a virtual leader in 2D with the connectivityantenance mech-
anism in Remark 3.1.19. In the case of double-integratoadyos with a varying virtual leader’s
velocity, Fig. 3.16 shows the consecutive snapshots ofrdetzed swarm tracking fdi0 followers

with a virtual leader in 2D with the connectivity maintenanmechanism in Remark 3.1.19. It can
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Fig. 3.10: Trajectories of the followers and the virtualdeausing (3.26) in 2D with connectivity
maintenance mechanism. The circle denotes the startingoposf the virtual leader while the
squares denote the starting positions of the followers.
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Fig. 3.11: Position tracking errors using (3.26) in 2D in itesence of connectivity maintenance
mechanism.
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Fig. 3.12: Trajectories of the followers and the virtualdeausing (3.23) in 2D with connectivity

maintenance mechanism. The circle denotes the startirniggmosf the virtual leader while the
squares denote the starting positions of the followers.
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Tracking errors of x positions
Tracking errors of y positions
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(a) = position. (b) y position.

Fig. 3.13: Position tracking errors using (3.23) in 2D in gresence of connectivity maintenance
mechanism.

be seen that at each snapshot the network topology failthalowers is connected and the virtual
leader is a neighbor of at least one follower because of ftialinonnectivity and the existence of

the connectivity maintenance mechanism. Meanwhile, thaive distances of the followers and
the virtual leader ultimately converge to local minima. bntrast to Figs. 3.5, 3.8, and 3.9 where
the initially existing connectivity patterns might not aws exist, the initially existing connectivity

patterns in Fig. 3.14, 3.15, and 3.16 always exist due toxfsemce of connectivity maintenance

mechanism.

3.2 PD-like Discrete-time Consensus Tracking Algorithms vth a Reference State

In this section, we propose and study a PD-like discrete-tiansensus tracking algorithm in
the presence of a group reference state. The comparisoedretive proposed PD-like discrete-time
consensus tracking algorithm and the P-like (proportidikal) discrete-time consensus tracking

algorithm is also studied.

3.2.1 Existing PD-like Continuous-time Consensus Algoritm

Consider vehicles with single-integrator dynamics givgn b

ri(t) = wi(t), i=1,---,n (3.38)
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Fig. 3.14: Decentralized swarm tracking f@r followers with a virtual leader using (3.11) in 2D in

the presence of the connectivity maintenance mechanisrenmalR 3.1.19. The circles denote the
positions of the followers while the square denotes thetjposof the virtual leader. An undirected

edge connecting two followers means that the two followeesreighbors of each other while a
directed edge from the virtual leader to a follower meansttiavirtual leader is a neighbor of the
follower.
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Fig. 3.15: Decentralized swarm tracking f@r followers with a virtual leader using (3.31) in 2D in

the presence of the connectivity maintenance mechanisrenmalR 3.1.19. The circles denote the
positions of the followers while the square denotes thetjposof the virtual leader. An undirected

edge connecting two followers means that the two followeesreighbors of each other while a
directed edge from the virtual leader to a follower meansttiavirtual leader is a neighbor of the
follower.
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Fig. 3.16: Decentralized swarm tracking f@r followers with a virtual leader using (3.34) in 2D in

the presence of the connectivity maintenance mechanisrenmalR 3.1.19. The circles denote the
positions of the followers while the square denotes thetjposof the virtual leader. An undirected

edge connecting two followers means that the two followeesreighbors of each other while a
directed edge from the virtual leader to a follower meansttiavirtual leader is a neighbor of the

follower.
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wherer;(t) andu;(t) represent, respectively, the state and control input ofttheehicle. Suppose
that there exists a virtual leader, labeled as vehield, whose state ig°(¢). A PD-like continuous-

time consensus algorithm with a time-varying referenceestaproposed as [69]

wilt) =23 iy {5(6) A lr() — 5 (0)])
i =
+ %aunﬂ) {re(t) = y[ri(t) — ()]}, (3.39)

wherea;; is the(i, j)th entry of adjacency matrix, i, j = 1,2,--- ,n, v is a positive gainy<(t) is
the time-varying reference statg, 1) > 0 if the ith vehicle can access the virtual leader’s State
anda,,,+ 1) = 0 otherwise, andy; = 3" a;;.
3.2.2 PD-like Discrete-time Consensus Algorithm

Note that (3.39) requires each vehicle to obtain measurenoérthe derivatives of its neigh-
bors’ states and the reference state. This requirement widyerrealistic in real applications. We
next propose a PD-like discrete-time consensus algoritlithn avtime-varying reference state. In
discrete-time formulation, the single-integrator dynesr(i3.38) can be approximated by

Tz[k—F 1] — Tl[k]
T

— wilk], (3.40)

whereT is the sampling period, and[k| and u;[k] represent, respectively, the state and control

input of theith vehicle at = £T. We sample (3.39) to obtain

wth = -3 (S g - )

j=1
1 rélk] —rlk -1
T —0j(n+1) < (4] [ ] — y{ri[k] — Tc[k,’]}> , (3.41)
i T
wherer[k] is the reference state ait= kT, and ™ [k]_;j e _;C[k_” are used to approx-

imate, respectivelyy;[k] andr¢[k] in (3.39) because;[k + 1] andr“[k + 1] cannot be accessed

SThat is, the virtual leader is a neighbor of vehicle
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att = kT. Using (3.41) for (3.40), we get the PD-like discrete-tintmgsensus algorithm with a

time-varying reference state as

7”2[]{3 + 1] = Tz[k]
T rilk] —rilk —1]
+E;a” ( ; TJ — {r:[K] —m[k]})
Tajnyry (r6k] — e[k — 1] e
A ( T = {7ilk] [’f]}> : (3.42)

Note that using algorithm (3.42), each vehicle essentigiigates its next state based on its current
state and its neighbors’ current and previous states asw/#ik virtual leader’s current and previous
states if the virtual leader is a neighbor of the vehicle. Assailt, (3.42) can be easily implemented

in practice.

3.2.3 Convergence Analysis of the PD-like Discrete-time @sensus Algorithm with a Time-
varying Reference State
In this section, we analyze algorithm (3.42). Wedetg{c,, - - - , ¢, } denote a diagonal matrix
with diagonal entries;.

By definingd;[k] £ r;[k] — r¢[k], it follows that (3.42) can be written as

ik + 1) = z( SR G —mk]})
Tai1y (ro[k] — rek — 1] '
+ "72‘ { T - 751 [k]}
—{rlk + 1] — € Za”{r —1]},

which can then be written in matrix form as
Alk +1] =[(1 = TY)I,, + (1 4+ Ty)D L AJA[k] — DT AA[E — 1] + X7 [K], (3.43)

WhereA[k] = [51[k]7 e 75n[k“T' D= diag{nh T 777n}- Xr[k] - {2Tc[k] - Tc[k - 1] - Tc[k +
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. . . " A | AR+1] ]
1]}1,,, andA is the adjacency matrix. By defining[k+1] = , it follows from (3.43)
Alk]
that
Y[k +1] = AY[k] + BX"[K], (3.44)
where
_ 1-TYI,+(1+Ty)D'A —D'A
i (=TI + (14 T7) 7 (3.45)
In OTLXH
- I,
andB = . It follows that the solution of (3.44) is
Oan
k ~ .o~ ~
Yk =Y AF'BX7[i — 1] + AFY[o]. (3.46)

i=1

Note that the eigenvalues df play an important role in determining the valueYofk] ask — oc.
In the following, we will study the eigenvalues df. Before moving on, we first need to study the

eigenvalues oD~ A.

Lemma 3.2.1 Suppose that the virtual leader has a directed path to alloleb1 ton. ThenD—'A4
satisfiesl| (D' A)" || < 1, whereD is defined right afte(3.43)and A is the adjacency matrix. If

|(D~tA)"| . <1, D~'A has all eigenvalues within the unit circle.

Proof: For the first statement, denote as the set of vehicles that are the children of the virtual
leader, and;, j = 2,3,--- ,m, as the set of vehicles that are the childrer;af that are not in the
seti,, 1 < r < j — 1. Because the virtual leader has a directed path to all \ehiclo n, there
are at most edges from the virtual leader to all vehicle$o n, which impliesm < n. Letp; and

¢l denote, respectively, thigh column and row ofD~! A. When the virtual leader has a directed
path to all vehiclegd to n, without loss of generality, assume tlidh vehicle is a child of the virtual

leader, i.e.qay (1) > 0. It follows thatg, 1, = 1 — <=4 < 1. The same property also applies

n+1
Ej:l (2]

to other elements in sét. Similarly, assume that thith vehicle (one node in set) is a child of

the kth vehicle (one node in sét), which impliesa;, > 0. It follows that the sum of thé&h row of
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(D71A)% can be written ag! > i p; < ¢l 1, =1— ﬁ < 1. Meanwhile, the sum of the
kth row of (D~1A)? is also less than. By following a similar analysis, every row gD~ A)™
has a sum less than one when the virtual leader has a direatiedopall vehiclesl to n. Because
m < nandD~! A is nonnegative|| (D~'4)"|| _ < 1 holds.

For the second statement, wHgiiD " A)"||_ < 1, itfollows thatlim, ... ||[(D~1A4)"]*|| _ <

s

lim, oo [ (D7TA)"| 0. Assume that some eigenvaluesiof ! A are not within the unit circle.

=
By writing D~! A in a canonical Jordan form, it can be computed that_ ... [(D~1A)"]* # 0,,xn,
which contradicts the fact théim,_... ||(D~*A4)"||"_ = 0. Therefore,D~ A has all eigenvalues
within the unit circle. |
It can be noted from Lemma 3.2.1 that the eigenvalueBof A are all within the unit circle
if the virtual leader has a directed path to all vehicle® n. We next study the eigenvalues 4f

Based on Lemmas 3.2.1 and 2.3.1, we next show under whatticontlie eigenvalues of are all

within the unit circle.

Lemma 3.2.2 Assume that the virtual leader has a directed path to all ¢ekil to n. Let\; be

the ith eigenvalue ofD—' A, where D is defined right after3.43) and A is the adjacency ma-

n [1=Xi2{2[1—Re(A)]—[1—Xi[*}
[1T—X;[2+4[Im(\;)]2

trix. The > 0 holds, whereRe(-) and Im(-) denote, respectively,

the real and imaginary parts of a number. If positive scaldisand v are chosen satisfying

Ty < min{l, mini—; ... , 2'I_Ai‘fjiﬁ;ff[ﬁjzk)‘}é”i'2}}, A, defined in(3.45), has all eigenvalues

within the unit circle.

Proof: For the first statement, when the virtual leader has a dilgo#th to all vehicled to n,
it follows from the second statement in Lemma 3.2.1 that < 1. It then follows that|1 —

A2 > 0and|1l — A2 =1 —2Re();) + [Re(A\)]? + [Im(\;)]? < 2[1 — Re()\;)], which implies

102 {201 —Re(An)] - 1-\i[2)

T\ [T (O )2 > 0.
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For the second statement, note that the characteristinpoiial of A is given by

det(sIy, — A)

1 s, —[(1—=Ty)I,+ (1+T~)D'4 D 'A
=det

-1, sl
=det ([sI, — (1 — T)I, — (1 +Ty)D ' AlsI, + D~'A)

=det ([s* + (Ty — 1)s|I,, + [1 — (1 + T)s| D~ A),

where we have used Lemma 2.3.1 to obtain the last equaliguses/,, — [(1 — Tv)I, + (1 +
T~y)D~'A], D~'A, —I, andsI,, commute pairwise. Noting thay; is theith eigenvalue oD ! A,
we can getlet(sI, + D' A) =[]/, (s + \;). It thus follows thatdet(sly, — A) = ]I, {s* +
(Ty —1)s + [1 — (1 + T)s]\;}. Therefore, the roots afet(sIy, — A) = 0 satisfy

s2+s[Ty—1— (1+Ty)N] + N = 0. (3.47)

It can be noted that each eigenvalueldf! A, \;, corresponds to two eigenvalues.of
: ; 0 - 1
Instead of computing the roots of (3.47) directly, we apply bilinear transformation = %

in (3.47) to get

Ty(1 =)z +2(1 = N)z+ 2+ T\ +2—-Ty=0. (3.48)

Because the bilinear transformation maps the left half efabmplex s-plane to the interior of the
unit circle in the z-plane, it follows that (3.47) has all teavithin the unit circle if and only if (4.27)
has all roots in the open left half plane (LHP). In the follagj we will study the condition off’
and~ under which (4.27) has all roots in the open LHP. Lettingndz, denote the roots of (4.27),
it follows from (4.27) that

2
ata= 7 (3.49)

24+Ty)\i+2-Ty
Ty(1 = N) .

2122 = (350)

Noting that (3.49) implies thdim(z;) + Im(z2) = 0, we definez; = a1 + jb andze = ag — jb,
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wherej is the imaginary unit. It can be noted thatand z; have negative real parts if and only if
airas > 0 anda; + as < 0. Note that (3.49) implieg; + a2 < 0 becausé™~ > 0. We next show
the sufficient condition ofi’ and~ such that;a2 > 0 holds. By substituting the definitions of
andz, into (3.50), we have

24+Ty)\i+2-Ty

2 s _
ayag + b + j(az —aq)b Ty = M) ,

which implies
24Ty 41 —Re(\)]

2 _
araz +b° = T TA = AP (3.51)
~ 4Im()\)
(CLQ — al)b = m (352)
It follows from (3.52) thath = mh) - Considering also the fact théty — a1)? =

Ty(az—a1)|1—X\;|

(a1 + a2)?® — 4ajas = TQLWQ — 4ayay. After some manipulation, (3.51) can be written as
Ki(a1a2)? + Kyayap + K3 = 0, (3.53)

whereK; = T%29%1 — N4, Ko = —[1 = N[ + 24+ T9) Tyl — M|t — 41 — Re(\)]T]1 — A2
and K3 = 7= {4[1 — Re(A\)]|1 = N> = (2 + Ty)[1 — \i|*} — 4[Im(X\;)]*. It can be computed
that K2 — 4K K3 = {|1 — N|* + (2 + Ty)Ty[1 — Ni|* — 4[1 — Re(\)]TH[1 — N2} +
1672421 — N |*[Im();)]? > 0, which implies that (3.53) has two real roots. Becajs¢ <
1, it is straightforward to knowk; > 0. Therefore, a sufficient condition far,as > 0 is
that K, < 0 and K3 > 0. When0 < Ty < 1, becausgl — \;|*> < 2[1 — Re()\;)] as is
shown in the proof of the first statement, it follows thgs < —|1 — \;|* + (2 + Ty)T|1 —
Nt =211 — NPTyl — N2 = 1 — Nf* -1 + (T)?] < 0. Similarly, when0 < Ty <

2‘I_Aj‘ffi[il\sz[(ﬁﬁz]g)‘f;xi‘2}, it follows that K3 > 0. Therefore, if positive scalarg and 7" sat-

2[1-X;{2[1-Re(A)] ~[1-Ai[%}

JESwEswy oW e }, all eigenvalues ofd are within the

isfy Ty < min{l, min;—g ... ,,

unit circle. [ |

In the following, we apply Lemma 3.2.2 into (3.46) to deritxe thound of the tracking errors.

Theorem 3.2.1 Assume that the reference stafték] satisfies|w| < 7, and the virtual



87

leader has a directed path to all vehiclégo n. Let)\; be theith eigenvalue oD ~'A, whereD

is defined right afte3.43)and A is the adjacency matrix. When positive scalarandT" satisfy

Ty < min{1, min—; ... , 2‘I_Aj‘ffiﬁﬁ;f:éﬁigk)']é”i‘2}}, using algorithm(3.42), || [k]|| e, defined

before(3.44) is bounded bRT'7 HA(I% . A)—lu ask — oo, whereA is defined in(3.45).
Proof: When the virtual leader has a directed path to all vehitkes., it follows from Lemma 3.2.2
that A has all eigenvalues within the unit circle if positive seal@ and~ are chosen satisfying

2 _ N—[1—\: 2 . ~
2 Agﬁﬁ&;@ﬁg;;& Ail }}. Therefore,limy_,oo A* = 09,,x95. It

T~ < min{l, min;—; ... ,
follows from (3.46) that
k—1

. T ik—ipyr
Jim [[Y[R]l],, = lim ;A BX"[K]

k—1
< lim Z Al
i=1

[e.e]

18] _1xmi..

o0

k—o0

Similarly, we have

i (LXK = [{2r¢[k] = r¥Tk — 1] = [k + 1]} nlo

<2T'F, (3.54)

where we have used the fact tH c[k}_;c[k_”] < r to derive (3.54). Meanwhile, because all
eigenvalues ofd are within the unit circle, it follows from Lemma.6.10 [86] that there exists a
matrix norm||| - ||| such that||A[|| < 1. It then follows from Theorem 4.3 [96] that

lim |[Y[k]]| < 277 HA(J% - A)—lu

k—oo e )

Remark 3.2.2 From Theorem 3.2.1, it can be noted that the bound of the iingakrror using PD-
like discrete-time consensus algorithm with a time-vagyieference state is proportional to the
sampling periodl’. AsT — 0, the tracking error will go to zero ultimately whe CM_;CV“—”] is

bounded and the virtual leader has a directed path to all elelsil to n.
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3.2.4 Comparison Between P-like and PD-like Discrete-tim€onsensus Algorithms with a
Time-varying Reference State
A P-like continuous-time consensus algorithm without @refice state is studied for (3.38)
as [36,37,39);(t) = >__; aij[r;(t) —ri(t)]. When there exists a virtual leader whose state is the

reference stat¢’ (¢), a P-like continuous-time consensus algorithm is given as
Z aijlrs(t) = ra(O)] + @i [r(6) = ri()], (3.55)

wherea;; anda;(,, 1) are defined as in (3.39). By sampling (3.55), we obtain

Zaw{ry — 13 K]} + gy {relk] — ralk]}. (3.56)

Using (3.56) for (3.40), we get the P-like discrete-time smmsus algorithm with a time-varying

reference state as
rilk + 1] =ri[k] + T Z aij(rj[k] = rilk]) + T a1y (r'[k] — r[k]), (3.57)
whereT is the sampling period. By defining[k] = r;[k] — 7¢[k], we rewrite (3.57) as
Silk + 1] +TZa” 8;[k]) — Tai(ni1)0i[k] — (r°[k + 1] — r°[K]),
which can then be written in matrix form as
Ak + 1] = QALK] — (r°[k + 1] — r[k]) 1, (3.58)

whereA[k] = [01[k], -+, 0u[k]]Y, Q = I, — TL — Tdiag{aj (1), + An(ns1)}> @NAL s the

Laplacian matrix. It follows thaf) is nonnegative whefi’ < min,;—; ... ,, ﬁ
j=1 %ij

Lemma 3.2.3 Assume that the virtual leader has a directed path to all eekil to n. WhenT" <

ming—i,... , Q satisfies| Q" ||, < 1, whereQ is defined right afte3.58) Furthermore,

] Z
if Q" <1, Q has all eigenvalues within the unit circle.
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Proof: The proof is similar to that of Lemma 3.2.1 and is omitted here

Theorem 3.2.3 Assume that the reference stafték] satlsflesyik”y < 7, and the virtual

1 .
——1, using algo-
S, 1S9 49

rithm (3.57), [|A[k]||,,, is bounded by ||Q(L + diag{ay(n41): - s ey ) 7| @Sk — oo,

leader has a directed path to all vehiclésto n. WhenT'" < min;—; ... ,

where@ and A[k] are defined afte(3.58)

Proof: The solution of (3.58) is

Alk] = Q"A[0] ZQ’“ —r°[k]) 1. (3.59)

When the virtual leader has a directed path to all vehitlés n, it follows from Lemma 3.2.3

that () has all eigenvalues within the unit circle whéh < min;—;.... , which implies

1
n n+1
’ Z] 1 aij

QF — 0,,x,, ask — oco. It follows from (3.59) that

k
lim A[k] = — lim D> QM rtlk + 1] — r°[k]) L.

k—o0 ;
=1

clk]—r

As |E=EI) < 7t follows that

k—1

Z Qk—i

i=1

Jlim A[K]]l, < lim 7T (3.60)

o0

Because&) has all eigenvalues within the unit circle, it follows froneinma5.6.10 [86] that there

exists a matrix nornf|| - ||| such that||Q||| < 1. It then follows from (3.60) that

Jim (ALK

< lim 7T H(Q FQ 4.+ Q’H)HOO

=T [|Q( = Q)7

=7 ||Q(L + diag{ai(n+1), s Ay ) 7|

where we have used Theoren3 [96] to obtain the last equality. |
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Remark 3.2.4 In contrast to the results in Theorem 3.2.1, the bound of theking error using
P-like discrete-time consensus algorith{$157) is not proportional to the sampling periadl. In

fact, asT" — 0, the tracking error usind3.57)will not go to zerg69].

The comparison between Theorem 3.2.1 and Theorem 3.2.3shewenefit of the PD-like discrete-
time consensus algorithm over the P-like discrete-timesensus algorithm when there exists a
time-varying reference state that is available to only asstulof the team members. As a spe-
cial case, when the reference state is time-invariant,ii.e= 0, it follows from Theorems 3.2.1
and 3.2.3 that the tracking error will go to zero ultimatedy both P-like and PD-like discrete-time

consensus algorithms.

Remark 3.2.5 From Theorem 3.2.1, it can be noted that the prodiigt should be less than a
positive upper bound to ensure system stability when usihiike discrete-time consensus algo-
rithm (3.42) Accordingly, the sampling peridfi can be increased by decreasing the control gain
~. In contrast, when using P-like discrete-time consensgsriahm (3.57) the sampling period
T should be less than a positive upper bound to ensure syssdititgt In real applications, the
sampling period may be large. In this case, PD-like disctatee consensus algorithm also shows

benefit over P-like discrete-time consensus algorithm.

3.2.5 Simulation

In this section, a simulation example is presented to ihustthe PD-like discrete-time consen-
sus algorithm. To show the benefit of the PD-like discreteetconsensus algorithm, the simulation
result using the P-like discrete-time consensus algorithalso presented. We consider a team of
four vehicles with a directed graph given by Fig. 3.17 andthet first, third and fourth vehicles

access the time-varying reference state. It can be notéththairtual leader has a directed path to

1 =1 0 0
_ _ o -1 2 -1 0
all four vehicles. The Laplacian matrix is chosen/as-
-1 0 1 0
0o -1 -1 2
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gT:—>1<—>2
\\\

X

4<—=3

Fig. 3.17: Directed graph for four vehicles. A solid arrowrfr j to ¢ denotes that vehiclé can
receive information from vehiclg. A dashed arrow fron§” to [ denotes that vehiclecan receive
information from the virtual leader.

For both the P-like and PD-like discrete-time consensugrilgns with a time-varying refer-
ence state, we let the initial states of the four vehigle®)], 72[0], 73[0], 74[0]] = [3,1, —1, —2]
and [r[—1],re[—1], r3[—1],74[-1]] = [0,0,0,0]. The reference state is chosensas(t) + t.
Figs. 3.18(a) and 3.18(b) show, respectively, the statg$ and tracking errors(t) — r;(t) by
using PD-like discrete-time consensus algorithm (3.42h &itime-varying reference state when
T = 0.5 sec andy = 1. From Fig. 3.18(b), it can be seen that the four vehicles @kithe refer-
ence state with large tracking errors. Figures 3.18(c) ab8(8) show, respectively, the statg§)
and tracking errors©(t) — r;(t) by using PD-like discrete-time consensus algorithm (3w
the same reference state whEn= 0.1 sec andy = 5. From Fig. 3.18(d), it can be seen that the
four vehicles can track the reference state with very smadking errors. This shows that the track-
ing errors will be larger if the sampling period becomesédargh\s a counterexample, Figs. 3.18(e)
and 3.18(f) show, respectively, the staté&) and tracking errors®(t) —r;(t) whenT = 0.2 sec and
~ = 5. It can be noted that the system is unstable when the prdducs larger than the positive
upper bound proposed in Theorem 3.2.1. Figures. 3.19(a3d®qb) show, respectively, the states
r;(t) and tracking errors®(t) — r;(t) by using P-like discrete-time consensus algorithm (3.5%) w
the same time-varying reference state wliea: 0.1 sec andy = 5. It can be seen that the tracking
error using P-like discrete-time consensus algorithm7(8i& much larger than that using PD-like
discrete-time consensus algorithm (3.42) under the samditn. This shows the benefit of the
PD-like discrete-time consensus algorithm over the Pdikerete-time consensus algorithm when

there exists a time-varying reference state that is availabonly a subset of the team members.
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Fig. 3.18: Consensus tracking with a time-varying refeeestate using PD-like discrete-time con-
sensus algorithm (3.42) under differéhiand-y.
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Fig. 3.19: Consensus tracking with a time-varying refeeesi@ate using P-like discrete-time con-
sensus algorithm (3.57).
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Chapter 4
Decentralized Containment Control with Multiple Group Reference
States

In the previous several chapters, we have investigateddbedination problems when there
exists at most one group reference state. In this chaptestudlg the case when there exists multiple
group reference states. The group reference states areadlisw “leaders.” We study the decentral-
ized containment control problem in which all followers Mmdbnverge to the convex hull formed
by the leaders and consistently stay within the convex hlgtop-and-go strategy was proposed
to solve the problem of driving a collection of mobile agetdghe convex polytope spanned by
dedicated leaders under an undirected network topologly [BTis stop-and-go strategy was then
used to solve the problem of driving a collection of mobile®is to the convex polytope formed
by the stationary/dynamic leaders in an orderly manner. [Rijte that the study focused on fixed
undirected interaction.

In this chapter, we will study containment problems for bsithigle-integrator kinematics and
double-integrator dynamics in both fixed and switching atied network topology. In addition, we

will also present experimental results on a multi-robotfplan to validate some theoretical results.

4.1 Definitions and Notations

Definition 4.1.1 For a directed graphg = (V, W), an agent is called éeaderif the agent has no
neighbor. An agent is calledfallower if the agent is not a leader. Assume that theresarkeaders,
wherem < n. We useR and F to denote, respectively, the leader set and the follower Bké
directed graphG has aunited directed spanning tréfefor any one of thex — m followers, there

exists at least one leader which has a directed path to theviet.
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Definition 4.1.2 LetC be a set in a real vector spadé C RP. The set is calledconvexif, for any
x andy in C, the point(1 — z)x + zy isin C for any z € [0, 1]. The convex hull for a set of points
X = {z1,--- ,z4} in V is the minimal convex set containing all pointsih We useCo(X) to

denote the convex hull &f. In particular, whenV C R, Co(X) = {z|z € [min; ;, max; x;] }.

Definition 4.1.3 The matrixB € R"*" is called a (row)stochastic matrixf each entry ofB is

nonnegative and each row &f has a sum equal to one.
4.2 Single-integrator Kinematics

4.2.1 Stability Analysis with Multiple Stationary Leaders

In this section, we study the conditions on, respectivéig, fixed and switching directed net-
work topologies such that all followers will ultimately cgrge to the stationary convex hull formed
by the stationary leaders.

Consider a group of autonomous agents with single-integrator kinematicsrgbxe
T’Z(t) :ui(t), 1= 1,...,1’L, (41)

wherer;(t) € RP andu,(t) € RP are, respectively, the state and the control input ofithegent.

A common consensus algorithm for (4.1) was studied as [38B B8, 99]
ul(t) = _Zaij(t)[ri(t) _Tj(t)]v i=1,...,n, (42)
j=1

wherea;;(t) is the (i, j)th entry of the adjacency matrid(t) at time¢. The objective of (6.2)
is to guarantee consensus, i(t) — r;(t) for arbitrary initial conditionsr;(0), i = 1,--- ,n.
Conditions on the network topology to ensure consensus stedeed [36, 37, 39, 98, 99], but these

references only considered the case when there exists abmeteader in the group.
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Suppose that there are, m < n, stationary leaders and — m followers. Equation (4.2)

becomes

uz(t) =0, 1€R

wit) =— > ai(®)ri(t) = ()], i€F. (4.3)

JEFUR

Note thatr;, j € R, is constant because the leaders are stationary.

Fixed Directed Interaction
In this subsection, we assume that the directed interaiitired, i.e., alla;;(t) in (4.14) are

constant. We first assume that all agents are in a one-dioreisipace, i.ep = 1in (4.1).

Theorem 4.2.1 For ann-agent system, using.14)for (4.1), all followers will always converge to
the stationary convex hulCo{r;,j € R} for arbitrary initial conditionsr;(0),7 € F, if and only

if the directed graplg for then agents has a united directed spanning tree.

Proof: (Necessity) Suppose that the directed gré@ptoes not have a united directed spanning tree.

Then there exists a follower, labeled/ago which all leaders do not have a directed path. It follows

that the state of followek is independent of the states of the leaders. Thereforewelik cannot

always converge to the stationary convex @{r;, j € R} for arbitrary initial conditions.
(Sufficiency) Define’d £ max{r;,j € R}, r; = min{r;,j € R}, 7§ = max{z;,j € F},

andr = min{x;,j € F}. To show that all followers will converge to the stationagneex hull

Co{rj,j € R}, we study the following four cases:

Case 1. All followers are initially within the stationary meex hull Co{r;,j € R}. In this case,

it follows from (4.14) that the states of the— m followers cannot be larger thanir or less than

z; because for any followey, 7; < 0if r; > rf andr; > 0if r; < r;. Therefore, all — m

followers will always be within the stationary convex h@b{r;, j € R}.

Case 2. The initial states of some followers are larger ﬂjaand the others are initially within the

stationary convex hulCo{r;,j € R}. We next show that}. < r; ast — oo andry < r for all

t.
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Stepl: r} is a nonincreasing function if; > r;. From (4.14), for the follower(s) with the state
r}, the control input will be less than or equal to zero. Thenefthe state(s) of the follower(s) with
the stater will not increase. Meanwhile, the states of the other folosvin 7 cannot be larger
than the current maximal stat§ according to (4.14). Thereforej; is a nonincreasing function.
Step2: r} will decrease after a finite period of timesif. > r; and the directed grapfi has a
united directed spanning tree. The proof of this part is vateid by Moreau’s work [98]. Different
from the analysis in Moreau’s work [98], we consider the rrleldder case. By using the convexity
property and following a similar analysis to that in Moresawork [98], it can be shown that} will
decrease after a finite period of time.

Combining Stepd and2, we get that'). < ] ast — oo. Note also that, > r; for all ¢
according to (4.14). Therefore, all followers will convertp the stationary convex huto{r;, j €
R}.

Case 3. The initial states of some followers are less thaand the others are initially within the
stationary convex hulCo{r;,j € R}. The analysis of this case is similar to the analysis of Case 2
by showing that, > r; ast — oo andr} < r} forall .

Case 4. The initial states of some followers are larger ﬂfarthe initial states of some followers
are less tham; , and the others are initially within the stationary convel ICo{r;,j € R}. The

analysis of this case is a combination of Cases 2 and 3. [ |

Remark 4.2.2 In Theorem 4.2.1, the containment control problem is stlittiea one-dimensional

space. We next show that the same conclusion holds for ahydivigensional space. In the case of
a high-dimensional space, i.@.,> 1in (4.1), by using the decoupling technique, it follows that all
followers will converge to the smallest hyperrectangletaoring the stationary leaders under the

conditions of Theorem 4.2.1. Note that frédnl) and (4.14),

Ris(t)=—R Y ay(t)[ri(t) —r;(t)]

jJEFUR

= _ Z aij(t)[Rri(t) — Rrj(t)], i€ F,
JEFUR
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whereR € RP*P represents any coordinate transformation matrix. It felfothat the closed-loop
system is independent of the coordinate frame. That ispldiviers will converge to the smallest
hyperrectangle containing the leaders under any coordinfaame. Therefore, all followers will
converge to the intersection of all smallest hyperrectaagiontaining the leaders under various
coordinate frames. Note that the intersection of all snstllg/perrectangles containing the leaders
under various coordinate frames is essentially the minigeaimetric space spanned by the leaders,
i.e., the convex hull formed by the leaders. Therefore ptlthivers will converge to the convex hull
formed by the leaders in any high-dimensional space. Wtiillite the idea in a two-dimensional
space. Assume that there are four stationary leaders whasiggns are denoted by the four squares
in Fig. 4.1. Under the condition of Theorem 4.2.1, it follofkem the above analysis that the
followers will ultimately converge to the red rectangle enthe (X, Y7) coordinate frame and the
blue rectangle under theéX,, Y>) coordinate frame. Therefore, the followers will convergehte
intersection of the two rectangles, i.e., the convex huthtm by the leaders.

In the following of this subsection and Section 4.2.1, werassthaip = 1 in (4.1) for the sim-
plicity of presentation. However, all the results in thdduling of this subsection and Section 4.2.1

are still valid forp > 1 in (4.1) by following the previous analysis.

Remark 4.2.3 Using (4.14)for (4.1), the final states for the agents are unique constants. When

all a;;(t) in (4.14)are constant, using4.14), (4.1) can be written as

X(t)=—-LX (1), (4.4)

where X (t) = [ri(t),--- ,r,(t)]T and L is the Laplacian matrix. Note that each entry of tta
row of £ is equal to zero forj € R. Because the zero eigenvalue bhas the same algebraic
and geometric multiplicitie§100] and the other eigenvalues gfare on the open right half plane,
by writing —£ into a Jordan canonical form, it follows that the solution #.4) is unique and
constant. In particular, let{ and X ¢ denote, respectively, the steady state; 0f) and X (¢). Under
the condition of Theorem 4.2.1, the steady staté4ot) obtained by solvingC X ¢ = 0, where0 is

an all-zero column vector with a compatible size, satisfiesact that-y € Co{r;,j € R},i € F.
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Fig. 4.1: Containment control under different coordinatarfes in the two-dimensional space. The
squares denote the positions of the four leaders. The blieeahrectangles represent the smallest
rectangles containing the leaders under, respectivedyXh, Y7 ) coordinate frame and tHeXs, Y>)
coordinate frame.

Remark 4.2.4 Existing consensus algorithms primarily studied the cakeresthe Laplacian ma-
trix has exactly one zero eigenvalue. When there exist plilieaders, the Laplacian matrig

in (4.4) has multiple zero eigenvalu¢$01]. Theorem 4.2.1 studied the case when the Laplacian

matrix has multiple zero eigenvalues.

Remark 4.2.5 Ji et al. [76] focused on the case where the network topology for the fettous
undirected and connected. Theorem 4.2.1 considers a geresa where the network topology for

the followers is directed and not necessarily connected.

Switching Directed Interaction

In this subsection, we assume théft), i.e., the interaction among theagents, is constant
over time intervalgy~"_; A;, ¥ Aj) and switches at time = Y% A; with k = 0,1, -,
whereA; > 0,5 = 1,---. LetG;, and.A;, denote, respectively, the directed graph and the adjacency

matrix for then agents fort € [Y°5_) A;, S""1 A;). Equation (4.4) becomes
X(t) = —LpX (1), (4.5)

whereL; € R™*" represents the Laplacian matrix associated wiith

'Whenk = 0, we define)>"_, A; = 0.
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Theorem 4.2.6 For ann-agent system, using.14)for (4.1), all followers will always converge to
the stationary convex hulCo{r;,j € R} for arbitrary initial conditionsr;(0),7 € F, if and only
if there existsV, such that the union af;,7 = Ny,--- , Ny + No, has a united directed spanning

tree for any finite/V;.

Proof: The proof is motivated by Moreau’s work [38] but here we cdasithe multi-leader case.
(Necessity) When there does not exiét such that the union of;,i = Ny,--- , N1 + No, has a
united directed spanning tree for any finitg, there exists at least one follower such that all leaders
do not have a directed path to the follower foe [Zj\/:ll Aj,00). It follows that the state of the
follower is independent of the states of the leaderstfor Z;V:ll Aj. A similar analysis to that
in Theorem 4.2.1 shows that at least one follower cannotegevto the stationary convex hull
Co{zj,j € R} for arbitrary initial states.

(Sufficiency) Define'}, r;, rf, andr as in the proof of Theorem 4.2.1. By considering the
same four cases as in the proof of Theorem 4.2.1, using theexioy property, and following a

similar analysis to that in Moreau’s work [38], the theorenpioved. [ |

Remark 4.2.7 Different from the existing consensus algorithms usingctvkie final states for all
agents are fixed, when there exist multiple stationary legdbe final states of all followers might

not be constant under a switching network topology.

Remark 4.2.8 In Section 4.2.1, we assume that each leader has no neighlmavever, for some
network topologies, it is possible to view a subgroup of éges one leader. For example, for the
network topology given by Fig. 4.2, agentand?2 (respectively, agentsand6) can reach consen-
sus on a constant value independent of the states of theayjlais. The results in Section 4.2.1 can
also be applied to this case by viewing agehend 2 (respectively, agents and6) as one leader
with the state being the constant consensus equilibriungerfitsl and?2 (respectively, agentsand

6).

Remark 4.2.9 For the discrete-time consensus algorithm, i.e., the ihisted weighted averaging
algorithm, with multiple stationary leaders, the converge results are the same as those in Theo-

rems 4.2.1 and 4.2.6 by following a similar analysis.
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Fig. 4.2: A special network topology when a subgroup of agean be viewed as a leader.

4.2.2 Stability Analysis with Multiple Dynamic Leaders

In this section, we propose a decentralized tracking cbatgwrithm without velocity mea-
surements and then analyze the stability condition undtr fid)eed and switching network topolo-
gies.

For agents with the single-integrator kinematics (4.1)ewkhere exisin, m < n, dynamic
leaders and. — m followers, we propose the following tracking control alglem without velocity

measurements as

’U,Z'(t) :’Ui(t), 1E€ER

wt)=—a 3 ay®lr() — ()]

JEFUR

—psgnq D aOlr(t) — ()], i€ F, (4.6)
jEFUR
wherev;(t) € RP denotes the time-varying velocity of leadet € R, a;;(¢) is defined as in (6.2),
sgn(+) is the signum function defined entrywise,is a nonnegative constant scalar, ahds a

positive constant scalar. We assume thatt)||, i € R, is bounded.

Fixed Directed Interaction
In this subsection, we assume that the directed interadifimed, i.e., alla;;(t) in (4.6) are
constant. We first assume that all agents are in a one-dior&isipace, i.ep = 1 in (4.6). Before

moving on, we need the following lemma.

Lemma 4.2.1 Suppose that the directed graghhas a directed spanning tree. Faragents with

kinematics given by4.1), usingu;(t) = —E?zlaijfi,j[ri(t),rj(t),t],i = 1,---,n, consensus
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can be achieved if; ;(, -, -) satisfies

figle(@®),y(@®),t]§ =0, x(t) =y(t) (4.7)

or

figle(@),y(t), 1] = fizlz@),y(®)] ¢ =0, 2(t) =y(t) (4.8)
<0, =(t) <y(t)

for any nonnegative, wheree can be any positive constant.

Proof: The proof of this lemma is motivated by Moreau’s work [98]. Smler the Lyapunov
function candidaté’ (t) = max; 7;(t) — min; r;(¢). Whenf; ;(x(t), y(t), t) satisfies (4.7) or (4.8),
the convexity property [98] is also satisfied. By followingsiailar analysis to that in Moreau’s
work [98], when the directed graph has a directed spanning tree, we can get th@) — 0 as

t — oo, which implies thatz;(t) — z;(t) ast — oo. [ |

Theorem 4.2.10For an n-agent system, suppose that> ~;, where~, 2 sup;er ||vi(t)||. Us-
ing (4.6)for (4.1), all followers will always converge to the dynamic convelt kib{r;(t),j € R}
ast — oo for arbitrary initial conditionsr;(0),7 € F, if and only if the directed graply has a

united directed spanning tree.

Proof: (Necessity) The necessity proof is similar to that in Theode2.1.

(Sufficiency) Without loss of generality, suppose that agénto n — m are followers and
agentsn — m + 1 to n are leaders. Denot& (t) 2 [r1(t), - ,ra ()T and let € R™ ™ be the
Laplacian matrix for the: agents. It can be noted that the lastrows of £ are all equal to zero.

Using (4.6), (4.1) can be written in matrix form as

X(t) = —alX(t) — BsgnLX (t)] 4+ V (1), (4.9)
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whereV () = [0, , vin_ymin) (t), - v (8], Let Z(t) = [z1(£), -+, 2a(0)]T = LX(1). It

follows

Z(t) = LX(t) = —aLZ(t) — BLSYNZ(t)] + LV (1). (4.10)

Because the last rows of £ are equal to zero, we getthait) =0,i =n—m+1,--- ,n. We

can thus view agents — m + 1 to n as a single agent, labeled @sinstead ofm agents. It thus
follows thatzo(t) = 0. Wheng has a united directed spanning tree, it follows that agems a
directed path to tha — m followers.

Considering the group consisting of agedt® n — m, we know that

zo(t) =0,

() = —a S ag (z(6) — 25(0)] + Blsorlz(0)] — sariz; (1))
j=1

n

— Y ag{m) + psgniz ()] —vi(t)}, i=1,...,n—m,

j=n—m+1

where we have used (4.10) by noting thatt) = 0,7 = n — m + 1,--- ,n. We next show
that (4.10) satisfies the condition (4.7) or (4.8). Whgn> 0 and z;(t) > z;(¢), it follows that
alzi(t) — z;(t)] + Blsgn(zi(t)) — sgn(z;(t))] > 0,7 = 1,--- ,n — m. Similarly, wheng3 > 0 and
zi(t) < z;(t), it follows thata(z;(t) — z;(t)] + Blsan(z;(t)) —sgn(z;(t))] < 0,5 =1,--- ,n —m.
Thereforeo[z;(t) — z;(t)] + [sgn(z(t)) — sgn(z;(t))] satisfies the condition (4.7). Wheh> ~;
andz;(t) > z(t) = 0, it follows thataz; (t) + £sgn(z;(t)) — vi(t) > B — v > 0. Wheng >
andz;(t) < zo(t) = 0, it follows thataz;(t) + Ssgn(z;(t)) — v;(t) < —(8 —v) < 0. Therefore,
azi(t) + Asgn(z;(t)) — v;(t) satisfies the condition (4.8). Because agéhas a directed path to
agentsl to n — m, i.e., the network topology for agenisto n — m has a directed spanning tree,
it follows from Lemma 4.2.1 that;(t) — zo(t) = 0,7 = 1,--- ,n — m, ast — oo. Because
Z(t) — 0 ast — oo, it follows that£LX (t) — 0 ast — oo. Therefore, all followers will always
converge to the dynamic convex hdlo{r;(t),j € R} ast — oo under the condition of the

theorem. [ |
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Remark 4.2.11 When the agents are in a one-dimensional space, it is showinéorem 4.2.10
that LX(t) — 0 ast — oo. Similarly, when the agents are inyadimensional spacep(> 1),
by using the decoupling technique, it can be shown thab 1,) X (t) — 0 ast — oo under the
condition of Theorem 4.2.10. Note that ® I,,) X (t) — 0 implies thatr;(t) € Co{r;(t),j € R}

ast — oo. Thatis, the same conclusion in Theorem 4.2.10 holds fohagty-dimensional space.

Switching Directed Interaction
In this subsection, we assume that the adjacency maiftx (and hence the interaction) is
switching over time but remains constant foe [Y5_; A;, %11 A;) as in Section 4.2.1. We first

study the case when all agents are in a one-dimensional.space

Theorem 4.2.12 For ann-agent system, suppose tisat- ~;, wherey; is defined in Theorem 4.2.10.
Using (4.6) for (4.1), all followers will always converge to the dynamic convel lio{r;(t),j €
R} ast — oo for arbitrary initial conditionsr;(0),i € F, if the directed graphg has a united

directed spanning tree at each time interyal®_, A;, "M A ).

Proof: Definer; (t) 2 max{r;(t),j € R} and7;(t) 2 ri(t) —rf(t), i € FUUR. It follows that

7;(t) < 0,4 € R. Using (4.6) for (4.1), the closed-loop system can be writte

- ﬁsgn{ Z aij k][ (t) — fj(t)]} —7f(t), i€F, (4.11)

wherea;;[k] is the (i, j)th entry of the adjacency matrid(t) for ¢ € [S2h_ A ST 1 A).
Definer (t) 2 max{7;(t),7 € F|UR}. We next study*, (¢) in the following two cases:
Case 1:7(t) is a nonincreasing function ¥, (t) > 0 att = 0. We prove this statement
by contradiction. Suppose that (¢) increases over some time peri@d, ¢o]. It then follows that
there exists at least one follower, labeled awith the state™, (¢) satisfying that*;(¢) will increase

over [t1,t3], wherets < to. From (4.11), if the states of the neighbors of aggmire less than
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or equal tor, () andr;(t) increases for an arbitrary small amount, it follows from trelysis
in Theorem 4.2.10 thai;(t) < 0, which implies that7;(¢) cannot increase. This results in a
contradiction.

Case 2:7,(t) will decrease after a finite period of time if the graph has #edhdirected
spanning tree at each time interval and(t) > 0 att = 0. Suppose that the states of some
followers, labeled a8, - - - , ks, are equal t&, (¢). Because the directed graph at each time interval
has a united directed spanning tree, followkrs - - , ks as a subgroup has at least one neighbor
which is not within this subgroup at each time interval. Bydwing a similar analysis to that in the
proof of Theorem 4.2.10, it then follows from (4.11) th?a;[(t) < —€ < 0 for somek; and some
positive constang, which implies thatr, (¢) will decrease. By following a similar analysis to that
for follower k;, we can get that all other followers with the maximal statét) will also decrease.
Therefore (t) will decrease after a finite period of time.

Combining the previous two cases shows thatt) — 0 ast — oo.

Similarly, definer; (£) = min{r;(t),j € R} and#;(t) 2 ry(t) — 7 (t). It follows that

7i(t) > 0,47 € R. Note that (4.6) can be written as

Define 7#_(t) 2 min{7;(t),s € FUR}. A similar analysis to that for(¢) can also show
that#_(t) — 0 ast — oo. Combining the previous arguments shows thét) < r; (¢) and
ri(t) > ry (t) ast — oo, which implies that all followers will converge to the dynansonvex hull

Co{r;(t),j € R} ast — oo under the condition of the theorem. [ |

Remark 4.2.13 Unlike the case of stationary leaders, the case of dynamaiddes requires more
stringent conditions on network topologies to guaranteeaaiyic containment control. This is due

to the fact that the leaders move with time-varying velesitiather than remain still.
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Remark 4.2.14 Theorem 4.2.12 focuses on the one-dimensional space. dnigh-dimensional
space, by using the decoupling technique, all followerkamitverge to the smallest hyperrectangle
containing the dynamic leaders under the conditions of Térao4.2.12. Note that all followers
might not converge to the dynamic convex hull formed by thamjc leaders because the closed-
loop system depends on the coordinate frame, which is @iffédrom Remark 4.2.2. To illustrate,
we present the following counterexample. Consider a grduggents with four leaders and one
follower where the leaders have the same velocity. The mktiwpology switches from Fig. 4.3(a)
to Fig. 4.3(b) every.4 seconds and the process repeats. Simulation results (4iépin the two-
dimensional space are given in Fig. 4.4 where the red squgpessents the position of the follower
and the blue circles represent the positions of the fourdesadFrom the simulation results, it can
be seen that even if the follower is originally within the dymic convex hull, it cannot always stay
to the dynamic convex hull although the directed graph hasited directed spanning tree at each
time interval. Instead, the follower will converge to theadlest rectangle containing the dynamic

leaders.

Remark 4.2.15 For a high-dimensional space, the g function in(4.6) can also be defined &s

0, v=20,
sgnv) = (4.12)
+, otherwise

[l

“In a one-dimensional space, g becomes the standard signum function.

Ly Ly

F Lo Lj
(a) Grapht.

Ly Ly

F<—1Lo Ls
(b) Graph2.

Fig. 4.3: Switching directed network topologies for a grafpagents with four leaders and one
follower. HereL;,i = 1,--- , 4, denote the leaders whilg denotes the follower.
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Fig. 4.4. A counterexample to illustrate that the followannoot converge to the dynamic convex
hull in the two-dimensional space. The red square repreghatposition of the follower and the
blue circles represent the positions of the four leaders.

Under this definition, the closed-loop system is independethe coordinate frame. However, all
followers might still not converge to the dynamic convex farmed by the dynamic leaders. We
consider the same example as in Remark 4.2.14 but with)sdgfined by(4.12) Simulation results

are given in Fig. 4.5. It can be noted that the follower canomtverge to the dynamic convex hull

formed by the dynamic leaders even if the follower is iftialithin the convex hull.

Remark 4.2.16 For decentralized containment control with multiple dynaleaders under a switch-
ing directed network topology, it is, in general, impossild find decentralized tracking control
algorithms without velocity measurements to guaranteé ahlidollowers will converge to the dy-
namic convex hull formed by the dynamic leaders in a highedsional space. In a one-dimensional
space, the degree of freedom of the dynamic leaddraus only the minimum and maximum states
of the dynamic leaders are required to determine the dynawmiwex hull formed by the dynamic
leaders. Therefore, the signum function can be used to @tiviellowers to the dynamic convex
hull formed by the dynamic leaders under a switching dirgctetwork topology given that the
network topology and the control gain satisfy the condgiom Theorem 4.2.12. However, in a
high-dimensional space, the degree of freedom of the dynkeaders is larger thari. The dy-
namic convex hull formed by the dynamic leaders might depend number of leaders’ states.

Therefore, the signum function, in general, does not hagedpability to drive all followers to the
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Fig. 4.5: A counterexample to illustrate that the followannoot converge to the dynamic convex
hull in the two-dimensional space when §gris defined by (4.12). The red square represents the
position of the follower and the blue circles represent thsitins of the four leaders.

dynamic convex hull formed by the dynamic leaders. Simgjlarithout velocity measurements, the
basic linear decentralized control algorithms do not hauvetscapability either. Therefore, more
information, i.e., velocity measurements, topology $whiig sequence, topologies, etc., is needed
in order to guarantee decentralized containment contrahwinultiple dynamic leaders under a

switching directed network topology in a high-dimensiosadce.

4.3 Double-integrator Dynamics

4.3.1 Stability Analysis with Multiple Stationary Leaders

In this section, we study the conditions on, respectiveig fixed and switching network
topologies such that all followers will converge to the ista&ry convex hull formed by the sta-
tionary leaders.

Consider a group af vehicles with double-integrator dynamics given by

Tl(t) :’Ui(t), Q}Z(t) :ui(t) 1= 1,...,TL, (413)

wherer;(t) € RP, v;(t) € RP, andu;(t) € RP are, respectively, the position, the velocity, and

the control input associated with thith vehicle. We propose the following containment control
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algorithm for (4.13) as

’Uz'(t) =0, 1€ R,

ui(t) = — Bui(t) — Z az’j(t){ﬁ[ri(t) —7;(t)]

JEFUR

+[t) — @)}, i€ F, (4.14)

whereR andF are defined in Definition 4.1.1,;(t) is the(i, j)th entry of the adjacency matrix
at timet, and/ is a positive constant. The objective of (4.14) is to guagarbat all vehicles move
into the convex hull formed by the leaders. Note thdt), ; € R, is constant because the leaders
are stationary.

We assume that(¢), i.e., the interaction among thevehicles, is constant over time intervals
[>F_ A 3 A)® and switches randomly at time= Y25, A; with k = 0,1+, where
A; > 0,5 =1,---. LetG, and A[k] denote, respectively, the directed graph and the adjacency
matrix for then vehicles fort € [Ele A, Efill A;). We first consider the case when the vehicles

are in a one-dimensional space, ie= 1in (4.13).

Theorem 4.3.1 Using(4.14)for (4.13) all followers will always converge to the stationary coxve
hull Co{r;,j € R} for arbitrary initial conditions z;(0), ¢ € F, if and only if there exists a
positive integerN, such that the union @f;,7 = Ny, --- , N1 + N, has a united directed spanning

tree for any finite/V;.

Proof: (Necessity) The proof follows a similar analysis to thathia proof of Theoren3.5 [82].
(Sufficiency) Definez;(t) 2 Bri(t) +vi(t),i = 1,--- ,n. Using (4.14) for (4.13), we can get

that

%) =0,i € R,
gat)=— D aylklz(t) —2(t), i€F. (4.15)
JERUF

: — A
*Whenk = 0, we define}7_, A; = 0.
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By following a similar analysis to that in the proof of Theore3.1 [82], it can be shown that
zi(t),i € F, will converge to the convex hulCo{z;, j € R} under the condition of the theorem.
Definez 2 MaX;cR Zi, T 2 max;cg 1; andd; 2 r; — T,i € F. Note thatz;(¢t) — z(¢) is bounded

andz;(t) — z(t) < 0 ast — oo. Letting f;(t) = z;(t) — Z(¢), it then follows that
0i(t) + Boi(t) = fi(t), (4.16)

where we have used the fact tha(t),i € R, are constant. Therefore, the solution of (4.16) is
given by
t
5:(t) = e=75,(0) + / B £ (2 dr.
0

It follows that

—00 —00 — Jo
) fot e fi(r)dr
= lim
t—o0 eﬁt

We consider two cases. In the first caseﬁi%ﬁTfi(r)dr is bounded, then;(t) — 0 ast — oo. If
limy_o [ €77 f;(7)dr — oo, then it follows from L'Hopital’s rule that
Jo P fi(r)dr & [0 e fi(r)dr Pt f;(t)

lim = = lim = lim w
t—o00 et %eﬁt t—o00 ﬁeﬁt t—o00 ﬁ

Noting that3 > 0 and f;(t) < 0 ast — oo, it then follows thaté;(t) < 0 ast — oo, i.e.,
ri(t) < 7(t) ast — oo. This implies thatr;(t) < maxjerrj(t) ast — oo. By following a
similar analysis, it can be shown thaft) > min;cr r;(t) ast — oo. Therefore, all followers will

converge to the convex hull formed by the leaders. [ |

Remark 4.3.2 In Theorem 4.3.1, all followers are shown to converge to thavex hull in a one-
dimensional space. For any high-dimensional space, bygusie decoupling technique, it is
straightforward to show that all followers will converge tioe smallest hyperrectangles contain-

ing the leaders. Note that the closed-loop system by ugirigh) for (4.13)is independent of the
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coordinate frame. Therefore, the followers will convergethe intersection of various smallest
hyperrectangle containing the leaders under differentrdoate frames. Note also that the inter-
section of various smallest hyperrectangles containirgeladers under different coordinate frames
is essentially the convex hull formed by the leaders. Thexetll followers will converge to the

convex hull formed by the leaders in any high-dimensionatsp

4.3.2 Stability Analysis with Multiple Dynamic Leaders
In this section, we study decentralized containment coifdradouble-integrator dynamics in
the presence of multiple dynamic leaders. We consider twescdeaders with an identical velocity

and leaders with nonidentical velocities.

Leaders with an Identical Velocity
In this subsection, we assume that the velocities of alldesdre the same, i.e;(t) = v;(t)
fori,j € R.

For (4.13), we propose the following containment contrgbathm as

vi(t) =v°(t), i€R,

u;(t) = — 739n< > aij(t){ﬁ[ri(t) —r;(t)]

JEFUR

+ [uilt) - vj(t)]}> —Bult). ieF. (4.17)

wherev°(t) is the common velocity of the leaders,and~ are positive constants, and ggnis
the signum function defined entrywise. We first study the aalsen the vehicles are in a one-

dimensional space.

Theorem 4.3.3 Assume that the network topology switches according to dngesmodel as de-
scribed right before Theorem 4.3.1. Assume alsothaty,, wherey, 2 sup;er |[0°(t)+ Bv°(t)]].

Al followers will always converge to the dynamic convex itib{r;,j € R} for arbitrary initial
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conditionsz;(0),: € F, if the network topology has a united directed spanning &eeach time

interval.

Proof: Definez;(t) 2 Bx;i(t) + vi(t). Using (4.17) for (4.13) gives

4(t) = 0°(t) + Bo°(t), i€R,

Gi(t) = —vsgng Y aglkl[z(t) — (1) p i€ F. (4.18)
JERUF

We next show that;(¢) will converge to the convex hulCo{z;, j € R} in finite time

Definez = MaX;cR Ziy 2 = minjeR 2, 2 = max;cr z; — 2, andz = min;er z; — z. We will
show thatz(t) < 0 andz(¢) > 0 in finite time. Here we only consider the case whgf) > 0
and 2(0) > 0. Similar analysis can also be applied to other cases. We si®w that when
Z(t) > 0fort < T with T > 0, 2(t) < —v + v for t < T except for some isolated time
instants. We prove this by contradiction. Becaa&g > 0 for ¢t < T, it follows from (4.18) and
the definition of? that 2(t) = —Z(t) or 2(t) < —y + v, for t < T. Assume that(t) = —Z(t)
for ¢t € [t1,t2], wheret; < to < T. There exists some vehicle, labelgdwith the maximal state
satisfying 2;(t) = —z(t) for t € [t;,t3], wheret; < t3 < t5. It then follows from (4.18) that
> ier U F @ilk][z(t) — zi(t)] = 0 fort € [t;,13]. Because vehiclg is with the maximal state,
it then follows thatz;(t) = z;(t),Vi € Nj, fort € [t1,t3]. By following a similar analysis, when
G has a united directed spanning tree at each time intetyéd) = z;(t) for somex € R for
t € [t1,t3], which results in a contradiction becausg’) > 0. Thereforez(t) will keep decreasing
with a speed large than— ~, for t < T except for some isolated time instants. From the proof of
Theoremd.2 [82], if Z(¢1) < 0, thenz(t) < 0for ¢ > t;. It then follows that(¢) < 0 in finite time.
Similarly, it can be shown that(¢) > 0 in finite time. Thereforez;(t),i € F, will converge to the
convex hullCo{z;, j € R} in finite time.

Becausez;(t),i € F, will converge to the convex hulCo{z;,j € R} in finite time, there
exists positivel such thatminer 2;(t) < z(t) < maxjer z;(t), @ € F, fort > t. Because the
leaders have the same velocity,rif0) > r;(0),Vi,j € R, thenr;(t) > r;(t) for anyt > 0,

which implies thatz;(t) > z;(t) for anyt > 0. Without loss of generality, lethax;cr 2;(t) =
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Brp(t) 4+ 7,(t) for somep € R andminjer 2;(t) = Brq(t) +74(t) for someg € R. It then follows

that 8ry(t) + 74(t) < Bri(t) + 7(t) < Brp(t) +7,(t), i € F,fort > t. Fort >t andi € F,

i (t) — #q(t) > —B[ri(t) — rq(t)],
Fi(t) — Pp(t) < —Bri(t) — rp(t)).

Thereforey,(t) < r;(t) < rp(t),i € F, ast — oo. Because the leaders have the same velocity, all

followers will converge to the convex hull formed by the leesd [ |

Remark 4.3.4 When the directed network topology is fixed and the vehicieimn @ one-dimensional
space, by following a similar analysis to that of Theorém[82], it can be shown thafZ (¢t) — 0
ast — oo, whereZ(t) = [z(t), -+ ,z,(t)]" and0 is an all-zero vector with a compatible size,
under the condition of Theorem 4.3.3. Noting that all leadeave the same velocity, it is easy to
show thatZ X (t) — 0 ast — oo, whereX (t) = [r1(t), - ,7,(¢)]T. Similarly, when the vehicles
are in any high-dimensional space, i.e.;> 1 in (4.13), by using the decoupling technique, it can
be shown that£ @ I,,)X(t) — 0 ast — oo, where® is the Kronecker product. Therefore, all
followers will converge to the convex hull formed by the &ador any high-dimensional space
under a fixed directed network topology when the conditidrisheorem 4.3.3 are satisfied. In con-
trary, when the directed network topology is switching amel ¥ehicles are in a high-dimensional
space, it can only be shown by using the decoupling techrittptethe followers will converge to
the smallest hyperrectangle containing the leaders buteogssarily the convex hull formed by the

leaders.

We next propose a decentralized containment control algorivhich can guarantee that all
followers converge to the convex hull formed by the leadaréinite time. In the following of
this subsection and Section 4.3.2, we assume that all eshégke in a one-dimensional space for
the simplicity of presentation. However, all the resultsdladter are still valid for arbitrary high-

dimensional space by using the decoupling technique andrtineecker product.
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Inspired by Bhat and Bernstein’s work [102], we propose thieding finite-time containment

control algorithm as

wit) =0;(t) — sgr{vi(t) — ;(t)] v (t) — Bi()|"

— sgr{o(t)]|6(t)] 2, (4.19)

where0 < k < 1, ¢(t) = r;(t) — 7(t) + 52=5gnv; (t) — 0;()]|vs (t) — 0;(¥)[*~*, and

fl(t) = @Z(t) — plsgn{ Z Qjj [f,(t) — fj(t)]} s (420)
JERUF
@Z(t) = pgsgn{ Z Qij [@Z(t) — QA}](t)]} s 1€ F (421)
JERUF

with 7;(t) = r;(t) andv;(t) = v°(t) fori € R.

Theorem 4.3.5 Assume that the fixed network topology has a united diregadrsng tree. Us-
ing (4.19)for (4.13), all followers will converge to the dynamic convex hull fearby the leaders

in finite time ifp; > 0 and py > sup, [0°(t)|.

Proof: Note thato;(t) = v°(t),Vj € R. Whenpy > sup, [0°(t)], it follows from (4.21) and
a similar proof to that of Theorem 4.3.3 tha{(t),: € F, will converge tov°(¢) in finite time.
Without loss of generality, let;(t) = v°(¢),i € FUR, for t > t;, wheret; is some positive

constant. Fot > #;, (4.20) can be written in matrix form as

P(t) = v°(t)1 — pisgriL(t)), (4.22)
wherei(t) = [f1(t),--- ,7,(¢)]7 andL is the Laplacian matrix of the vehicles including both the
leaders and the followers. Lett) = [21(t), -+, 2,(t)]T = LF(t). BecauseCl = 0, it follows

that (4.22) can be rewritten as

5(t) = —pr Lsgriz(t)].
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Note thatz;(t) = 0,7 € R, because théth row of £ is zero. When the fixed graph has a united
directed spanning tree, it can be shown thdt) — 0 in finite time by showing that both the
maximal and minimal states will go to zero in finite time. Thisplies thatr;(¢),i € F, will

be within the convex hull formed by the leaders in finite timléthen follows from (4.22) that
7i(t) — v°(t) in finite time. Without loss of generality, lg%(t) = v°(t) for t > 7., whereis,

is some positive constant. Note also thatt) can be replaced with°(t) for ¢ > %, because
fff 0;(t)dt = ff 09 (t)dt for anyty > t1 > to. Defined; 2 ri(t) — 7i(t). Fort > to, by replacing

;(t) with ©°(t), (4.19) can be rewritten as

Bi(t) = — sridi ()]18: (D)1 — sgrig(t)] [6:(1)] 7 .

It then follows from Proposition [102] thatd;(¢) — 0 in finite time.

Combining the previous statements completes the proof. [ |

Leaders with Nonidentical Velocities
In this subsection, we assume that the velocities of theelsaale nonidentical. Without loss
of generality, we assume that the first- m vehicles are leaders.

For (4.13), we propose the following containment contrgbaithm as

ui(t) =a;(t), i=1,---,n—m

wit) == > aillri — ;) + a(vi — v;)]

JERUF
—sgn > aily(ri — ) + (v — )]},
JERUF
t=n—m+1,--- ,n, (4.23)

whereq;(t) is the acceleration input for th&h leader, andv, (3, and~ are positive constants.

Using (4.23), (4.13) can be written in matrix form as

X =—LX—aLlX —psgnyLX + LX) - T, (4.24)
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whereX = [ry, -, 7,7, W(t) = [ (t), -, ¥u(t)]" with () = a;(t) fori =1,--- ,n —m,
andy;(t) =0fori =n—m+1,--- ,n, andL is the Laplacian matrix. Note that the first— m
rows of £ are equal to zero. Defin& 2 LX. It follows that the first» — m entries ofX are equal

to zero. Then (4.24) can be written as
X = -LX —alX — BLsgHAX + X) — LV. (4.25)

Let X be the vector containing only the lastentries ofX and ¥ be the vector containing only

the lastm entries ofCW. Therefore, (4.26) can be rewritten as
)L{;F:—MXF—(MM)L(F—ﬁMSgr(’}/XF—F)L(F)—\I’F, (426)

whereM = [mm] € R™>M with mi; = gz’j if 4 75 7 andm;; = ZR;&Z Cike.

Lemma 4.3.1 Assume that the fixed graph has a united directed spannimgatnel the commu-

I Mt
nication patterns among the followers are undirected. Pet= " 2 and Q =
%M—l M1

I I

T " , where~y and o are two positive constants and is defined right before
DI, al, —yM™!

this lemma. lfo and~ are chosen satisfying < min{y/4Amin(M), %%}, both P and

@ are symmetric positive definite, whexg,i,(-) denotes the smallest eigenvalue of a symmetric

matrix.

Proof: When the graph has a united directed spanning tree and thewaoication patterns among
the followers are undirected/ is symmetric positive definite. Therefor& —! is also symmetric
positive definite. Thed/ ' can be diagonalized ad ! = I'"'AT, whereA = diag{-,--- , x—

with \; being theith eigenvalue of\/. Let i be an eigenvalue aP. It then follows thay satisfies

=Dk -+)-73=0 (4.27)
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which can be simplified as

1 1
2
— 1+ —)p+—— - =0.

BecauseP is symmetric, the eigenvalues Bfare real. Therefore, the roots of (4.27) are all positive

if and only if 1 + Ai >0 and% — 7—22 > (. After some simplification, we can get that< \/4);.

42
Therefore,P is symmetric positive definite ff < \/4Amin (M).
Similarly, it can be shown tha&p is symmetric positive definite if < % [ |

Theorem 4.3.6 Assume that the fixed graph has a united directed spanniegaine the commu-
nication patterns among the followers are undirected. gs#23)for (4.13), if a and ~ satisfy
the conditions in Lemma 4.3.1 ap> || M ~!'W ||, all followers will converge to the convex hull

formed by the leaders, whe¥er is defined right beforé4.26)and M are defined right afte(4.26)

Proof: Consider the Lyapunov function candidate

~ 5 XF
V= [X;C X;c] P

Xr

_XTXp A XEM X+ XEM X

Note that according to Lemma 4.3.P, is symmetric positive definite whem and~ satisfy the

conditions in Lemma 4.3.1. Taking derivative Bfgives that
V= XLXp + XEMX + 4 XTMLX + yXTMX
—- |51 %1]e
— (XF + XE)M{psgriM (v Xp + Xp)] + M 105}

g—[ffg )%;C]Q

— (B ||M g \W(% +Xr)|,-



118

Note that according to Lemma 4.3(Q),is symmetric positive definite whemn and~ satisfy condi-
tions in Lemma 4.3.1. Noting also that> ||[A/~1Tp|,, it follows thatV" is negative definite. It
then follows thatX = 0 and);(p = 0. Therefore,LX = 0, which implies that all followers will

converge to the convex hull formed by the leaders. [ |

4.3.3 Simulation

In this section, we present several simulation results liodlate some theoretical results. We
consider a group of vehicles with four leaders and four fedcs and the topology is given in
Fig. 4.6.

When the leaders are stationary, the fixed directed netwpddgyd is chosen as in Fig. 4.6(a).
It can be noted tha¥ has a united directed spanning tree. Simulation resultgyygi14) are shown
in Fig. 4.7(a). We can see that all followers will convergethie stationary convex hull formed
by the leaders. In the case of switching network topologdies,network topology switches from
Fig. 4.6(b) to Fig. 4.6(c) everg.5 seconds. Note that neither Figs. 4.6(b) nor 4.6(c) has adinit
directed spanning tree while the union of Figs. 4.6(b) aB¢cl has a united directed spanning tree.
Simulation results using (4.14) are shown in Fig. 4.7(b).0Afe see that all followers will converge
to the stationary convex hull formed by the leaders.

For the algorithms (4.17) and (4.19), the fixed network togglis chosen as in Fig. 4.6(a).
Simulation results using (4.17) are shown in Fig. 4.8. We ssmthat all followers will converge
to the dynamic convex hull formed by the leaders. In addjtiwo snapshots at = 25 s and
t = 50 s show that all followers remain in the dynamic convex hulhfi@d by the dynamic leaders.
Simulation results using (4.19) are shown in Fig. 4.9. Nb# &ll followers will converge to the
dynamic convex hull formed by the leaders in finite time. Idiéidn, two snapshots at= 25 s and
t = 50 s show that all followers remain in the dynamic convex hulhied by the dynamic leaders
as well.

When the velocities of the leaders are nonidentical, thelfixetwork topologyG is chosen
as in Fig. 4.6(a). Note thai has a united directed spanning tree and the communicatiber ps

among the followers are undirected. Simulation resultegi$4.23) are shown in Fig. 4.10. It can
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Fig. 4.6: Network topology for a group of vehicles with mplé leaders.L;,i = 1,--- ,4, denote
the leadersF;,i = 1,--- ,6, denote the followers.
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(b) Switching directed network topology.

Fig. 4.7: Trajectories of the agents using (4.14) under adfexed a switching directed network
topology in the two-dimensional space. Circles denote theiisg positions of the stationary lead-
ers while the red and black squares denote, respectivaysttrting and ending positions of the

followers.
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y (m)
o

Fig. 4.8: Trajectories of the agents using (4.17) under afdieected network topology in the two-
dimensional space. Circles denote the positions of therdimi@aders while the squares denote the
positions of the followers. Two snapshotstat 25s andt = 50 s show that all followers remain
in the dynamic convex hull formed by the dynamic leaders.
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Fig. 4.9: Trajectories of the vehicles using (4.19) undexedfidirected network topology in the two-
dimensional space. Circles denote the positions of therdimi@aders while the squares denote the
positions of the followers. Two snapshotstat 25 s andt = 50 s show that all followers remain
in the dynamic convex hull formed by the dynamic leaders.
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be noted that all followers will converge to the dynamic amofaull formed by the dynamic leaders.
In addition, two snapshots at= 21.47 s andt = 45.17 s show that all followers remain in the

dynamic convex hull formed by the dynamic leaders.

4.3.4 Experimental Validation

In this section, we experimentally validate some of the psmgl containment algorithms on
a multi-robot platform. In the experiments, five wheeled itelobots are used to obtain the ex-
perimental results. In particular, three robots are dedeghas the leaders and the other two robots
are designated as the followers. We next briefly introdueestperiment platform developed in the
COoperative VEhicle Networks (COVEN) Laboratory at Utaht8tUniversity.

The textbed in the COVEN Laboratory includes five Amigobatsl &vo P3-DX from the
ActivMedia Robotics as shown in Fig. 4.11. Both the Amigabahd P3-DX are similar in terms
of functionalities. Each robot has a differential-drivesm with rear caster, high-precision wheel
encoders, and eight sonar positioned around the robot. olizes can calculate their positions and
orientations based on the encoders. The eight sonar caredefarslocalization and detection of
obstacles. The maximum speed for the AmigoBots is 1 m/s anéthigoBots can climb 4.5%
incline.

In order to control multiple mobile robots under variouswatk topologies, a control software
was developed to emulate a limited or even changing netvepddgy. The control platform can be
divided into two layers. The top layer is responsible fowak topology setting, control algorithm
implementation, and bi-directional communication witke thboard micro-controller. The bottom
layer is responsible for sensor data acquisition and diPé&otloop control where both linear and
rotational velocity commands are generated and executed.

The system dynamics of the wheeled mobile robots can beidedais

i’i = U; COS(QZ‘), yz = U; sin(Qi), 92 = Wy, (428)

where (z;, y;) is the position of the center of thigh robot, §; is the orientation of théth robot,

andwv; andw; are the linear and angular velocities of title robot. To avoid using the nonlinear
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Fig. 4.10: Trajectories of the vehicles using (4.23) undéred directed network topology in the
two-dimensional space. Circles denote the positions alynamic leaders while the squares denote

the positions of the followers. Two snapshots at 21.47 s andt = 45.17 s show that all followers
remain in the dynamic convex hull formed by the dynamic leside

Pioneer 3-DX "

Fig. 4.11: Multi-vehicle experimental platform at Utah ®t&niversity.
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dynamics (4.28), we feedback linearize (4.28) for a fixechpoif the center of the wheel axis

denoted a$$hi, yhi), wherezy; = x; + d; COS(@Z') andyn; = y; + d; COS(Q@) with d = 0.15 m. By

letting
v; cos 0; sin 6; Ugi
wj —dii sin 6; d%- cos 0; | | uy;
we can get that
= (4.29)
yi Unyg

Note that (4.29) is a single-integrator kinematics modey. l@ting u,; = 7,; and i, = 7, a
double-integrator dynamics model can be obtained by degighe control inputs,; andr,;.

In the following, we present several experimental resoltglidate some theoretical results in
this paper. The network topology is chosen as shown in FI@. 4t can be noted from Fig. 4.12 that
the network topology has a united directed spanning tree.u$getriangles and circles to denote,
respectively, the starting and ending positions of thedesdand diamonds and squares to denote,
respectively, the starting and ending positions of theofodirs.

When the velocities of leaders are identical, experimergallts using (4.17) are given in
Fig. 4.13 where Figs. 4.13(a) and 4.13(b) together showr#jectories of the five robots. In each
subfigure, two snapshots are presented to show, respgcthvelstarting positions of the five robots
as well as the convex hull formed by the leaders and the ergbsiions of the five robots as well
as the convex hull formed by the leaders. It can be seen frgm4FL3(b) that the two followers
moved into the convex hull formed by the leaders.

When the velocities of leaders are nonidentical, expertedeasults using (4.23) are given in

Fig. 4.14 where Figs. 4.14(a) and 4.14(b) together showr#jectories of the five robots. In each

Ly Lo L3

X

i <—F

Fig. 4.12: Network topology for five mobile robotg.;,7 = 1,--- ,3, denote the leaderd:;,i =
1,---,2, denote the followers.
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subfigure, we also use two snapshots to show, respectitielygtarting positions of the five robots

as well as the convex hull formed by the leaders and the ergbsiions of the five robots as well

as the convex hull formed by the leaders. It can be seen frgm4kl4(b) that the two followers

moved into the convex hull formed by the leaders.
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Chapter 5
LQR-based Optimal Consensus Algorithms

Among various studies of linear consensus algorithms, &ewtile phenomenon is that the
algorithms with different parameters, i.e., different laaggan matrices, can be applied to the same
system to ensure consensus. Itis natural to ask theseangedt there an optimal linear consensus
algorithm with the associated optimal Laplacian matrixd@ma given cost function)? How may the
optimal linear consensus algorithm be found?

Optimality issues in consensus algorithms have also besliest in the literature recently. A
(locally) optimal nonlinear consensus strategy was pregay imposing individual objectives [103].
An optimal interaction graph, a de Bruijn’s graph, was psgabin the average consensus prob-
lem [104]. A semi-decentralized optimal control strateggswproposed by minimizing the indi-
vidual cost [105]. In addition, the cooperative game thewas employed to ensure cooperation
with a team cost function. An iterative algorithm was pragbso maximize the second smallest
eigenvalue of a Laplacian matrix to optimize the controlteys performance [106]. The fastest
converging linear iteration was studied by using the sefmie programming [107].

In contrast to the aforementioned literature, the purpdski® chapter is to study the optimal
linear consensus algorithms for vehicles with singlegraér dynamics from an LQR perspective.
Instead of studying locally optimal algorithms, this cleagbcuses on the study of globally optimal

algorithms.

5.1 Definitions

Definition 5.1.1 We defineZ™*" := {B = [b;;] € R"*"|b;j; < 0,i # j}, Opmxn € R™*™ as an

all-zero matrix, andl,, € R™*" as an identity matrix.
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Definition 5.1.2 A matrix E € R™*" is said positive (nonnegative), i.&, > (>)0, if each entry
of E is positive (nonnegative). A square nonnegative matrisois) stochastic if all of its row sums

arel.

Definition 5.1.3 [108] A real matrixB = [b;;] € R™*" is called an M-matrix if it can be written
as

B=sl,—C, s>0C2>0

whereC' € R™*" satisfiesp(C) < s, wherep(C') is the spectral radius of matrig’. Matrix B is

called a nonsingular M-matrix ip(C') < s.

Definition 5.1.4 [108] A matrix D € R™*" is called semiconvergentlifn; .., D° exists.
5.2 Global Cost Functions

5.2.1 Continuous-time Case

Consider vehicles with single-integrator dynamics givgn b

wherer;(t) € R andu,(t) € R are, respectively, the state and control input ofdhevehicle. A

common linear consensus algorithm is studied as [36, 39939,
u;(t) = — Z aij[ri(t) —r;(t)], (5.2)
j=1

wherea;; is the (4, j)th entry of the weighted adjacency matrikassociated with grap§. The
objective of (6.2) is to guarantee consensus, i.e., forrafty, r;(t) — r;(t), Vi,j € {1,--- ,n},

ast — oo. Substituting (6.2) into (5.1) and writing the closed-lagystem in matrix form gives

X(t) = —LX (1), (5.3)
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whereX (t) = [r1(t),r2(t),--- ,ra(t)]T and L is the (nonsymmetric) Laplacian matrix associated
with A. It can be noted that (5.3) is a linear differential equatiGonsensus is reached for (5.3) if
and only if £ has a simple zero eigenvalue or equivalently the directagtgassociated with has
a directed spanning tree [39].

Similar to the cost function used in optimal control probsefor systems with linear differential

equations, we propose the following two consensus costiamgfor system (5.1) as

n i—1

Jf = /(;oo Z Zcij[ri(t) — Tj(t)]z + z_; mulz(t)} dt, (54)

i=1 j=1

n i—1

Jy = /O h ZZaij[ri(t)—T‘j(t)]2+;u?(t) dt, (5.5)

i=1 j=1

wherec;; > 0, k; > 0, anda,; is defined in (6.2). In (5.4), both;; and«; can be chosen freely.
ThereforeJ; is called theinteraction-free cost functionBecause (5.5) depends on the weighted
adjacency matrix4, J,. is called theinteraction-related cost function The motivation of (5.4)

and (5.5) is to weigh both the consensus errors and the ¢@ftoot. The optimization problems

can be written as

min Jy, subject to (5.1) and (6.2) (5.6)
min Jr, subject to (5.1) andh;(t) = — Y _ Bai;[ri(t) — r;(1)). (5.7)
j=1

5.2.2 Discrete-time Case

In the discrete-time case, continuous-time dynamics @am)be written as

Ti[k+ 1] — Tl[k]
T

= u;[k], (5.8)
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wherek is the discrete-time inde4, is the sampling period, and[k] andu;[k] denote, respectively,

the state and control input of thith vehicle att = £T". Sampling (6.2) gives
== ay{rilk] —r;[k]}. (5.9)
j=1
Substituting (5.9) into (5.8) and writing the closed-logigtem in matrix form gives
X[k+1] = (1, —TL)X[kK], (5.10)

where X[k] = [ri[k],r2[k],--- ,m.[k]]* and £ is the (nonsymmetric) Laplacian matrix defined

in (5.3). Consensus is reached for (5.10F ihas a simple zero eigenvalue dhd< ma}}_ 7 [37].
Similar to the two cost functions proposed in the contindtime case, we propose the discrete-

time interaction-free and interaction-related cost fionmd as

co n 1—1

Tr =33 cipdrilk] — il + D0 kiulk), (5.11)

k=0 i=1 j=1 k=0 i=1
oo n -1
Jp = Z a;j{r[k] [k]}2 + Z Zu (5.12)
k=0 i=1 j=1 k=0 i=1

wherec;; > 0, r; > 0, anda,; is defined in (6.2). The corresponding optimization prolderan be

written as

min Jy subject to (5.8) and (5.9) (5.13)
mﬁln J, subject to (5.8) and;[k Zﬁ%{n — r;[k]}. (5.14)

5.3 LQR-based Optimal Linear Consensus Algorithms in a Cornihuous-time Setting
In this section, we derive the optimal linear consensusrilgos in a continuous-time set-
ting from an LQR perspective. We first derive the optimal @anmetric) Laplacian matrix using

continuous-time interaction-free cost function (5.4). Wié then find the optimal scaling factor
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for a prespecified symmetric Laplacian matrix using cortirsitime interaction-related cost func-

tion (5.5). Finally, illustrative examples will be provide

5.3.1 Optimal Laplacian Matrix Using Interaction-free Cost Function

With interaction-free cost function (5.4), optimal cortpooblem (5.6) can be written as

min.J; = /OO[XT(t)QX(t) +UT(t)RU(t)]dt (5.15)
L 0

subject to:X (t) = U(t), U(t) = —LX (1),

where X (t) is defined in (5.3)U(t) = [ui(t),--- ,un(t)]F, Q € R™ " is symmetric with the
(4, j)th entry (also th&j, i)th entry) given as-c;; for i # j and the(7, i)th entry given ai?:l,j;éi Cij
R € R™*™ is a positive definite (PD) diagonal matrix with being theith diagonal entry, and is
the (nonsymmetric) Laplacian matrix defined in (5.3). It t@nnoted that) is a symmetric PSD
Laplacian matrix.

The main result for optimal control problem (5.15) is giverthe following theorem.

Theorem 5.3.1 For optimal control problen{5.15) where@ has a simple zero eigenvalue, the opti-
mal consensus algorithm i§(¢) = —/R~1QX (¢), that is, the optimal (nonsymmetric) Laplacian
matrix isy/R~1Q. In addition,/R~1Q corresponds to a complete directed graph.

Before proving the theorem, we need the following lemmas.

Lemma5.3.1 [108] An M-matrix B € R™*™ has exactly one M-matrix as its square root if the

characteristic polynomial oB has at most a simple zero root.

If the characteristic polynomial of M-matri® has at most a simple zero root, we ug®

hereafter to represent the M-matrix that is the square roét.o

Lemma 5.3.2 An M-matrix that has a zero eigenvalue with a correspondimggrvectorl,, is a

(nonsymmetric) Laplacian matrix.

'Obviously, consensus is reached for (5.1) udifi@) = —+/R-1QX (t) since\/R~1Q has a simple zero eigen-
value due to the fact the\;/Rle corresponds to a complete directed graph.
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Proof: Follow Definition 5.1.3 and definition of a (honsymmetric)dlacian matrix. [ |

Lemma 5.3.3 Let @ and R be defined in5.15) Suppose thaf) has a simple zero eigenvalue.
There exists exactly one (nonsymmetric) Laplacian méatfigatisfyingi = /R~1Q and W has

a simple zero eigenvalue.

Proof: The proof is divided into the following three steps:

Stepl: R~'Q is a (nonsymmetric) Laplacian matrix with a simple zero eigdue. We first
note thatR~'(Q is a (nonsymmetric) Laplacian matrix becaw@és a symmetric Laplacian matrix
and R is a PD diagonal matrix. Becausggis a symmetric Laplacian matrix with a simple zero
eigenvalue, it follows that the undirected graph assodiatith ) is connected, which implies that
the directed graph associated wiitt ') is strongly connected. It thus follows that the (nonsym-
metric) Laplacian matrix? ' Q also has a simple zero eigenvalue.

Step2: W has a simple zero eigenvalue with an associated eigenvégtdret theith eigen-
value of W be )\; with an associated eigenvectar Noting thatiW? = R~1(, it follows that the
ith eigenvalue ofR 1@ is A\? with an associated eigenvectar Because? '@ has a simple zero
eigenvalue with an associated eigenvedtpry it follows that1 has a simple zero eigenvalue with
an associated eigenvectby.

Step3: W is a (honsymmetric) Laplacian matriklote that a (nonsymmetric) Laplacian matrix
is a special case of an M-matrix according to Definition 5.1tJFollows from Lemma 5.3.1 and
Stepl that R~ has exactly one square rddf that is also an M-matrix. Becau$® has a simple
zero eigenvalue with an associated eigenvettoas shown in Step, it follows from Lemma 5.3.2
thatW is a (nonsymmetric) Laplacian matrix. [ |

We next show that the (honsymmetric) Laplacian maltvixn Lemma 5.3.3 corresponds to a

complete directed graph.

Lemma 5.3.4 Let@ and R be defined i1{5.15) Suppose thad) has a simple zero eigenvalue. Then

the (nonsymmetric) Laplacian matriX R~ corresponds to a complete directed graph.

Proof: We show that each entry gf R—'(Q is nonzero, which implies thay R~ corresponds to

a complete directed graph. Before moving on, wegletlenote the, j)th entry of Q. We also let
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W = /R~1Q and denoteu;;, w; ., andw. ;, respectively, as th@, j)th entry, theith row, and the
ith column of /.

First, we will show thatw;; # 0 if ¢;; # 0. We show this statement by contradiction. Assume
thatw;; = 0. BecauseR~1Q = W?2, it follows that%?’ = w;.w. ;. Wheni = j, it follows from
wy; = 0 thatw; . = 0,1 becausdV is a (nonsymmetric) Laplacian matrix, which then implies
that%_j = w;.w.; = 0. This contradicts the assumption that # 0. Wheni # j, because we
assume thatv;; = 0, it follows that 22 = w; w. ; = Y77, ;s wikwy; > 0 due to the fact
w; < 0,Vi # k, becausdV is a (nonsymmetric) Laplacian matrix. Becau@es a symmetric
Laplacian matrix, it follows thay;; < 0,Vi # j. Therefore,%ﬂ' > 0,Vi # j, impliesg;; = 0,
which also contradicts the assumption thgt 0.

Second, we will show thaty;; # 0 if g;; = 0. We also show this statement by contra-
diction. Assume thatv;; = 0. To ensure that;; = 0, it follows from "T—J = wiw.; =
S b kit WikWhj thatwigwe; = 0,¥k # i,k # j,k = 1,--- ,n. Denotek; as the node set
such thatw;,, # 0 for eachm € k1. Then we havev,,; = 0 for eachm ¢ ky becausev;,wy; = 0.
Similarly, denoték; as the node set such that,; # 0 for eachm < k1. Then we havev;,,, = 0 for
eachm € k; becausev;,wy; = 0. From the discussion in the previous paragraph, whgn = 0,
we haveg,,; = 0, which implies thatwv,,,w,; = 0,Vp # m,p # j,p = 1,--- ,n. By following a
similar analysis, we can consequently defipandk;,i = 2,-- - , x, wherek; Nk; = @, k; N k; =
(,Vj < i. Noting that the undirected graph associated \jtis connected and the directed graph
associated withV has a directed spanning tree becadséas a simple zero eigenvalue, it follows
thatx < n. Therefore, each entry af. ; is equal to zero by following the previous analysis for at
mostn times. This implies thag;; = 0,Vi # j, because(ﬁ—j = w;.w. j. Considering the fact that
Q@ is a symmetric Laplacian matrix, it follows thaf; = 0, which also contradicts the fact that the
undirected graph associated withis connected. [ |

We next prove Theorem 5.3.1 based on the previous lemmas.

Proof of Theorem 5.3.1Consider the following standard LQR problem

r[?(n)l J; subjectto: X(t) = AX(t) + BU(t), (5.16)
t
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whereJ; is defined by (5.15)A4 = 0,,«,,, andB = I,,. It can be noted thatA, B) is controllable,

which implies that there exists/a satisfying the continuous-time algebraic Riccati equaflRE)

ATP+ PA—PBR'BTP+Q = 0,xn. (5.17)

It follows from (5.17) thatPR~! P = Q, which impliesR~'PR~' P = R~'Q. Itthen follows from
Lemma 5.3.3 thakR—' P = /R~1Q is also a (nonsymmetric) Laplacian matrix wh@rhas a sim-
ple zero eigenvalue. Therefore, the optimal contrdl {¢) = —R~'BTPX (t) = —\/R-1QX(t),
which implies that\/m is the optimal (nonsymmetric) Laplacian matrix. It alsddals from
Lemma 5.3.4 that/R—1Q corresponds to a complete directed graph. |

Remark 5.3.2 From Theorem 5.3.1, it can be noted that the interaction graprresponding to

v/ R~1Q is in general different from that corresponding®o

Remark 5.3.3 One may think that since the discussion in Theorem 5.3.Iggpondingly, the dis-
cussion in Theorem 5.4.1) is a standard LQR problem, theisalgan be solved using the standard
Matlab command. However, it is not clear why the standard Ls@Rition is a (nonsymmetric)
Laplacian matrix and the solution corresponds to a comptitected graph. The contribution of
Section 5.3.1(correspondingly, Section 5.4.1) is that wathamatically derive the conditions under
which the square root of a (honsymmetric) Laplacian magigtill a (nonsymmetric) Laplacian ma-
trix, explicitly derive the (nonsymmetric) optimal Lapkat matrix for a given global cost function,
and show that the optimal solution corresponds to a complegteted graph. Although it may be
intuitively true that a global optimization problem in thergext of consensus building normally re-
quires that each agent have full knowledge of all other agjahts nontrivial to theoretically prove
this fact. We have provided a theoretical explanation. ldigdn, the results in this paper can
also be used to interpret some phenomena in economy, maaageand social science, to name a
few. For example, each company in a country needs to (theallg) have a complete and correct
understanding of other companies’ status and act on thelahlai information in order to achieve

a globally optimal objective. Unfortunately, an economiisis might still happen because either
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the available information to each company is not completsamne companies do not act correctly

on the available information.

Remark 5.3.4 Note that\/R~1Q is not necessarily symmetric in general. WHeiis a diagonal

matrix with identical diagonal entries, i.eR = cI,, with ¢ > 0, /R~1Q is symmetric.

Remark 5.3.5 Theorem 5.3.1 requires th&} be a symmetric PSD Laplacian matrix with a simple
zero eigenvalue. Whe has more than one zero eigenvalde! (t)Q X (t) can be written as the

sum of at least two parts as
XTHQX(t) = XT ()Q1X1(t) + X5 (£)Q2Xa(t) + -+,

where X;,i = 1,2,---, are column vectorsQ);,: = 1,2,--- , are square positive semi-definite
matrices with compatible sizes, aif) and X;, Vi # j, are independent. This implies that optimal
control problem(5.15)can be decoupled into at least two independent optimal obptoblems. By
solving the independent optimal control problems, the fatates ofX;,7 = 1,2,--- | in general,

are not equal. Therefore, the requirement thalhas a simple zero eigenvalue is necessary to ensure

consensus.

Theorem 5.3.6 Any symmetric Laplacian matri£ € R™*" with a simple zero eigenvalue is the

optimal symmetric Laplacian matrix for cost functign=_[°[X7 (t)£>XT + U (¢)U (t)]dt.

Proof: By letting Q = £? andR = I,,, it follows directly from the proof of Theorem 5.3.1 thétis

the optimal symmetric Laplacian matrix. [ |

5.3.2 Optimal Scaling Factor Using Interaction-related Cat Function

With interaction-related cost function (5.5), optimal trmhproblem (5.7) can be written as

min J, = / h (X LX(t) +UT (U] dt (5.18)
B 0

subject to: X (t) = U(t), U(t) = —BLX (1),

where/ is a prespecified symmetric Laplacian matrix ghid the scaling factor.
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Theorem 5.3.7 For optimal control problen(5.18) where the symmetric Laplacian matuxhas

XT(0)X(0)—XT(0)mimT X(0)

XTOZX ) , wherem, =

a simple zero eigenvalue, the optintais \/ %

Proof: The cost function/,. can be written as
[e.9]
Jp = / X7 (0) [e‘ﬁﬁtﬁe_ﬁﬁt + ﬁ%‘ﬁﬁtﬁze_ﬁu] X (0)dt.
0
Taking derivative of/, with respect tg3 gives

dd‘g _ / XT(0) [~2Lte Pt Le 8 4 9pe I L2 08 — 95 Lhe L2 O X(0)dr.
0

Setting{ljﬁf = 0 gives

#2xT(0) { / h ﬁte—ﬁ“ﬁe—wdt] X(0)
0
- 6XT(0) [ / h e—ﬁﬁtc%—ﬁ“dt} X(0)
0

+ X7(0) { / h cte—ﬁﬁtce—ﬁ“dt] X(0) =0, (5.19)
0

where we have used the fact thaande~?* commute. Becausé is symmetric,C can be diago-

nalized as ) )
MO - 0
L=M ? M7, (5.20)
0 0 A
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whereM is an orthogonal matrix and; is theith eigenvalue of. It follows that

o0
/ Lte PEL L2 P gy
0

:/M
0

M

Similarly, it follows that

[oe) o
/ e Pt L2e=BL g — /
0 0

and

0 0

—28X\at 3
0 e BQt)\Qt

0 0
0 0 0
0 A 0
0 O An
0 0

M

[oe)
/ Lte PLEtLe=BL gy
0

:/M
0

Iy —mymy

432

0 0

0 e‘zm?t)\%t

0 0

T

)

e‘zﬁk"t)\it

T—_
M= 5L

MTat

(5.21)

MTdt = %E, (5.22)

MTat

(5.23)
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wherem; = “z. By substituting (5.21), (5.22), and (5.23) into (5.19)oitows that the optimal
gain satisfiegd = \/ XT(0)X (gg;()g)i()o()(rglmfx(o)' =

Remark 5.3.8 In Theorem 5.3.7, we considered a simple case when the ngugéin for each
vehicle is the same and presented the explicit optimal aogiglain. It is also possible to consider
the case when the coupling gain for each vehicle is diffeddotvever, it is, in general, hard to give

the explicit optimal coupling gains. Instead, numericdlgions can be obtained accordingly.

5.3.3 lllustrative Examples
In this subsection, we provide two illustrative examplesuwththe optimal (nonsymmetric)

Laplacian matrix and the optimal scaling factor derived @tt®n 5.3.1 and Section 5.3.2, respec-

tively.
2 -1 -1 0 10 00
-1 2 -1 0 0200
In (5.15), we randomly choos@ = andR =
-1 -1 3 -1 0030
0o 0 -1 1 0 0 0 4
It then follows from Theorem 5.3.1 that the optimal (nonsyetric) Laplacian matrix is given by
1.3134  —0.5459 —0.5964 —0.1711
—0.2730 0.8491 —0.4206 —0.1556 _ _ _
. Note that the optimal (nonsymmetric) Laplacian
—0.1988 —0.2804 0.8218 —0.3426
—0.0428 —0.0778 —0.2570 0.3775
matrix corresponds to a complete directed graph.
2 -1 -1 0
-1 2 1 0
In (5.18), we randomly choose = and initial stateX (0) = [1,2,3,4]7.
-1 -1 3 -1
0 0 -1 1

Figure 5.1 shows how cost functiof evolves as scaling factE;ﬁ increases. From Theorem 5.3.7,
it can be computed that the optimal scaling factof is- 0.845, which is consistent with the result

shown in Fig. 5.1.
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Fig. 5.1: Evolution of cost functiod, as a function of5.

5.4 LQR-based Optimal Linear Consensus Algorithms in a Disete-time Setting

In this section, we study the optimal consensus algorithmes discrete-time setting from an
LQR perspective. As shown later, the analysis in the diseligie case is more challenging than
that in the continuous-time case. We will first derive theimpt (nonsymmetric) Laplacian matrix
using discrete-time interaction-free cost function (5.1Ve will then derive the optimal scaling
factor for a prespecified symmetric Laplacian matrix usimggcrete-time interaction-related cost

function (5.12). Finally, illustrative examples will begsided.

5.4.1 Optimal Laplacian Matrix Using Interaction-free Cost Function
With discrete-time interaction-free cost function (5.1dptimal control problem (5.13) can be

written as

min Jy = > {X[KJQX[k] + UK|RU[k]} (5.24)
k=0

subject toX [k + 1] = X[k| + TU[k], Ulk] = —LX[k],

where@), R, andL are defined as in (5.15).

The main result for optimal control problem (5.24) is giverthe following theorem.
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Theorem 5.4.1 For optimal control problem(5.24) where( has a simple zero eigenvalue, the

optimal consensus algorithm is

T[V(R'Q)2+4R'Q/T? — R™'Q)]

Ulk] = — 5

X[k], (5.25)

— 2 — 2_p—1
that is, the optimal (nonsymmetric) Laplacian matrixTi[é/(R Q) +4}§ QPR QL addition,

the optimal (honsymmetric) Laplacian matrix correspormla tomplete directed graph.
Before proving the theorem, we need the following lemmas.

Lemma 5.4.1 [108] Let there be am by n nonnegative matrix¥’ = [p;;], wherep(P) < 1 and
pii > 0. Leta > 1. Then the following three statements hold:

(a) There exists a nonnegative matfixe R"*", wherep(B) < a andI,, — P = (al,, — B)?,
if and only if the iteration method

1
[P+ (® = DI, + X2, Xo=0pxn, (5.26)

Xip1 = %

is convergent. In this casé? > X* = lim; .o, X;, X* > 0, p(X*) < a, diag;(X*) > 0,2
i=1,---,n,and(al, — X*)? =1, — P.

(b) If (5.26)is convergent, it follows thalP and XT are semiconvergent.

(c) If P is semiconvergent, thgh.26)is convergent for albe > 1. Denoting in this case the
limit of the iteration method

1
Yipr=5(P+Y7), Yo =0pxn,
by Y*, the equatiorn],, — X* = I, — Y* holds.

Lemma5.4.2 [108] B € Z™*", whereZ™*" is defined in Definition 5.1.1, is a nonsingular M-

matrix if and only ifB has a square root which is a nonsingular M-matrix.

Lemma5.4.3 [108] B € Z™*", whereZ™*" is defined in Definition 5.1.1, is a nonsingular M-

matrix if and only ifB—! exists andB~! > 0.

?Here, diag(-) denotes théth diagonal entry of a square matrix.
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Lemma 5.4.4 Let P, and P, be twon by n nonnegative matrices satisfyindP;) < 1 and their

diagonal entries are positive. Denote
1
Xiv15 = §[Pj +(Xi)%, Xoj = Onxn, (5.27)

for j = 1,2. Also IetX; = lim; o X; 5,5 = 1,2. If P and P, are commutable, the following
statements hold:
1) X7 and P, are commutable foy, k € {1, 2};

2) X7 and X3 are commutable.

Proof: We prove the lemma by induction. It can be computed from (5tRat X, ; = %Pl and
X2 = %Pg. Therefore, it is easy to verify thdt, and X, ; are commutable foy, k € {1,2}.
Similarly, X;; and X, are also commutable. Assume thdt and X,, ; are commutable for
J.k € {1,2} and X,, ; and X, » are commutable. It can be computed from (5.27) that ; =
[P + (Xn, )% for j = 1,2. It can also be easily verified that,; ; and P, are commutable for

J, k € {1,2}. In addition, we also have

Xn+1,1Xn41,2

:i[Pl + (Xn1)?)[Pe + (Xn2)?]

1
=[PP+ (X0 1) Py + Pi(Xn2)* + (Xn1)* (X 2)’]

)

1
:Z[P2P1 + Po(Xp1)? 4+ (Xn2)2 P + (X02)2(Xn1)?]

=Xnt12Xn41,1,

where we have used the assumption tHatand X,, ; are commutable foy, & € {1,2} and X, ;
and X, » are commutable to derive the final result. Therefoxg, ;; and X, are also com-
mutable. By inductionP;, andlim;_., X; ; are commutable fof, k € {1, 2} andlim;_., X; ; and
limy_.o0 X2 are commutable. Because! = lim; .« X; j, j = 1,2, the lemma holds apparently.
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Lemma 5.4.5 Let G be a (honsymmetric) Laplacian matrix that has a simple zegerevalue with
a corresponding eigenvectdr,. Wheny > 0, /G? + ~vG is a (nonsymmetric) Laplacian matrix

with a simple zero eigenvalue.

Proof: When~ = 0, the proof is trivial. Wheny # 0, the proof follows three steps as follows:
Stepl: The off-diagonal entries of/G + +1,,/G are nonpositive.BecauseG: = [g;;] is a
(nonsymmetric) Laplacian matrix; can be written a&’ = s(I,, — P), wheres > 2 max; g;;, and
P is a row stochastic matrix with positive diagonal entriescérding to par{a) in Lemma 5.4.1,
VG = /s(I, — X*), whereX™* is defined in (5.26) fory = 1. Similarly, G + +I,, can be written

asG + I, = (s +v)(I, — ﬁP). By following a similar analysis to that aF, it follows that

VGH+AT, = /s+7(I, — X*), where X* is defined in (5.26) by replacing’ with - P for

a = 1. With P and SjVP playing the role ofP, and P, in Lemma 5.4.4, it follows from part&:)

and(c) in Lemma 5.4.1 and Lemma 5.4.4 th&t and X* are commutable becaugeand =P

are commutable. Then we have

;\/G%—ﬂn\/@

s(s+7)
=(I, — X* — X* + X*X*)
1 1 S A .
=1, — =[P+ (X*)?] == P+ (X*)?] + X*X* 5.28
2[ + (X*)7] 2[S+7 + (X7)7] + (5.28)
1 s N
=1, — -[P P+ (X*— X*)? 5.29
2[ +S+,Y + ( )71, (5.29)

where we have used the fact théat = [P+ (X*)?] andX* = %[sj,yPJr (X*)?] as shown in part

(c) of Lemma 5.4.1 to derive (5.28) and the fact tiat and X* are commutable to derive (5.29).
From (5.29), a sufficient condition to show that the off-dingl entries of/G + 771,,v/G are

nonpositive is to show that™* — X* > (0 becauseP is a row stochastic matrix. We next show that

this condition can be satisfied. It follows from p#at) of Lemma 5.4.1 thal — P = (I,, — X*)?
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andl — ;- P = (I, — X*)? whena = 1. Therefore, we have

v
S+

P =(I, — X*)? = (I, — X*)?
=2(X* — X*) — (X* — X*)(X* + X*)

=(X* = X*)(I, = X* + I, — X*). (5.30)

We next show thaf,, — X* + I, — X* is a nonsingular M-matrix and then use Lemma 5.4.3
to show thatxX* — X* > 0. Becauser + vI,, is a nonsingular matrix from Definition 5.1.3, it
follows from Lemma 5.4.2 thay/G + ~1,, is also a nonsingular M-matrix. Becaus&s + v1,, =

V5 (I, — X*), itfollows thatp(X*) < 1 according to Definition 5.1.3. Similarly, it follows from
Lemma 5.3.1 that/G is an M-matrix. Because/G = /s(I,, — X*), it follows that p(X*) < 1
according to Definition 5.1.3. Becausé* and X* are commutable as shown in (5.29), it then
follows that p(X* 4+ X*) < p(X*) + p(X*) < 2 [109]. Therefore,l, — X* + I, — X* is a
nonsingular M-matrix according to Definition 5.1.3. Beoais — X* + I,, — X* is a nonsingular

M-matrix, it follows from Lemma 5.4.3 thatl, — X* + I, — X*)~* > 0, which implies that

X*— X* > 0 becauseX* — X* = - P(I, — X*+ I, — X*)~! and P is a row stochastic matrix.

Therefore, it follows from (5.29) that the off-diagonal ees of /G + vI,,v/G are nonpositive.

Step2: G +11,VG = VG +1,V/G = \/G? 4+ 4G. From Stepl, we know thaty/G =
V(I — X*), VG + 1, = /s + (I, — X*), andX* and X* are commutable. It follows that
VG and/G + ~1,, are also commutable, which implies thdZ + 77,vVG = /G +1I,VG =
VG2 +AG.

Step3: /G? + G is a (nonsymmetric) Laplacian matrix with a simple zero pigdue. Sim-

ilar to the analysis in Stepin Lemma 5.3.3)/G has a simple zero eigenvalue with a corresponding
eigenvecton,,. Then/G + ~1,v/G also has a simple zero eigenvalue with a corresponding €igen
vector1,, because/G + I, is a nonsingular M-matrix as shown in StepCombining with Step

1 indicates that,/G + 71,v/G is a (nonsymmetric) Laplacian matrix with a simple zero mige
value, which implies tha{/m is also a (nonsymmetric) Laplacian matrix with a simple zero

eigenvalue according to St&p [ |
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Lemma 5.4.6 Let G be a (honsymmetric) Laplacian matrix that has a simple zegerevalue with
a corresponding eigenvectar,. Wheny > 0, /G? + vG — G is also a (nonsymmetric) Laplacian

matrix with a simple zero eigenvalue.

Proof: It can be computed thd = /G? + vG+G' is the solution of the following matrix equation
P? —2PG — 7G = Opxn, (5.31)

where we have used the fact thgiG2 + G andG are commutable becauséa + 71,, andv/G

are commutable as shown in St&pf the proof in Lemma 5.4.5. From Lemma 5.4.5, we know that
/G2 4+ 7G is a (nonsymmetric) Laplacian matrix, which implies ttiats also a (nonsymmetric)
Laplacian matrix because = /G2 + G + G. Therefore;yI,, + 2P is a nonsingular M-matrix
according to Definition 5.1.3. From (5.31), we can get= (2P + ~1,,) 1 P? = %[In — (2P +

vI,)~ ' P, which implies

%7(2P—|—yln)_1P _ %P—G - %(\/Cﬂ G- G). (5.32)
Note also that
1
V(YT + 2P) 1P = oyl = (vl + 2P) ). (5.33)

Combining (5.32) and (5.33) gives that

VG2 +~G — G =P —2G =4[, — y(vI, + 2P)71]. (5.34)

From Lemma 5.4.3yI,,+2P)~! > 0 because /I, +2P is a nonsingular M-matrix. It then follows
from (5.34) that the off-diagonal entries gfG2 + vG — G are nonpositive.

Because the off-diagonal entries giG2 + vG —G are nonpositive, to show thgf G2 + G —
G is a (nonsymmetric) Laplacian matrix with a simple zero migdue, it is sufficient to show
that \/m — G has a simple zero eigenvalue with an associated eigenvégtoBecause

V/G? + G is a (nonsymmetric) Laplacian matrix with a simple zero eigdue as shown in
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Lemma 5.4.5 and- is also a (nonsymmetric) Laplacian matrix with a simple zeigenvalue, it
follows that the interaction graphs associated with bgifi2 + vG andG have a directed spanning
tree. Becausé = \/m + G, it follows that P is a (nonsymmetric) Laplacian matrix and
the interaction graph associated withalso has a directed spanning tree, which implies thagas
a simple zero eigenvalue and the associated eigenvedgqr Eherefore,/G2 + G — G also has
the same property according to (5.34). Therefm — (G is a (honsymmetric) Laplacian

matrix with a simple zero eigenvalue. [ |

Lemma 5.4.7 For any nonsingular M-matrix3 = [b;;] € R"*"™ with each off-diagonal entry not

equal to zero, each entry af—! is positive.

Proof: From Definition 5.1.3,B = sl, — C. By choosings > max; b;;, it follows thatC' > 0.
BecauseB is a nonsingular M-matrix, it follows from Definition 5.1.8dt p(C') < s. Therefore,
B l=s1(I, -9 = s, + £+ (£)? + -] becauséimy_.(<£)* = 0,5, due to the fact

thatp(C) < s. Because® > 0, it follows directly that each entry aB~! is positive. [ |

Lemma 5.4.8 Let@ and R be defined irf5.24) Supposé&) has a simple zero eigenvalue. The (non-

symmetric) Laplacian matrix/(R—1Q)2 + yR~1Q — R~'Q corresponds to a complete directed

graph for anyy > 0.

Proof: We study howy/(R~1Q)2 + vR~1Q — R~1Q evolves wheny increases. Taking the deriva-

tive of R~1Q + ~I,, with respect toy gives

d(R7'Q ++1I,,)
dry

=1I,. (5.35)

We also have

—1 n2 —1 "
AVEZQ+91)" _ /p=ig a1, VI di”ﬂ' (5.36)

dry



144

Therefore, we havél—W = %(\/R—lQ +~1,)~*! from (5.35) and (5.36). It then follows

that

dy/(R1Q)? +yR1Q
d

-
_JR10% R_;g + 1 (5.37)

— VEIQWETQ T 7T,
=3I~ %(%R-l@ + 95+ VETQ) T (VRTIQ + 1) 7 (5.38)

where we have used Stepin the proof of Lemma 5.4.5 to derive (5.37). Becau?e'Q +
~I, is a nonsingular M-matrix, it follows from Lemma 5.4.2 th{;\ﬂ_%—lQ + ~I,, is also a non-
singular M-matrix. Meanwhile, by following a similar analg to that of Lemma 5.3.4, each

entry of /R~1Q + ~I, is not equal to zero. It follows from Lemma 5.4.7 that eacheof
(v/R1Q +~I,)~" is positive. Similarly, each entry df\/R~1Q +~I,, + \/R~1Q)~" is also

dy/R1Q>+yR~1Q
dry

positive. It then follows from (5.38) that each off-diagbeatry of iS negative,

which implies that the off-diagonal entries gf(R—1Q)? + vR~1Q — R~'Q will decrease. Noting

that\/(R~1Q)2 + yR~1Q — R~'Q = 0,,x,, wheny = 0, it follows that the off-diagonal entries

are less than zero for any > 0. Because,/(R~1Q)? + yR~1Q — R~'Q is a (nonsymmetric)

Laplacian matrix from Lemma 5.4.6 by consideriRg' @ asG, it follows that the diagonal entries

of /(R71Q)? + yR~1Q — R~'Q are also not equal to zero. Combining the previous arguments

shows that each entry qf/(R~1Q)% + yR~1Q — R~'Q is not equal to zero, which implies that

the (nonsymmetric) Laplacian matrif (R—1Q)2 +yR~1Q — R~'Q corresponds to a complete
directed graph. [ |

We next prove Theorem 5.4.1 based on the previous lemmas.

Proof of Theorem 5.4.1We first show that (5.25) can always guarantee consensus.n Whe

using (5.25) for (5.8), we have

(5.39)

Xlk41] = (I  PVRTQPF HARTQ/T —R‘IQ]> X[
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Because/(R~1Q)? + 4R~1Q/T? — R~'Q is a (nonsymmetric) Laplacian matrix with a simple

zero eigenvalue when considerifig ' Q and% as, respectively andy in Lemma 5.4.6, a suffi-
T2[\/(R~1Q)*+4R"1Q/T?*~R™'Q)]
2

cient condition to ensure consensus is that all diagonaksraf/,, —
are positive according to Lemmast and3.7 [39]. Next, we show that this condition can be satis-

fied. By consideringﬂ—QR—lQ asG and~y = 1, it follows from Step2 in the proof of Lemma 5.4.5

that \/In + L R-1'Qand \/TTQR—lQ are commutable. After some manipulations, we have

_ 2
p, - PWETQE TN RG] <\/ Lt Trig [T R_1Q> |

By following a similar proof to that of Lemma 5.4.8, we havatlQ/yln +ZR1Q - \/TTQR—lQ

is an M-matrix with each entry not equal to zero for any- 0, which implies that each entry of

\/In + L R1Q - \/TTQR—lQ is not equal to zero. Combining with Definition 5.1.3 showatth

all diagonal entries o(\/In +ZRrR1Q \/TTQR—lQ)Q are positive. Therefore, consensus can
always be achieved when using (5.25).
We next show that (5.25) is the optimal consensus algorit@onsider the following LQR

problem

%1 Jp=> {X[FQX[k] + U[k|RU[K]} (5.40)
k=0

subject toX [k + 1] = AX[k] + BU|k],

where@ and R are defined in (5.24)A = I,,, and B = T1,. It can be noted thatA, B) is
controllable in (5.40), which implies that there exists a@nmaP satisfying the following discrete-

time algebraic Riccati equation (ARE)
P=Q+ AT[P - PB(R+ B"PB)~'BT P]A. (5.41)
Noting thatA = I,, andB = T'I,,, (5.41) can be simplified as

Q= PT(R+T?P)"'TP. (5.42)
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By multiplying R~ on both sides of (5.42) and some manipulations, we caRgé) = R~ PT(I,,+
T?R~'P)~'TR~1P. Itthen follow from the fac{ I, + T?R~'P)~! = I,—(I+T*R~'P)"'T?R~P
that

R'Q=1[I,— (I, + T*°R7'P)"'|R'P, (5.43)

which can be simplified as

1
—R7'Q = 0nxn. (5.44)

(R7'P)2 — R7'Q(R™'P) - 7

It can be computed that (5.44) holds whBmn' P = R71Q+\/(R71%)2+4(R71Q)/T2. The optimal

control strategy of (5.40) is given ly[k] = — F X [k] with

F=(I, +T?R7'P)"'TR™'P
=T(R'P - R7'Q)

_T(V/(RT'QP?+4R™'Q/T? — R'Q)
— 5 ,

where we used (5.43) to derive from the second to the lastigqecause,/(R~1Q)? + 4R1Q/T?—

R~1(Q is a (nonsymmetric) Laplacian matrix and corresponds tanaptete directed graph by con-
V(RT1Q)?+4R"1Q/T*~R™'Q)
2

sidering% asy in Lemma 5.4.8, it follows that is the optimal (non-

symmetric) Laplacian matrix and also corresponds to a cetalirected graph. [ |

Remark 5.4.2 From Theorem 5.4.1, it is easy to verify that wiénr- 0, the optimal (nonsymmet-

ric) Laplacian matrix is the same as that in the continuciusetcase in Theorem 5.3.1. In addition,
T(/(R~1Q)*+4R"1Q/T?*~R"'Q)
2

matrix

is not necessarily symmetric. Whéhis a diagonal matrix
*1Q)2+4R*1Q/T2—R71Q)
2

with identical diagonal entries, i.eR = cl,, with ¢ > 0, T/(R

is sym-

metric.

Remark 5.4.3 It can be noted from Theorem 5.4.1 that there is no constmirthe sampling period
T[/(R~1Q)?+4R~1Q/T?~R™'Q)
2

T. For any positive sampling period,

is the optimal Laplacian

matrix that can always guarantee consensus.
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Similar to the discussion in Section 5.3, we next show thgtsymmetric Laplacian matrix
that has a simple zero eigenvalue is the optimal symmetrdalcéan matrix for some given cost

function.

Theorem 5.4.4 Any symmetric Laplacian matrig = [¢;;] € R™*" that has a simple zero eigen-
value is the optimal symmetric Laplacian matrix for costdion .J = >~ 7 { X [k|QX [k] + U[k]U[k]},

whereQ = (I, — TL)™'£* and T < min .

Proof: WhenT < miin Zl it follows from the Gershgorin disc theorem [86] tHAL has all
eigenvalues within the unit circle ang — 7'£ has all eigenvalues not equal to zero. It then fol-
lows thatlimy,_.o[TL]* = 0,x,. This implies(I,, — TL)[I, + TL + (TL)? + ---] = I,,, i.e.,
(I, —TL) ™ =1,+TL+ (TL)?>+ . It then follows that) is PSD because bot,, — T£)~!
and£? are PSD.

Note thatQ = (I,, — T'£)~'£2 implies that(I,, — TL)Q = £?,i.e.,Q = £L? + TLQ, which
implies

(TQ)? 4+ 4Q = (2L + TQ)%. (5.45)

By taking square root of both sides of (5.45) and some simptifins, we can geji( v QQ“;Q/ m-Q) _

L. Applying Theorem 5.4.1 finishes the proof. [ |

5.4.2 Optimal Scaling Factor Using Interaction-related Cst Function

With interaction-related cost function (5.12), optimahto! problem (5.14) can be written as

min J, = i {XTKILX K] + U [K|U[K]} (5.46)
k=0

subject toX [k + 1] = X[k] + TU|k],

Ulk] = —BLXTK],

whereL is a prespecified symmetric Laplacian matrix ahe the scaling factor. Becaugkis a
symmetric Laplacian matrix, it thus can be written in a dizg/dorm as in (5.20) with\; being the

ith eigenvalue ofZ. Without loss of generality, leX; satisfy0 = A; < Ay < -+ < A,
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Theorem 5.4.5 For optimal control problem(5.46) where symmetric Laplacian matri& has a

_ 24 4 _ 24 4
T+,/T2+ 5% T+\/T +5
2 2

simple zero eigenvalue, the optimal scaling fagigy; satisfies——5——= < [, < 3

Proof: By rewriting £ in a diagonal form as shown in (5.20), (5.46) can be written as

J, = i XT0]M{(I, — BTA)FA(L, — BTA)* + (I, — BTA)*(BA)* (I, — BTA)* }MT X[0].

k=0
BecauseL has a simple zero eigenvalue, it follows that> 0,7 = 2,--- ,n. After some manip-
0 0 0
1
0 PIES 0
ulations, we have/, = X7 [0]M THAx; MTXI0]. Fori =2,--- ,n,
1
0 0 BT
L 1+627n i
taking derivative 0% — T with respect tg3 and setting the derivative to zero gives
201+ B2N) —26M(28+T) 0
(14 32X)? .
~T+\ T2+ 5 ~T+\ T2 +5E _
It can be computed that = ——5——=. Note that for3 < ——5——=", the cost function
1
Jr will decrease wherd increases becausg;+—— increases wheg increases; = 2,--- ,n.
v

o —T+, T2+ ) . .
Similarly, for 5 > # the cost functionJ,. will increase when3 increases because

1

2ﬂ++_T decreases whefi increases; = 2,--- ,n. Combining the previous arguments shows
1+82x;

T+ T2
—Y 2,

—T+,/T2+5
that% < 5opt < u

Remark 5.4.6 The optimal control problem in Theorem 5.4.5 is essentelbplynomial optimiza-

tion problem. Numerical optimization methods can be usexbhee this problenfl10].

5.4.3 lllustrative Examples

In this subsection, we provide two illustrative examplesuwththe optimal (nonsymmetric)

3Note that there always existssuch that consensus can be achieved. In this dasefinite. Therefore, the optimal
Bopt CaN always guarantee consensus because othefwis#l go to infinity, which will then result in a contradiction
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Laplacian matrix and the optimal scaling factor derived @tt®n 5.4.1 and Section 5.4.2, respec-
tively.
In (5.24), let@ and R be defined as in Section 5.3.3 and sampling pefiog: 0.1 s. From

Theorem 5.4.1, it can be computed that the optimal (nonsymichéaplacian matrix is give by
1.2173 —0.498 —0.5484 —0.1709

—0.249  0.8007 —0.3963 —0.1554 _ _
. Note that this matrix corresponds to a complete

—0.1828 —0.2642 0.7734 —0.3264

i —0.0427 —0.0777 —0.2448 0.3653 |
directed graph.

In (5.46), let£ and initial stateX'[0] be defined as in Section 5.3.3. Figure 5.2 shows how cost
function J,. evolves as scaling factgt increases. From Theorem 5.4.5, it can be computed that the
optimal scaling factops satisfies0.45 < 3 < 0.95, which is consistent with the result shown in

Fig. 5.2.
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Fig. 5.2: Evolution of cost functiod,. as a function of3.
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Chapter 6
Decentralized Coordination Algorithms of Networked
Fractional-order Systems

In the previous several chapters, we focus on the study efdiestized coordination algorithms
for integer-order systems. In practice, the vehicle dyrarare sometimes better to be represented
in a fractional-order form instead of a integer-order foaspecially when the vehicles are working
in complicated environments. Motivated by the broad ajpfitm of coordination algorithms in
multi-vehicle systems and the fact that many practicalalekidemonstrate fractional dynamics, we
study coordination algorithms for networked fractionader systems in this chapter. We study both
fixed and switching network topology cases. Some backgranfiodmation is given in Appendix

B.

6.1 Fractional Calculus

Fractional calculus can be dated back to tfith century [111]. Fractional calculus studies
fractional derivatives, fractional integrals, and theiogerties. Different from the integer orders
of derivatives and integrals in conventional calculus,dlgers of derivatives and integrals in frac-
tional calculus are real numbers. The foundations of foaeti calculus were laid on some pioneer
work [112-114]. With the development of fractional calaylits applications were also studied
by researchers from different disciplines [115, 116]. Eghes include study of formation of par-
ticulate aggregates [117] and study of motion of objectsigtoelastic materials [118—-120]. In
particular, fractional calculus was also introduced irite €ngineering community to design the
CRONE controller [121] and synthesize control systemsJl22name a few.

In addition, fractional dynamics were also presented andiet from different perspectives.
The dynamics of self-similar protein was modeled in a fa@i-order sense because the relax-

ation processes and reaction kinematics of proteins del/fadbm exponential behavior [123]. The
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fractional-order dynamics of international commodityces were demonstrated from the com-
modity price series [124]. The fractional-order PID coliis were shown to demonstrate bet-
ter performance when used for the control of fractionakorslystems than the classical PID con-
trollers [125, 126]. Fractional equations have become aptementary tool in the description of

anomalous transport processes in complex systems [127].

6.2 Mathematical Model
In this section, we introduce a general mathematical mddsardination for fractional-order
systems by summarizing the following three different cases
Case 1: Fractional-order agent dynamics with an integesie@drcoordination algorithm
Assume that the agent dynamics are

(1) = ui(t), 6.1)

2

wherer;(t) andu;(t) represent, respectively, the state and control input itthagent, and(a)(t)

%

is theath derivative ofr;(¢) with « € RT.1 An integer-order coordination algorithm is given by

wi(t) =Y ag{[r;(t) — 6] — [ri(t) — 6.1}, (6.2)
JEN;
wherea;; is the(i, j)th entry of the adjacency matrit, IV; denotes the neighbor set of agérand
0; Is constant.
Case 2: Integer-order agent dynamics with a fractionalesrdoordination algorithm
Assume that the agent dynamics are given-lfy) = wu;(t), wherer;(t) andw;(t) are defined as

in (6.1). A fractional-order coordination algorithm is givby

wi(t) =Y ag{lr;(t) — 6,1 = [ri(t) — 6]}, (6.3)

JEN;

wheres € R, anda;;, N;, andé; are defined as in (6.2).

Case 3: Fractional-order agent dynamics with a fractiowatier coordination algorithm

'For a given systemy is fixed.
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Assume that the agent dynamics are given by (6.1). A fraatiorder coordination algorithm is
given by (6.3).

Defined;; 2 0; — 0;. The objective of the algorithm in each case is to guarareedmation,
i.e.,ri(t) —r;(t) — 6;; ast — oo for any initial ;(0) andr;(0). Note that integer-order dynamics,
i.e.,ais an integer in (6.1), is a special case of fractional-oigramics. The existing consensus
algorithm for single-integrator dynamics (e.g., [36, 3])Xorresponds to a special case of Case
whena = 1in (6.1) andj;; = 0in (6.2).

When applying Caputo derivative to (6.1) and (6.3), it faltothat Case® and3 can be written
as Casel by applying the fractional operatdrD,” ? on both sides of the corresponding system.
Therefore, the model in Cadecan be considered a general model. In the following, we facus

Casel. For ann-agent system, using (6.2), (6.1) can be written in matnixifas
X)) = —L£X(t), (6.4)

whereX (t) = [F1(t), 7a(t), ..., 7 (1)L € R™ with 7(t) = r;(t) — §; and L is the (nonsymmetric)
Laplacian matrix. Although the dynamics for a given systemfixed,« in the general model (6.4)

can be changed by choosing coordination algorithms wiflerift fractional orders.

6.3 Coordination Algorithms for Fractional-order Systems Without Damping Terms
In this section, we study the coordination algorithms inabsence of damping terms, that is,

the control algorithms only depends on the states.

6.3.1 Convergence Analysis
We first investigate the conditions on the network topologg the fractional order such that
convergence can be achieved. In particular, we study boghd firetwork topology and switching

network topology cases.

Fixed Network Topology

We first study the case when the network topology is fixed, £as fixed in (6.4). We focus
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on deriving the conditions on the network topology and tlaetiobnal order such that coordination

can be achieved.

Ay o .- 0
L : 0 Ay -+ 0
Note thatL can be written in Jordan canonical formas= P P,
0o 0 - Ag
- A - . o
whereA,,,, m = 1,2,...,k, are standard Jordan blocks. Without loss of generalitythketinitial
timea = 0. By definingY'(¢) 2 P~1X(t), (6.4) can be written as
Y@)(4) = =AY (¢). (6.5)

Suppose that the diagonal entry &f is )\;, i.e., an eigenvalue of. Noting that the standard

A1 -0

0 X - 0| .
Jordan blockA; = , it follows that (6.25) can be decoupled intoone-

0 0 - N\

dimensional equatic;ns represented by either

y§“) (t) = —Aiyi(t) (6.6)

for the equation corresponding 19 which has dimension equal to one or the last equation corre-

sponding toA; which has dimension larger than one, or

yi(a) (t) = =Aiyi(t) — yir1(t), (6.7)

otherwise, where;(t) is theith component ot (¢).

Before deriving the main result, we need the following twmihaas.

Lemma 6.3.1 WhenRe();) > 0, whereRe(-) denotes the real part of a complex number, the
solution of (6.26) has the following properties:

1) Whena € (0, 2791') andRe()\;) > 0, tlim yi(t) — 0 ast — oo, where; = m — arg{\;} with
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arg{)\;} denoting the phase 0f;.2
2) Wheno € (0,1] and \; = 0, y;(t) = ;(0), Vt.
3) Whena € (1,2) and \; = 0, y;(t) = y;(0) + 9, (0)t.

4) Wheno € (2, 00), the system is not stable.

Proof: (Proof of Property 1) By taking the Laplace transform of @,2t can be computed from the

Laplace transform of.{ f(*)(¢)} in Appendix B that

A(N—)cx—1
() =20 e ©8)
and
Ligi(tyy = B+ G(00)s° o) (6.9)

S+ N
From (6.8) and (6.9), it can be seen that the denominatd@r{gf(¢)} is s* + \; whena € (0,2).
To ensure that all poles af{y;(¢)} are in the open left half plane (LHP), it follows that
(0, 2r—astdid)y 1128, that is,a € (0, 2%), where2%: > 1 becauseRe();) > 0, i.e.,arg{)\;} €
(=%, %). In particular, when\; € R, o € (0,2) becauserg{);} = 0.

(Proof of Properties 2 and 3) The proofs of Properties 2 aral@4 from Podlubny [116].
(Proof of Property 4) See Gorenflo and Mainardi [129]. [ |

Lemma 6.3.2 Assume that continuous functign, ; (¢) satisfiestlim Yi+1(t) = 0. WhenRe(\;) >
0, i.e.,arg{\;} € (=3, 3), anda € (0, %) wheref; = © — arg{\;}, the solution of(6.27)

satisfieslim y;(t) = 0.
t—oo

Proof: Whena € (0, 1], by taking the Laplace transform of (6.27), it can be comgdtem the
Laplace transform of.{ f(®)(¢)} that
s 'yi(07) — L{yina (1)}

L{yi(t)} = Fy : (6.10)

*We follow the convention thatrg{x} € (—n,7] forz € C.
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It follows from the proof of Property in Lemma 6.3.1 that the poles of (6.10) are in the open LHP

whena € (0, 1]. By applying the final value theorem of the Laplace transform

sYYi(07) — sL{yit1(t)}
SY 4\

tlim yi(t) = lir% sL{y;(t)} = lir% =0,
where we have used the fadt{y;;1(¢)} = 0 to derive the last equality becautmn yi+1(t) = 0.

Whena e (1,%%), it follows from the proof of Propertyl in Lemma 6.3.1 that the poles

™

of (6.10) are also in the open LHP. By taking the Laplace fians of (6.27), it can be computed
from the Laplace transform df{f(*)(t)} that
s 1yi(07) + 57 %9:(07) — L{yina (1)}

L{yi(t)} = T . (6.11)

Following a similar discussion fax € (0, 1] giveslim,_,, y;(t) = 0.
Combining the above arguments proves the lemma. [ |
Based on Lemmas 6.3.1 and 6.3.2, we next study the conduiotise fractional ordes: and

the interaction graph such that coordination can be actlieve

Theorem 6.3.1Let \; be theith eigenvalue ofL and § = )\iyéo,?:lilr,llm,nei’ wheref;, = m —
arg{\;}. For fractional-order systen(6.4), coordination is achieved if the fixed interaction graph
has a directed spanning tree ard € (0, %). Whena € (0,1], the solution of(6.4) satisfies
Fi(t) — 7(t) — pTX(0), i.e., ri(t) — r;(t) — &y ast — oo, wherep is the left eigenvector
of L associated with the zero eigenvalue satisfyplgl = 1. Whena < (1, %), the solution
of (6.4) satisfiesr;(t) — 7;(t) — pTX(0) + pT X (0)t and 7(t) — #5(t) — pTX(0), i.e.,

ri(t) — T’j(t) — 5ij’ ast — oo.

Proof: Noting that the interaction graph has a directed spannew it follows thatC has a simple
zero eigenvalue and all other eigenvalues have positivgoegts [39]. Without loss of generality,
let \; = 0 andRe(\;) > 0, 7 # 1. Whena € (0, 1], because\; = 0 is a simple zero eigenvalue,
A1 satisfies (6.26). It follows from Properfyin Lemma 6.3.1 that, (t) = y1(0). When\;, i # 1,
satisfies (6.26), it follows from Property in Lemma 6.3.1 tha;tlirgo yi(t) = 0, i # 1. When

i, © # 1, satisfies (6.27), it follows from Lemma 6.3.2 tkgﬁtn yi(t) =0, i # 1, as well because
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yi+1(t) also satisfies either (6.26) or (6.27), which impltrbi%o yi+1(t) = 0. Combining the above
arguments give?irgo Y (t) = [y1(0),0,---,0]T, i # 1, which impliestlirgo X(t) = tlin;lo PY(t) =
PSY(0) = PSP~'X(0), whereS = [s;;] € R™" has only one nonzero entsy; = 1. Note that
the first column ofP can be chosen aswhile the first row of P~! can be chosen gs by noting
that1 andp are, respectively, a right and left eigenvectoi.aissociated with; = 0 andp’ 1 = 1.
Therefore, lim X(t) = PSP~'X(0) = 1p”X(0), that is, lim 7(t) = p?’ X(0). This implies
thatr;(t) — r;(t) — 0;; ast — oo.

Whena € (1, %), similar to the previous discussion far € (0, 1], \; satisfies (6.26). It
follows from Property3 in Lemma 6.3.1 thay; (t) = 31(0) + 91(0)t. Becaus&Re()\;) > 0, i #
1, similar to the previous discussion far € (0, 1], it follows from Propertyl in Lemma 6.3.1
and Lemma 6.3.2 th%tifgoyi“) = 0, i # 1. Therefore, it follows tha'%lirgo Y(t) = [y1(0) +
71(0)t,0,---,0]7, which implies thatlim Y (t) = [51(0),0,---,0]7. Similar to the proof for
o € (0,1, it follows directly that lim 7:(t) = p” X(0) + pT X (0)¢ and lim 7;(t) = pT X (0).
This implies thatr;(t) — r;(t) — d;; ast — oo.

Combining the previous arguments fore (0,1] anda € (1, 2770) proves the theorem. H

As a special case, when the fixed interaction graph is urtduegve can obtain the following

result.

Corollary 6.3.2 Assume that the fixed interaction graph is undirected. Factfonal-order sys-
tem (6.4), coordination is achieved if the interaction graph is cooteel anda € (0,2). The

coordination equilibria wherv € (0, 1] anda € (1, %) are the same as those in Theorem 6.3.1.

Proof: When the undirected interaction graph is connected, ib¥al that there is a simple zero
eigenvalue and all other eigenvalues are positive, whighlies thatd = 7. The statements then
follow from the proof in Theorem 6.3.1. [ |
From Theorem 6.3.1, it can be seen that the range of thedredtordera is determined by
f. Note thatd is closely related to the eigenvalues ©f which are also related to the number of
agents. In the following, we characterize the relationdiépveenn and the number of agents to

ensure coordination.
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Theorem 6.3.3 Assume that there are agents withn > 2. For fractional-order systen(6.4),
coordination can be achieved if the fixed interaction grajgls l directed spanning tree and €

(0,14 2).

Proof: Letting \; be theith eigenvalue ofz, it follows thatarg{)\;} € [-5 + =, 5 — Z] for

all A; # 0 [130], which implies% > 1+ % Therefore, the statement holds apparently from

Theorem 6.3.1. [ |

Remark 6.3.4 From Theorem 6.3.1, it can be seen that the final coordinagiguilibrium of (6.4)
for a € (0, 1] is the same as that of

X(t) = —LX (1), (6.12)
under the same.

Remark 6.3.5 From Theorem 6.3.3, when there exist more agents in a teanm becomes larger,
o has to be chosen smaller to ensure coordination.nAs> oo, % — 1, i.e.,a € (0,1], which
implies that the coordination property for systems wittg&rintegrator dynamics does not depend

onn.

Switching Network Topology

In this section, we derive the conditions on the network togy and the fractional orders such
that coordination will be achieved for fractional-ordestm (6.4) under a directed dynamic net-
work topology. We assume that the interaction is constaet tine intervaI[Zé‘?:1 Ay, Zfill Aj)
and switches at time = Y"%_| Aj with k = 0,1,--- 3 whereA; > 0,j = 1,---. LetG, and 4,
denote, respectively, the directed graph and the adjaceatyx fort € [Z?Zl Aj, Zfill Aj). We

also assume that each nonzero entryiptas a lower bound and an upper bound, wherea and

@ are positive constants with> a. Then (6.4) becomes
X[k +1] = —L.X[k], (6.13)

whereL; € R™*" represents the Laplacian matrix associated wiith

. R © A
We define}~7_, A; = 0 whenk = 0.
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We first focus on the case wheaie< o < 1. We have the following result.

Theorem 6.3.6 Assume thatv € (0, 1). Using(6.2) for (6.1), a necessary condition to guarantee
coordination is that there exists a finite constantsuch that the union &;, j = k, k+1,--- , k+
N, has a directed spanning tree for any finite Furthermore, ifG;,j = 0,1,--- , has a directed
spanning tree at each time interval, there exists posifivessuch that coordination will be achieved

globally whenA; > A;.4

Proof: For the first statement, when there does not exist a finitetaond such that the union of
gj,j =k,--- ,k+ N, has a directed spanning tree for solet follows that at least one system,
labeled ag, is separated from the other systemstfar [Zle Aj,00). It follows that the state of
systemi is independent of the states of the other systems t_arzg?zl A, which implies that all
systems cannot always achieve coordination for arbitr@tial conditions.

For the second statement, it follows from Theor&m[131] that

X(t) = Eo(—L£t*)X(0).

Therefore, the solution to (6.13) is given by

k k k+1 k

[T Ea(=£:0 - AN Ea(=Lr() AN Ea(=LoA1)*)X(0).  (6.14)

j=1 =1 j=1 j=1

=
™
e

I

Definex = max; T, & = min; Z;, andV = max; T; — min; Z;. It follows from Theorens.1 [132]

that z; converges tar; ast — oo if the network topology has a directed spanning tree. That
is, there exists positivé; such thatV (t) < V(0) for anyt > A;. Similarly, by considering
[Eo(—L£1(A1)Y)]  Ea(—LoA1)*) X (0) as the new initial state, it follows that there exigis
such thatV (t + A;) < V(A;) for anyt > A,. By following a similar analysis, there also exist
Az, WhenA; > A, V(X Ay) < V(325 Ap). ThereforelV (3!, Ay) — 0 asi — oo.

Thereforez;[k] — z;[k], i.e.,x;[k] — x;[k] — 0;; ask — oo under the condition of the theorem.

“Here the values ol\;,i = 1, - - , depend on the initial states, the fractional-ordeandg.
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Remark 6.3.7 For systemz; (t) = wu;(t), x;(t) will decrease ifu;(t) < 0 andz;(¢) will increase if
u;(t) > 0. However, for systemga) (t) = u;(t) with o € (0, 1), due to the long memory process
of fractional calculus, the aforementioned properties dbmecessarily hold. Therefore, even if the
switching network topology has a directed spanning treeaahdime interval, coordination might

not be achieved ultimately because the switching sequdscelkays an important role.

We next study the case whete< o < 1 + % wheren > 2. When the directed network

topology is fixed, we have the following lemma regarding tblkeison of (6.4).

Lemma 6.3.3 Whena € (1,2), the solution of(6.4)is

X(t) = Bo(—Lt)X(0) + tEaa(—Lt%) X (0). (6.15)

Proof: Consider the fractional-order system given by (6.4). Byldpp the Laplace transform to

both sides of (6.4), it follows that
s~ LIX(1)}] = —LX(s). (6.16)

Eq. (6.16) can be written as
s~ [2X (s) — sX(0) — X(0)] = —LX(s). (6.17)

After some manipulation, (6.17) can be written as

X(s) = (s*I, + £) 11X (0) + (s“I, + E)_lso‘_Q)L((O). (6.18)

By applying the inverse Laplace transform to (6.18), itdals from Theorens.2 [131] that (6.15)
is a solution of (6.4). Noting also thdt is a constant matrix, it follows from the uniqueness and
existence theorem of fractional equations [116] that (6id e unique solution of (6.4). |

Taking derivative of (6.15) with respect tgjives that

X(t) = %Ea,o(—ﬁta)X(O) 4 B (—L1%)X(0). (6.19)
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Combining (6.15) and (6.19) leads to the following matririfio

X(t Eo(—Lt%)  tEqo(—Lt* X(0
;( ) = ( ) 2l ) ;( ) . (6.20)
X(t) TBao(—L1%)  Ea(—L1) X(0)
Therefore, we can get that
X(A) | | Ba(=LoAT)  AiEaa(—LoAf) X(0)
X(Ay) A Bao(=LoAT)  Ea(~LoAf) X(0)
Similarly, we can also get that
X(A i X(0
;( *) = HCk—iBo,o ;( ) ; (6.21)
X(Ak) i=1 X(O)
whereC), = Bk+1,k+1B;€__i17k with
n+1 il n+1
Eo(=Ln( 21 Ai)*) it AiEa (=L ; Aq)*)
Bmn = Ea,o(—cm(i1 Ai)%) n+1 ’
22:11152 E(X(_ﬁm(lz:l Al)a)

where() 2 1o, is the2n by 2n identity matrix. Note that unlike the integer-order systerere
does not exist a transition matrix for fractional-orderteyss. Therefore, the analysis for fractional-
order systems is more challenging than that for integeetosgistems. Next we show the sufficient

conditions on the directed dynamic network topology suett toordination will be achieved.

Theorem 6.3.8 Assume thatv € (1,1 + 2) and Gy, has a directed spanning tree. Defii&?) 2

max; ¥;(t) — min; 7;(t). For (6.21) there exists positivé\; such thatV/(¢) < V(Z§;1 Aj) for
any A; > A; whent > 22':1 Aj, i = 1,---.° In addition, if A; > A;, coordination will be

achieved globally.

SHere the values of\;,i = 1,-- - , depend on the initial states, the fractional-ordeandg;,.
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Proof: For the first statement, when the directed fixed network tmppohas a directed spanning
tree, it follows from Theoren3.3 [132] that coordination will be achieved far € (1,1 + %). It
then follows that there exists a positive, such thatV’(t) < V(0) for anyt > A;. Similarly, by
X(0)
X(0)
that V(A; +t) < V(A;) foranyt > Ay + Ay. Similarly, we can also show the existence of

consideringB; 3B070 the new initial state, it follows that there exists a positiv, such

Nji=3,.--.
For the second statement, becalig® "'} Ay) < V(X!_, A;), itfollows thatV (i) A;) —
0 asi — oo. Therefore, we can get that(k] — z,[k|, i.e., x;[k] — z[k] — 0;; ask — oo under

the condition of the theorem. [ |

Remark 6.3.9 Theorems 6.3.6 and 6.3.8 can be extended to the case wherat¢hierfal order

a € (1,1+ 2)is constant fort € [YF_) A;, S Aj) and switches at = Y5 A,

6.3.2 Comparison Between Coordination for Fractional-oreér Systems and Integer-order
Systems

In this section, we compare coordination for fractionalesr systems with that for integer-
order systems. Based on the comparison, we propose a vamdeg fractional-order coordination
strategy to achieve higher convergence speed. Before gann we first derive the solutions
of (6.26) and (6.27).

Fora € (0, 1], the Laplace transform of (6.26) is (6.8). Taking the inedraplace transform
of (6.8) gives

yi(t) = yi(07) Ea(—Nit®),

whereFE,, (-) is the Mittag-Leffler function defined in (B.3). Similarlyrfa € (1,2), the Laplace

transform of (6.26) is (6.9). Taking the inverse Laplacasfarm of (6.9) gives
Yi(t) = (07 ) Ea(=Ait™) + (07 )t o 2 (= Nit™),

whereE, »(-) is the Mittag-Leffler function defined in (B.2).
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Fora € (0, 1], the Laplace transform of (6.27) is (6.10). Taking the iseelcaplace transform
of (6.10) gives

Yi(t) = 4i(07) Ea(=Ait®) — yig1 () # [t°" Ba o (= Ait®)],

wherex denotes the convolution operation. Similarly, foe (1, 2), the Laplace transform of (6.27)

is (6.11). Taking the inverse Laplace transform of (6.14¢gi
Yi(t) = yi(07) Ba(=Ait®) + 3i(07 )t Ea 2 (= Ait®) — yira (t)  [1°7 B a(—Xit®)].

It can be observed from these solutions that the decayingdspef Mittag-Leffler functions
determine the speed at whigh(t), whereRe()\;) < 0, approaches zero. As a result, it follows that
the convergence speed of (6.4) is also determined by theidecspeeds of Mittag-Leffler functions
due to the fact shown in the proof of Theorem 6.3.1 that coattthn is achieved ifj;(t) = 0 for
all \; # 0. As a special case, for single integer-order systems,a.e-, 1, (6.4) becomes (6.12)
and the corresponding solution§(t) = e~£tX (0). Similarly, the solution for high integer-order
systems, i.e.qx = 2,3, -, can also be written in the form of exponential functionsefdfore, it
is worthwhile to study the difference between Mittag-Leffienctions and exponential functions in
order to compare coordination for fractional-order dynesrand that for integer-order dynamics.
As an example, we next study the decaying speeds of the Mitfter function £, (—At*) and

the exponential functioa=**.

Theorem 6.3.10 There exists a positive scaldr such thatE, (—At®) decreases faster thasm*

fort € (0,7), where € RT anda € RT.

Proof: Note that bothe=** and E,, (—\t®) equal tol whent = 0. Taking derivatives of both func-
tions gives® [e]|,—g = —Ae M|i—o = —\ and L[E, (—\t*)]|,—o = —oco. Becaused [e~*] and
%[Ea(—/\to‘)] are continuous with respect tpthere exists a positive scal@rsuch thatt,, (—At®)
decreases faster than’! for t € (0,7') by using the comparison principle. |
To illustrate, Figs. 6.1(a) and 6.1(b) show, respectivéiyitag-Leffler functions and their

derivatives with different orders fok = 1. Figure 6.1(a) shows Mittag-Leffler functions when
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a = 0.2i,i =1,2,3,4,5.5 A noticeable phenomenon in Fig. 6.1(a) is that the smallés, the
faster the decaying speed will be when the time is close tm Fgure 6.1(b) shows the derivatives
of Mittag-Leffler functions fora. = 0.2i,7 = 1,2, 3,4, 5. Note that Figs. 6.1(a) and 6.1(b) verified
Theorem 6.3.10. Because the decaying speeds of Mittaget éfilhctions with different fractional
orders are different as shown in Fig. 6.1, we are motivateditpt a varying-order fractional-order

coordination strategy to increase the convergence speed.

Remark 6.3.11 In order to achieve higher convergence speed, a varyingofthctional-order

coordination strategy can be adopted. The strategy can bkerited as follows: Let; < --- <

ap, <ty
a., < 1 and choosey in (6.4)asa = i, tio1<t<ty,i=2,---,m; Heretyischosen
1, t>tn.

such that the convergence speed with orderis the highest when < ;. Similarly, ¢;, i =
2,--- ,m, is chosen such that the convergence speed with erder highest fort € [¢;,_1,¢;), and

a =1ift > t,,. Given the samé, the convergence speed of this varying-order fractiorrdkeo
coordination strategy is higher than that of the singlesgrator coordination strategy because the
convergence speed of the proposed strategy is higher tlaotithe single-integrator coordination

strategy whert < t¢,,, and equal to that of the single-integrator coordinationaségy whert > ¢,,.

Remark 6.3.12 The convergence speed for fractional-order systems candredsed by applying
a varying-order fractional-order coordination strateggimilarly, the convergence speed can also

be increased by separating the time interval into more [EéGe ¢;11).

Remark 6.3.13 There should exist an optimal varying-order fractionatter coordination strategy
to maximize the convergence speed and the order of the porrding fractional-order coordination
strategy may be continuous with respect.t@his optimal strategy might be related to the sensitivity

function of E, (—At®) with respect tay, i.e., %[Ea(—)\ta)].

SWhena = 1, the corresponding Mittag-Leffler function becomes theomemtial function.
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Fig. 6.1: Mittag-Leffler functions and the derivatives.
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6.3.3 Simulation lllustrations and Discussions

In this section, several simulation results are presertetlustrate the fractional-order co-
ordination algorithm proposed in Section 6.2 and the vargrder coordination strategy in Sec-
tion 6.3.2. We consider a group of twelve agents with an auon graph given by Fig. 6.2. Note
that the interaction graph in Fig. 6.2 has a directed spaninae with nodel being the root. Al-
though we only consider twelve agents in our simulation,laimmesults can be obtained for a large
number of agents if the conditions in Theorem 6.3.1 arefsadis Here for simplicity we have
chosens; = 0,5 = 1,---,12, i.e,, X(t) = X (t), whereX (t) = [ri(t), -~ ,712(t)]7. The corre-
sponding (nonsymmetric) Laplacian matrix is chosen suahdath = 1 if (v;,v;) € Wanda;; = 0
otherwise. It can be computed that= [, L, &, 5,0, &, &, &, . 4 15 15)© and the eigen-
values ofz are0, 1,1.9595 + 0.2817j, 1.6549 + 0.7557j, 1.1423 + 0.9898j, 0.5846 + 0.9096j, and
0.1587 4+ 0.5406j, wherej is the imaginary unit.

Fora € (0,1], let the initial states b&((0) = [6,3,1,—3,4,2,0, -5, -2, —5,2,7]7. When
the fractional order isx = 0.8, the states using (6.4) are shown in Fig. 6.3(a). It can be e
coordination is achieved with the final coordination edmilim for r;(¢) being 0.5455, which is
equal top” X (0). Whena = 1, i.e., the system takes in the form of single-integratoraayits, the
states using (6.4) are shown in Fig. 6.3(b). From these twiodfj it can be seen that the equilibrium
states for both cases are the same. In addition, it can alsbd®ved that the convergence speed
of the fractional-order case is higher than that of the siiglegrator case whenis close to the
origin.

Fora € (1, %), we let the initial states b& (0) = [6,3,1, —3,4,2,0, -5, -2, —5,2, 7] and

1\2 3 4
577 T
9 10 11 12

Fig. 6.2: Interaction graph for twelve agents. An arrow frpmo  denotes that agemtcan receive
information from agenj.
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Fig. 6.3: Simulation results using (6.4) with different ersl.
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X(0) = [1,2,3,4,0,0,0,0,1,1,1,1]7. It follows from the definition off in Theorem 6.3.1 that
6 = 1.8563, which impliesa. € (0,1.182). Figures. 6.3(c) and 6.3(d) show the states using (6.4)
for o = 1.15 anda = 1.5, respectively. From Fig. 6.3(c), it can be observed thatdioation can
be achieved. From Fig. 6.3(d), it can be observed that coatidn cannot be achieved. The four
subfigures in Fig. 6.3 validate Theorem 6.3.1.

We next present the simulation results using the varyimgiocoordination strategy described
in Remark 6.3.11 and compare the simulation results witeghsing the integer-order coordination
strategy in Fig. 6.3(b). Let the initial states B&0) = [6,3,1,—3,4,2,0, -5, -2, 5,2, 7]7.
Figure 6.4 shows the states using the varying-order coatidim strategy when the parameters in
Remark 6.3.11 are arbitrarily chosen@s= 0.4 + 0.1 andt; = 0.1 + 0.04i for i = 1,2, 3, 4.
Note that|r;(t) — r;(¢)| < 0.1 for all t > 21.73 s in Fig. 6.4 while|r;(t) — r;(t)| < 0.1 for all
t > 22.22 s in Fig. 6.3(b). Therefore, we can see that the convergegmeedsusing the varying-
order coordination strategy is higher than that using thglsiinteger-order coordination strategy.
The comparison shows the effectiveness of the proposedngaoyder coordination strategy. Of
course, when we choose different parametetsi() carefully as described in Remark 6.3.11, the

convergence speed can be further improved.

6.4 Convergence Analysis of Fractional-order Coordinatioa Algorithms with Absolute/
Relative Damping
In this section, we propose fractional-order coordinatadgorithms with absolute/relative
damping and then study the conditions on the network togoktd the fractional orders such
that coordination will be achieved when using these allgord for fractional-order systems under a

directed fixed network topology.
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Fig. 6.4: Simulation result using (6.4) with varying ordefis; (t) — r;(t)| < 0.1 for anyt > 21.73
s.).

6.4.1 Absolute Damping
Forn (n > 2) systems with dynamics given by (6.1), we propose the fatigviractional-order

coordination algorithm with absolute damping as
ui(t) = — i aijli(t) — w(t) — (0 — 6,)] = Bl (1), (6.22)
j=1
whereg € Rt andd; € R is constant. Using (6.22), (6.1) can be written in matrixricas
X () + X2 (1) + LX(t) =0, (6.23)
whereX (t) and £ are defined in (6.4). It then follows that (6.23) can be writies

(@/2)

X(t) | O I X(t) (6.24)

X2 () £ -1, | | xem@

F

whereO0,,,, is then by n all-zero matrix. Note that each eigenvalue/f);, corresponds to two

eigenvalues of’, denoted byuo; 1 = ARV sz_% andug; = BV AN sz_% [71].
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Note thatF can be written in Jordan canonical form as

A O 0
0 A 0
F=P ? Pt
0 0 Ay
A
whereA,,,, m = 1,2,... k, are standard Jordan blocks. By definitif) = [z1(t), -+, z,(t)]" 2
X(t) .
p-1 , (6.24) can be written as
X (@/2)(t)
Z@2(t) = AZ(t). (6.25)

Suppose that each diagonal entry/qfis u;, i.e., an eigenvalue of’. Similarly, (6.25) can be

decoupled into: one-dimensional equations represented by either
22(t) = piz(t), (6.26)

or

A (t) = pizi(t) + ziea (b). (6.27)

Lemma 6.4.1 [133] Let \; be theith eigenvalue of, 9,1 and uy; are the two eigenvalues &f

corresponding to\;, andIm(-) denotes the imaginary part of a complex number. Wihe\;) > 0,

[Im(X,)]2

Re(p2;—1) < 0 andRe(ug;) < 0 if and only if3 > Relu)

Theorem 6.4.1 Let \; be theith eigenvalue oL, and 19, 1 and u9; be the two eigenvalues éf

corresponding to\;. Defined 2 0 mllré , 0;, wheref; = 7 — |arg{—pu;}|. Using(6.22)
i 7#0,0=1,2,.-- 2n

for (6.1), coordination will be achieved if the directed fixed netwtmology has a directed span-

ning tree andx € (0, %). In particular, the following properties hold.

[Im(X,)]2

ReOn) - Whena € (0,2], #;(t) and Z,(t) converge top” X (0) +

Casel: 8 > maxy,-o

%pTX (@/2)(0) ast — oo, wherep is the left eigenvector af associated with the zero eigenvalue
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satisfyingp”'1 = 1. Whena € (2, 49),7 #,(t) and i, (t) converge top” X (0) + %pTX(O‘/z) (0) +
[p”X(0) + §p”X(+2/2(0)]¢, and ;(t) and &;(t) converge tap” X (0) + Lp” X(1+2/2)(0) as

t — oo.

[Tm(X)]?

oo+ Then we have that;(t) and Z;(t) and p" X (0) +

Case2: 0 < B < max)y,x0

%pT)N((O‘/Z)(O) ast — oo.

Proof: (Proof of Casd) When the directed fixed network topology has a directed rsipgriree,.
has a simple zero eigenvalue and all other eigenvalues loaite/p real parts [39,101]. Without loss
of generality, let\; = 0 andRe();) > 0, i # 1. ForA\; = 0, it follows thaty; = 0 anduy = —f.
Because-5 < 0, it follows from Propertyl of Lemma 6.3.1 thaty(¢) — 0 ast — oo. Whena €

(0,2], because:; = 0 is a simple zero eigenvalug; satisfies (6.26). It follows from Propergyin

[Im(\i)]?
Re(\)

Lemma 6.3.1that; (t) = 21(0). Whenj > maxy, o , it follows from Lemma 6.4.1 that
Re(uoi—1) < 0 andRe(p2;) < 0, @ # 1. Whenpug;—1 and uy; satisfy (6.26), it then follows from
Propertyl of Lemma 6.3.1 thaty; 1 (t) — 0andzy;(t) — 0ast — co. Whenuy;_; satisfies (6.26)
and po; satisfies (6.27), it then follows from Lemma 6.3.1 and Lemn&aXthatzy;_1(t) — 0
and zy;(t) — 0 ast — oo as well. Recalling the structure of the standard Jordankblbg
following the previous analysis, it can be shown that ; (¢) — 0 andzy;(t) — 0 ast — oo when

o1 andus; satisfy (6.27). Combining the above arguments giﬁﬁs Z(t) = [21(0),0,--- ,0]T,

R X(t) X(0)
which implies lim = lim PZ(t) = PSZ(0) = PSP~! , Where
oo x(@/2) ) =00 X(@/2)(0)
S = [si;] € R™*™ has only one nonzero entsy; = 1. Note that the first column @? can be chosen
as[17,07]T while the first row of P~! can be chosen dp’, %pT]T by noting that[1”", 077"

and [p”, %pT]T are, respectively, a right and left eigenvectorfofassociated withu; = 0 and

[p”, 4p"][17,07]" = 1, where0 is an all-zero column vector with a compatible size. Thewsfo

lim | = pSp~! = 17, 07][p", %pT]T ) , that is,

"Note that > 2 becaus® > Z according to Lemma 6.3.1.
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Whena € (2, %), it follows from Property3 of Lemma 6.3.1 that; (t) = z(0) + 21 (0)t.
A similar discussion to that forv € (0,2] shows thatz;(t) — 0 ast — oo fori = 3,---,2n.
Therefore, it follows tha}lirgo Z(t) = [21(0) + £1(0)¢,0,--- ,0]7, which implies tha&li}rgo Z(t) =
[£1(0),0,---,0]". Similar to the proof forx € (0,2], we can get thapin;loji(t) = pTX(0) +
LpTX (/2 (0) + [pTX(0) + $pT X (/D (0)]¢ and lim ;(t) = pT X (0) + Sp" X(1+/2)(0).

(Proof of Case2) When0 < < maxy,-q [IIZ\“C((A;Z_))]Q, it follows from Lemma (6.4.1) that

Re(pu2;—1) > 0 for somei, which implies that% < 2. Therefore, we can get thate (0,2). The

proof then follows a similar analysis to that of Casehena € (0, 2]. [ |

Remark 6.4.2 From Theorem 6.4.1, it can be noted that the control gaican be chosen as any
positive number. In particular, the possible rangecto ensure coordination will be different
depending ors. In addition, when there exists absolute damping, the fieddoity may not be
zero as shown in Theorem 6.3.6, which is different from sodséreg result§61, 71] The existing
coordination algorithms for double-integrator dynamic#tiwabsolute damping61, 71] can be

viewed as a special case of Theorem 6.4.1 when2.

6.4.2 Relative Damping
Forn (n > 2) systems with dynamics given by (6.1), we propose the fatigviractional-order

coordination algorithm with relative damping as
wi(t) = = Y ag{i(t) — 2;(t) = (6 = 6) + =P @) =P @), (6.28)
j=1
wherey € R™ andd; € R is constant. Using (6.28), (6.1) can be written in matrixnicas

X@ @) + LX) + £LX(t) = 0, (6.29)
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whereX (t) and £ are defined in (6.4). It follows that (6.29) can be written as

i (a/2) i

X(t Onsn  In X(t

X | o R 6.30)
X(0/2) () L —yL || X

G

Note that each eigenvalue 6f \;, also corresponds to two eigenvalueghfdenoted byuo; 1 =

=it/ V224N —YAi—\/ 224N
D) and,ugi = D) [60].

Note thatG' can also be written in Jordan canonical form as

1 0 0
0 > 0
G=Q Q'
0 0 i
b
wherey,,, m = 1,2, ..., k, are standard Jordan blocks. By definifif) = [z1(t), - , z,(t)]" =
X(t) .
Q! , (6.30) can be written as
X(@/2)(¢)
Z@2) (1) = 2Z(t). (6.31)

Suppose that each diagonal entry>of is p;, i.e., an eigenvalue of;. Similar to the analysis
of (6.25), (6.31) can be decoupled intoone-dimensional equations represented by either (6.26)

or (6.27). Before moving on, we need the following lemma.

Lemma 6.4.2 Let )\; be theith eigenvalue ofZ, and u; 1 and us; be the two eigenvalues 6f

corresponding to\;. Suppose thaRe(\;) > 0. ThenRe(u2;—1) < 0 andRe(us9;) < 0 if and only

Im()\;)?

. _ _ A
ity > %, wherey; =/ go5 5

Proof: The characteristic polynomial @f is given by

s(s+yX\i) + X = 0. (6.32)
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Letting s; and s, be the two roots of (6.32), it follows from (6.32) that + s, = —y\,;. Because
Re();) > 0, at least one of the two roots are in the open left half plang i 0. Note that the
bound ofv, 7;, can be obtained when one of the two roots are on the imagadsy Without loss of
generality, we let; = zj, wherez is a real constant arjds the imaginary unit. Substituting = zj

into (6.32) gives that-22 + ¥;\;zj + \; = 0. After some manipulation, we can get thatsatisfies

—Im(A\)2 + 72Im(\; ) 2Re( ;) 4+ 72Re(A)3 = 0, which can be simplified ag = % L]

Theorem 6.4.3 Let \; be theith eigenvalue ofZ, and u9;_1 and us; be the two eigenvalues of
G corresponding to\;. Define¥y 2 maxy, .o y; With 4; being defined in Lemma 6.4.2, afid=
M#o}iﬁi%,...,zn 0;, wheref; = m—|arg{—pu; }|. Using(6.29)for (6.1), coordination will be achieved
if the directed fixed network topology has a directed spamiiee andx € (0, 479). In addition, the
following properties hold.

Casel: v > 7. Whena € (0,2], #;(t) and #;(t) converge tap” X (0) + F(%ﬁ/z)pTX(a/?) (0)
ast — oo, wherep is defined in Theorem 6.4.1. Whene (2, %),8 z;(t) andz;(t) converge to
PTX(0) + rrimrmy P X (@/D(0) + phargrrgy X ©/241)(0) ast — oc.

Case2: v < 7. Then we have that;(t) andz;(t) converge top” X (0) + F(%ﬁ/z)pTX(a/?) (0)

ast — oo.

Proof: (Proof of Case) When the directed fixed network topology has a directed rsipgrree,C
has a simple zero eigenvalue and all other eigenvalues lwsigvp real parts [39, 101]. Without
loss of generality, leh; = 0 andRe();) > 0, i # 1. For\; = 0, it follows from (6.32) thaj; = 0
andyu» = 0. Becausé&s has two zero eigenvalues whose geometric multiplicity, i follows that
uo = 0 satisfies (6.26) and; = 0 satisfies (6.27). Whea < (0, 2], it follows from Property2 in
Lemma 6.3.1 thata(t) = 22(0). By substitutingzs(t) = 22(0) into (6.27), it follows that

a/
21(t) = zg(O)F( e + 21(0). (6.33)

1+ a/2)

We next study the case of,i # 1. BecauseRe()\;) > 0,7 # 1, it follows from Lemma 6.4.1

thatRe(p2;—1) < 0 andRe(ug;) < 0 wheny > 4. By following a similar analysis to that in the

$Note that% > 2 becausd® > 7 according to Lemma 6.4.2.
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proof of Theorem 6.4.1, it can be shown thaf ;(¢) — 0 andz;(t) — 0 ast — oo as well.
Similar to the analysis in the proof of Theorem 6.4.1, it clso e computed that; = [17,07]7
andv; = [07,p”]" are the right and left eigenvectors corresponding:to= 0. Meanwhile,

we = [07,17)T andwvy = [p”,07]7 are the generalized right and left eigenvectors correspond
ing to 2 = 0, wherev] wy = 1 andvlw; = 1. Therefore, the first and second columns(bf

can be chosen d&”,07]” and[07, 17]” while the first and second rows Gf ! can be chosen

X(t
as[p’,07]" and [0, pT]T. Therefore, lim () = lim QZ(t) = lim QSZ(0) =
t—00 ot t—oo t—o0
X©@/2) ()
X(0) o

lim QSQ~! , whereS = [s;;] € R™™" has three entries which are not equal to
t—o0 X(a/2) (0)
Zero,s1; = 1, s19 = r(%/:/z) andsqo = 1, wheresy is derived from (6.33). After some manip-

X(t 1p7X(0) + 222 __1pT X (@/2) (g
ulation, we can get thatim ®) _| P 0)+ revamy P © that is,

oo | X (@/2) () 1pT X (@/2)(0)

. 5 /2 = (o
Jim &i(8) = pX(0) + rigamP’ X (0).

Whena € (2, %), it follows from Property3 of Lemma 6.3.1 thats () = 2(0) + 22(0)t.

Becauser, (¢) satisfies (6.27), we can get that(t) = z1(0) + 22(0) /2 Lol A

e T 20) vamm
similar discussion to that far € (0, 2] shows that;(t) — 0 ast — oo fori = 3,--- ,2n. There-
tl+a/2

. . a/2 . .
fore, it follows thattlingo Z(t) = [z1(0)+z2(0)m+z2(0)m,z2(0)+z2(0)t,0, -~ 0T,

Similar to the proof forx € (0, 2], we can get thatim 7;(t) = pT X (0)+ F(%S/Q)pfpf((“/?)(o) +

t1+a/2

ayzray X /2T (0).

(Proof of Case) When~ < 7, it follows from Lemma 6.4.2 thaRe(p2;,—1) > 0 for somei,
which implies that% < 2. Therefore, we can get thate (0,2). The proof then follows a similar

analysis to that of Casewhena € (0, 2]. |

Remark 6.4.4 From Theorem 6.4.3, it can be noted that the control gainan also be chosen
as any positive number. In particular, the rangecoWwill be different depending on. In addition,
when there exists relative damping, the final velocity maypaaonstant as shown in Theorem 6.4.3,
which is different from some existing resuyB®]. The existing coordination algorithms for double-

integrator dynamics with relative dampij§0] can be viewed as a special case of Theorem 6.4.3
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whena = 2.

6.4.3 Simulation

In this section, we present several simulation resultduetilate the theoretical results in Sec-
tion 6.4. We consider a network of four systems.

Toillustrate the results in Section 6.4, we consider the cda directed fixed network topology
shown by Fig. 6.5 which has a directed spanning tree. Thelation result using (6.22) is shown
in Fig. 6.6 whern = 1.6 and3 = 1. The simulation result using (6.28) is shown in Fig. 6.7 when
a = 1.2 andy = 1. Here for simplicity we have again chosén= 0. It can be noted from
Figs. 6.6 and 6.7 that coordination is achieved. In pawicul can be seen from the bottom subplot

of Fig. 6.7 that using (6.28) the final velocity(¢) is no longer constant when= 1.2 and~y = 1.

<
wW——>1N

Fig. 6.5: Directed network topology for four systems. Anoarifrom j to ¢ denotes that systern
can receive information from systejn
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Fig. 6.6: States of the four systems using (6.22) with= 1.6 and/3 = 1 with the directed fixed
network topology given by Fig. 6.5.
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Fig. 6.7. States of the four systems using (6.28) with= 1.2 and~v = 1 with the directed fixed
network topology given by Fig. 6.5.



177

Chapter 7

Conclusion and Future Research

7.1 Summary of Contributions

The dissertation studied decentralized coordinationrédfgns under several different cases.
First, we investigated decentralized coordination athars when there exist none, one, multiple
group reference states. When there exists no group refegate, decentralized coordination al-
gorithms for double-integrator dynamics were proposedsandied in the sampled-data setting. In
the presence of absolute damping, all vehicles will reaeldtésired configuration with a zero final
velocity. In the presence of relative damping, all vehislgéié reach the desired configuration with
a (general) nonzero final velocity.

When there exists one group reference state, we studiedcbatensus tracking and swarm
tracking scenarios. We first investigated decentralizexdinated tracking in the continuous-time
setting by using a variable structure approach. Compardéd ether approaches, the proposed
approach requires less state information and only locaraction. Then we studied a PD-like
discrete-time consensus algorithm and showed the uppeduufithe final tracking errors.

When there exist multiple group reference states, we pezpogntainment control algorithms
to guarantee that all followers will move into the convexl fimtmed by the references. Both single-
integrator kinematics and double-integrator dynamicsvgéudied. We also presented experimental
results on a multi-robot platform to validate the theomti@sults.

Finally, we studied two other problems: optimality problemd the study of coordination
algorithms for fractional-order systems. The optimalitpldem is motivated by the fact that a
number of different consensus algorithms can be used tewaxltionsensus. In particular, the op-
timality problems, including optimal Laplacian matrix angtimal coupling factor, are studied in
the presence of global cost functions. The study of cootidinalgorithms for fractional-order sys-

tems is motivated by the application of fractional calculuseal systems, especially those work-
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ing in complicated environments. We proposed and studiedrdealized coordination algorithms

with/without damping terms.

7.2 Ongoing and Future Research

Currently, there are still a number of open questions whededve further consideration. First,
the current decentralized algorithms are studied mostieuthe assumption that no constraint ex-
ists. However, each vehicle may have its own constraints elsag the constraint from where
the vehicle is involved in. Therefore, it is worthwhile tov@stigate the decentralized coordina-
tion algorithms with constraints. Second, the optimizagiwoblems in decentralized coordination
algorithms. The current stage mainly focuses on the studigoéntralized algorithms without op-
timization mechanism involved. In real applications, deéraized coordination is not the unique
objective. One important problem is to achieve coordimativa better way. Third, the application
in economy, social science, engineering, etc. It is worilentb mention that the purpose of research
is to find the applications in real world. It will be interegji to explain the phenomena in various
disciplines and even find ways to solve the problems as wetlekample, it might be interesting to
study the relationship between centralization and deakrdtion to avoid the economic crisis. We

hope that our research can motivate further research ifi¢ias
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Appendix A
Graph Theory Notions

It is natural to model interaction among vehicles by dirdafgaphs. Suppose that a team
consists ofz vehicles. A directed grapéi = (V, ) consists of a node sét = {1,...,n} and an
edge sef C V x V. An edge(i, j) in a directed graph denotes that vehiglean obtain information
from vehiclei, but not necessarily vice versa. Accordingly, vehiglis called a neighbor of. All
neighbors of vehiclé is denoted byV;. Adjacency matrix4 of directed grapty is defined such
thata;; is a positive weight ifj, i) € £, whilea;; = 0if (j,7) ¢ £. In particular, we assume that
a; = 0,2 =1,--- ,n (i.e., no self edge allowed). A subgraph = (V1,&;) of G is a directed
graph such thay;, € V and&; € £((V1 x V). The union of a collection of directed graphs is
a directed graph whose node and edge sets are the unionsrafdbeand edge sets of the directed
graphs in the collection.

A directed path is a sequence of edges in a directed graphedbtm (iy,1i2), (i2,1i3), .. .,
wherei; € V. A directed graph has a directed spanning tree if thereseatdeast one node having
a directed path to all other nodes. A complete graph is a grapinich each pair of distinct nodes
is connected by an edge. A complete graph in which each edgéiliectional is called a complete
directed graph. A complete undirected graph is an undidegteph in which each pair of distinct
nodes is connected by an edge.

Let the (nonsymmetric) Laplacian matrix = [¢;;] € R"*" associated with4 be defined
as [134]¢; = Y77, ;4; ai; andly; = —ay;, i # j. Zero is an eigenvalue af with an associated
eigenvector ,,, wherel,, is then x 1 column vector of all ones.

Given a matrixS = [s;;] € R"*", the directed graph of, denoted by’(.5), is the directed

graph with node se¥ = {1,--- ,n} such that there is an edgeli{S) from j to i if and only if

Sij 75 0.
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Appendix B
Caputo Fractional Operator

There are mainly two widely used fractional operators: @ajpund Riemann-Liouville (R-L)
fractional operators [116]. In physical systems, Capudetional operator is more practical than
R-L fractional operator because R-L fractional operata inéial value problems. Therefore, we
will use Caputo fractional operator in this paper to model giystem dynamics and analyze the
stability of the proposed fractional-order algorithms. the following of the subsection, we will
review Caputo fractional operator. Generally, Caputotfomal operator includes Caputo integral

and Caputo derivative. Caputo derivative is defined basetiefollowing Caputo integral

- L[S
D7) = oy | G

wherel D, denotes the Caputo integral with order (0, 1], I'(-) is the Gamma function, and

is an arbitrary real number. For any real numpg€aputo derivative is defined as

dlpl+1

C p _ CpP—«
CDRA) = D7

a

(B.1)

wherea = [p] + 1 —p € (0, 1] and[p] is the integer part op. If p is an integer, them = 1
and (B.1) is equivalent to the integer-order derivativecd&ese only Caputo fractional operator is
used in the following of this paper, a simple notatit#¥) (¢) is used to replacg D f(t).

In the following, we will introduce the Laplace transform@&puto derivative and the Mittag-
Leffler function [129]. We first introduce the Laplace treorsh of Caputo derivative. LeL{-}

denote the Laplace transform of a function. It follows frame formal definition of the Laplace
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transformF(s) = L{f(t)} = fe‘stf t)dt that

sCF(s) 4+ s*7Lf(07), a € (0,1]

L{f (1)} =
sPF(s) + s* 7L f(07) 4+ s*72f(07), ac(1,2],

wheref(0~) = lim f(e)and f(07) = lim f(e). Fora, 8 € C, the Mittag-Leffler function in

two parameters is defined as

=y (B.2)
— I( ka + )’

Wheng = 1 anda > 0, (B.2) can be written in a special case as
=y (B.3)

k:OF k‘a—l—l



192

Vita

Yongcan Cao

Published/Accepted Journal Articles

Distributed Coordinated Tracking with Reduced Interattioa a Variable Structure Ap-

proach, Yongcan Cao and Wei ReéBEEE Transactions on Automatic Contréiccepted

Distributed Coordination for Fractional-order SystemgnBmic Interaction and Absolute/Relative
Damping, Yongcan Cao and Wei Re®ystems and Control Letterd/ol. 43, No. 3-4, pp.
233-240, 2010.

Distributed Discrete-time Coordinated Tracking with a €hwarying Reference State and
Limited Communication, Yongcan Cao, Wei Ren, and YarALitomaticavol. 45, no. 5, pp.

1299-1305, 2009.

Optimal Linear Consensus Algorithms: An LQR perspectivengtan Cao and Wei Ren

IEEE Transactions on Systems, Man, and Cybernetics, patyBerneticsAccepted

Distributed coordination of networked fractional-ordgstems, Yongcan Cao, Yan Li, Wei
Ren, and YangQuan ChelgEE Transactions on Systems, Man, and Cybernetics, part B:

Cybernetics Vol. 40, No. 2, pp. 362-370, 2010.

Multivehicle Coordination for Double-integrator Dynarsiander Fixed Undirected/Directed
Interaction in a Sampled-data Setting, Yongcan Cao and Wej IRternational Journal of

Robust and Nonlinear Controfccepted.

Multivehicle Sampled-Data Discrete-time Consensus Atgors for Double-Integrator Dy-
namics under Dynamic Directed Interaction, Yongcan Cao\&adRen,International Jour-

nal of Contro| Vol. 83, No. 3, pp. 506-515, 2010.



193

Multivehicle Distributed Discrete-time Coupled Harmortixscillators with Application to
Synchronized Motion Coordination, Larry Ballard, Yongd@aao, and Wei RedET Control

Theory & ApplicationsAccepted.

Multi-agent Consensus Using Both Current and Outdate@§tabngcan Cao and Wei Ren,

Journal of Intelligent and Robotic Systemidl. 58, No. 1, pp. 95-106.

Autopilots for Small Fixed-Wing Unmanned Air Vehicles: Aisay, Haiyang Chao, Yongcan
Cao, and YangQuan Chelmternational Journal of Control, Automation, and Systeivd.

8, No. 1, pp. 36-44, 2010.

Simulation and Experimental Study of Consensus AlgoritbniMultiple Mobile Robots with
Information Feedback, Wei Ren and Yongcan Qatelligent Automation and Soft Comput-

ing, vol. 14, no. 1, pp. 73-87, 2008.

Published/Accepted Conference Papers

Decentralized Finite-time Sliding Mode Estimators withplipations to Formation Tracking,
Yongcan Cao, Wei Ren and Ziyang MengEE American Control Conferenc®altimore,

July 2010.Accepted.

Distributed Containment Control for Double-Integrator maynics: Algorithms and Exper-
iments, Yongcan Cao, Daniel Stuart, Wei Ren and Ziyang M&88BE American Control

ConferenceBaltimore, July 2010Accepted.

Some Stability and Boundedness Conditions for Second-betelerless and Leader-following
Consensus with Communication and Input Delays, Ziyang Méfej Ren, Yongcan Cao and

Zhen You,I[EEE American Control ConferencBaltimore, July 2010Accepted.

Distributed Coordinated Tracking via a Variable Structégeproach - Part I: Consensus
Tracking, Yongcan Cao and Wei RAEEE American Control Conferenc8altimore, July

2010.Accepted.



194

Distributed Coordinated Tracking via a Variable StructAmproach - Part Il: Swarm Track-
ing, Yongcan Cao and Wei RelEEE American Control Conferenc8altimore, July 2010.

Accepted.

Distributed Containment Control with Multiple Stationasy Dynamic Leaders in Fixed and
Switching Directed Networks, Yongcan Cao and Wei REiE Conference on Decision and

Control, Shanghai, China, 2009.

Distributed Consensus for Fractional-order Systems: Byaénteraction and Absolute/Relative
Damping, Yongcan Cao and Wei RéBEE Conference on Decision and ContrShanghai,

China, 2009.

Sample-data Formation Control under Dynamic Directedraatigon, Yongcan Cao and Wei

Ren,|IEEE American Control Conferenc8t. Louis, Mo, June 2009.

LQR-based Optimal Linear Consensus Algorithms, Yongcam &l Wei Ren|EEE Amer-

ican Control ConferengeSt. Louis, Mo, June 2009.

Distributed Coordination Algorithms for Multiple Fractial-Order Systems, Yongcan Cao,
Yan Li, Wei Ren, and YangQuan ChdiEEE Conference on Decision and Contr@ancun,

Mexico, December 2008.

Convergence of Sampled-data Consensus Algorithms for Beategrator Dynamics, Weli
Ren and Yongcan CatEEE Conference on Decision and ConfrGlancun, Mexico, Decem-

ber 2008.

Distributed PD-like Discrete-time Consensus Algorithnthd Time-varying Reference State,
Yongcan Cao, Wei Ren, and Yan LAJAA Guidance, Navigation and Control Conference

Honolulu, HI, August 2008.

Multi-Agent Consensus Using Both Current and OutdatedeStatongcan Cao, Wei Ren,
and YangQuan ChetAC World CongressSeoul, Korea, July 2008.

Band-reconfigurable Multi-UAV-based Cooperative Remarsing for Real-time Water Man-

agement and Distributed Irrigation Control, Haiyang Chdayc Baumann, Austin Jensen,



195

YangQuan Chen, Yongcan Cao, Wei Ren and Mac McKe&C world congressSeoul, Ko-
rea, July 2008.

e Experiments in Consensus-based Cooperative Control ofipleiMobile Robots, Yongcan
Cao, Wei Ren, Nathan Sorensen, Larry Ballard, Andrew RaiterJonathan KennedigEE

Int. Conf. on Mechatronics and Automation (ICMAarbin, China, August 2007.

o Autopilots for Small Fixed-Wing Unmanned Air Vehicles: Aisay, Haiyang Chao, Yongcan
Cao, and YangQuan ChéBEE Int. Conf. on Mechatronics and Automation (ICMBgarbin,
China, August 2007.



	Decentralized Coordination of Multiple Autonomous Vehicles
	Recommended Citation

	thesis.dvi

